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1. INTAODUCTION

Im 1973, Hanson, Krogh, and Lawson [2] described the advantages of adopting a
set. of basic routines for problems in linear algebra. The original basic linear
algebra subprograms, now commonly referred to as the BLAS and fully deseribed
by Lawson, Hanson, Kineaid, and Krogh [11, 12], have been very auccasaful and
used in a wide range of software including LINPACK [5] and many of the
algorithms published in ACM Transactions ore Mathematical Software. In partic-
ular, they are an aid to clarity, portability, modularity, and maintenance of
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software, and have become a de facto standard for the elementary vector opera-
Lions, An exeellent discussion of the raison d'étre of the BLAS 15 given by Dodeon
and Lewiz [1].

Special versions of the BLAS, in some cases machine code vergions, have heen
implemented on o number of computers, thus improving the efficiency of the
BLAS. Mevertheless, with some modsrn machine architectures, the uze of the
BLAS i5 not the best way (o improve the elficiency of higher level codes, On
vector machines, for example, one needs to optimize at least at the level of
matrix-vector operations in order to approgch the potential efficiency of the
machine (see [2] and [3]); the use of BLAS inhibits thiz optimization because
they hide the matrix-vector nature of the operations from the compiler.

We believe the time 1= right to specify an additienal et of BLAS designed for
muatrix-vecior operations. It has heen our experience that a small set of matrix-
verlor operations oocurs Mrequently in the implementation of many of the most
common algorithmes in linear algebra. We define here the bazic operations for
that zef, together with the naming conventions and calling sequences. Roulines
at thiz level should provide s reazonable compromize between the zometimes
conflicting aims of efficiency and modularity, and it s our hope that efficient
implementations will beeome available on o wide range of computer architectures.

During the Gatlinburg meeting of June 1884 (Waterloo, Ontario), discussions
among the participants encouraged us Lo prepare a proposed set of Level 2 BLAS,
At about the same time, IFIF Working Group 2.5 started a project on the same
subject at their annual meeting in Pazadena, California.

An initial proposal was dralied and presented al the “Pacvec IV Workshop™
held at Purdue University, Lafaveite, Indiana, October 20-30, 1984, A zeries of
meetings was planned so that the project would reflect the best thinking of the
mathematical software community. Four meetings soliciting input were held.
These occurred at SIAM conferences: the “Spring Meeting of the Society™
(Zeatile, Woshington, July 16-20, 1984), the “Conference on Applied Linear
Alpebra" (Raleigh, Morth Carolina, April 29-May 2, 1985}, the “Fall Meeting of
the Society™ (Tempe, Arizona, October 28-30, 1885), and the "Conference on
Parallel Processing for Scientific Computing” (Morfolk, Virginia, Movember 18-
21, 1985). In addicion, we had dizoussions with the ACM-S1GMUM Board at the
board mecting in Seattle, Washington, in July 19584,

Earlier, a modified proposal was printed in SIGN UM Newsletter [6]. In that
document we invited readers (o send us Chelr views and suggestions for changes
to the design of the extended BLAS. Thus, we have appealed to a wide audience
within the mathematical software community, Our hope 5 that the proposed set
of routines that constitute the extended BLAS will find wide application in
Tuture soflware lor numerical linear algebra and provide a vselol (ool Tfor imple-
mentors and users.

In thiz paper we refer to the existing BLAS of Lawson et al. as Lopel [ BLAS,
and the new extended set as Lewvel 2 BLAS. Level 2 BLAS involve &{mnr) scalar
operations, where m and »n are the dimenzions of the matrixz involved. Theze
could be programemed by a series of calls to Level 1 BLAS, though we do not
recommend that they be implemented in that way, Hence, in o natural sense,
Level 2 BLAS are performing basic operations at one level higher than Level 1
BLAS,
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Im [T] we present s model implementation of the Level 2 BLAS in
FORTRAN 77 (extended to include a COMPLEX* 16 data type), and also a set
of rigorous test programs,

2. SCOPE OF THE LEVEL 2 BLAS
The following three types of basic operation are performed by the Level 2 BLAS:
(1) matriz-vector products of the form
yoe—adx+ 8y, ye—ad"x+8y, and ye—adTx+ gy,
where o and § are scalars, x and ¥ are vectors, and 4 is 8 matrix: and
x+—=Te. x—T"% and 1+« TTx
where x 1z & vector and Tis an upper or lower triangular matrix.
(2] rank-one and rank-two updates of the form
A—axy’ + A, A~ axiT+ A, H+— axi™ + H, and
H o~ axi™ + avi” + H,
where M 15 a Hermitian matrix.
{8} solution of triangular equations of the form
x— T, 2= T T, and re=TTr
where T 15 a nonsingular upper or lower trinngular matrix.

Where appropriate, the operations are applied 1o general, genaral band, Her-
mitian, Hermitian band, triangular, and triangular hand matrices in both real
and complex arithmetic, and in single and double precizion.

In Appendiz B we propose corresponding sets of routines in which the internal
computation is performed in extended precision, and the vectors x and/for v are
stored in extended precision, so that the extra internal precision is not all
discarded on return from the routine, This propozal is aimed &t environments
that support extended-precision arithmetic, for example, machines performing
IEEE arithmetic [10]. We propose these routines as an optional extension to the
Level 2 BLAS because it is not possible to specify a complete set within the
confines of ANSI FORTRAN 77. The only case that can be realized within the
standard 15 where the matrix is real single precision and the extended-precision
vectors are real double precision, Code for thess routines is not included in [7].

3. NAMING CONVENTIONS

The name of a Level 2 BLAS iz in the LINPACK style and consisls of five
characters, the last of which may be blank. The first character in the name
denotes the FORTRAN data type of the matrix, as follows:

5 HEAL,

D  DOUELE PRECISION,

C  COMPLEX, and

%  COMPLEX*16 or DOUBLE COMPLEX (if available).

ACHM Trasaestions on Mathompdics] Sofiware, Vol 14, M 1, Marek 19858,



4 * J.J. Dongarra, J. Du Craz, 5. Hemmaring, and B, J. Hanson

Table 1. MNomes of the Level 2 BLAS
COMPLEX REAL MV R R2 5V

CGE BGE z 2

CGH =GR *

CHE 55y 2 L,
CHE S5 - .
CHE 55H b2

CTH STR - !
CTF 8TF et -
UTHE 5TH 3

Characters two and three in the name denote the kind of matrix involved, &s
feal Lovwes:

GE general malrix,

GR general band matrix,

HE Hermitian matrix,

3Y gymméelric matrix,

HP Hermitian matrix stored in packed form,
ZF aymmetric matrix stored in packed form,
HE Hermition band matriz,

B symrnetric band matrix,

TR triangular matrix,

TP triangular matrix stored in packed form, and
TB  triangular band matrix.

The fourth and fifth characters in the name dencte the type of operation, as
follows:

MV matrix-vector product,

R rank-one update,
Ri rank-two update, and
8V solving a system of linear eguations.

The available combinalions are indicated in Table 1. In the first column, under
“COMPLEX,” the initisl C may be replaced by Z. In the second column, under
“REAL," the initial 5 may be replaced by D. See Appendix © for the full
subroutine calling sequences.

The collection of routines can be thought of as being divided into four separate
parts: REAL, DOUBLE PRECISION, COMPLEX, and COMPLEX*18. The
routings can be written in ANSI standard FORTRAN 77, with the exception of
the routines that use COMPLEX*18 variables, These routines are included for
completeness and for their usefulness on those systems that support this data
Lype, but because they de not conform to the FORTRAN standard, they may not
be available on all machines.

For the general rank-1 update (GER), we specify two complex routines: COERC
for A «— axi” + A and CGERU for A — axy™ 4+ A. Thiz is the anly exception (o
the one-to-one correspondence between REAL and COMPLEX routines. See
Section 7 for further discussion,
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We do not specify routines for rank-1 and rank-2 updates applied to band
matrices, because these can be obtained by calls 1o the rank-1 and rank-2 full
matrix routines. Thiz is illustrated in Appendix A

4. ARGUMENT CONVENTIONS

We follow a convention for the arpument lists similar to that for the Level 1
BLAS, but with extengions where comparable arguments are not present in the
Level 1 BLAS, The order of the arguments iz az follows:

(1} arguments specifying oplions,

(2} arpuments defining the size of the matriz,

(3] input scalar,

(4) description of the input matreix,

(3] description of input vector(s),

&) input scalar (associated with the inpul/output vector),
(7] description of the input/output vector, and

(3] dezcription of the input/output matriz,

Mote that not coch category i present in each of the routines.

The arguments that specify optiona are character arguments with the names
TRANS, UPLO, and DIAG, TRANS is used by the matriz-vector product
roulings, a5 shown in Table I1 In the REAL case, the valuez *7T° and 0" have
the same meaning,

LIPLOY 35 wzed by the Hermitisn, symmetric, and triangular malriz routines
to apecify whether the upper or lower triangle is being referenced, as shown in
Table I11.

DA is used by the triangular matriz routines o specify whethar or not the
matrix iz unit trangular, sz shown in Table IV, When DNAG i3 supplied az L7,
the diagonal elements are not referenced.

We recommend that the corresponding lowercaze characters be accepted with
the same meaning, although, because they are not included in the standard
FORTRAN character set, their use may not be supported on all systems. See
Section T for further discussion.

It is worth noting that actusl character arguments in FORTRAN mav he
lenger than the corresponding dummy arguments. Therefore, for example, the
value *T" for THANS may be passed as TRANSPOSE.

The size of the matrix is determined by the arguments M and N for an
m-by-n rectangular matriz, and by the argument N for an n-bv-n aymmetric,
Hermitiom, or triangular matriz. Mote that it is permissible 1o call the routines
with M or N =0, in which case the routines exit immediately without referencing
their veclor or matrix arguments, The bandwidth is determined by the arguments
KL and KU for a rectangular matrix with & subdiagonals and ku superdiagonals,
respectively; and by the arpument K for a symmetrie, Hermitian, or triangular
matrix with & subdisgonsls and/or superdiagonals,

The description of the matrix consists of either the arravy name (4) followed
by the leading dimension of the array (LA} as declared in the calling
(sub)program, when the matrix is heing stored in a two-dimensional array; or the
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Tahle T1,  Meaning of THANS

YWnlue Meaning
1! Dpserate with the macrie
i Operate with the ranapass of the matrix
W Opernte with the conjugnte tronspose of the matox

Table 111, Meaning of UFLO

Wl Meaning
‘e Upper triangle
) Lower triangle

Tabkle V. Meaning of [MAG

Vialus Meaning
o TInit trinngular
A Mamunil trisngular

array name (AF) alone when the matrix is being stored in packed form in a one-
dimenzional array. In the former cose, the actual array must contain at least
(i = 1)d + I} elements, where d iz the leading dimension of the arcay, d = |,
gnd [ = m for the GE routines, { = » for the 5Y, HE, and TR routines,
{ = & + ku + 1 for the GB routines, and { = & + 1 for the 58, HE, or
TB routines. For packed storage the actual array must contain at least
e + 1)/2 elements.

The scalars always have the dummy argument names ALPHA and BETA.

As with the existing BLAS, the deseription of a vector consiats of the name of
the acray (X or ¥ followed by the atorage spacing (increment) in the array of
the veetor elements (INCX or INCY). The increment iz allowed to be positive
or negative, but not 0 (see Section 7). When the vector x consists of & ele-
ments, the corresponding actual arrav argument X must be of length at least
(14 (k= 1) | INCX |). For those routines that inelude the argument SETA, when
BETA iz supplied az 0, the array ¥ need not be zeb on inpul, 50 that operations
such as ¥ +— adx may be performed without initially setiing ¥ to

Mate that the MY routines must not be called with the dummy arguments X
and Y associated with the same actual argument. (Such association is nol sup-
ported by the model implementation and would also contravene the FORTRAM
standard.)

The following values of arguments are invalid.

Any value of the character arpuments DIAG, TRANS, or UPLO whose meaning
15 oo specified is;

it = Iy
M =L
KL =<0
Kb =1
K = 01

ACM Trnecions on Mathesatiial Soltware, Vel 14, Mo, 1, Maorch 1985
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LA < max(1, M} for the GI routines;

LA = KL+ KIJ 4+ 1 for the GB routines:
LA = N for the HE, 5Y, and TR routines;
L4 = K + 1 for the HE, 5B, and TE routines;
INCK = 0 andl

INCY =0

If a routine 15 called with an invalid value for any of ils arguments, then it muast
report the fact and terminate execution of the program. In the model implemen-
tation tsee [7]), each routine, on detecting an error, calls a ¢ommon ¢oror-
handling routine XKERBLA, passing to it the name of the routing and the number
of the first arpument that is in error. Specialized implementations may call
system-speeific exceplion-handling and diagnostic facilities, either via an
auxiliary routine XERELA or directly from the routines. One advantage
of using XERBLA iz that the test program can then test that all errors are
detected (see [T]).

5. STORAGE COMVENTIONS

Unlezs otherwize stated it iz assumed that matrices are stored conventionally in
a two-dimensional array with matriz element a; stored in array element AT, 1,

The routines for real svmmetric and complex Hermitian matrices allow for the
matrix either to be stored in the upper (LTPLO = "1 or lower (UPLO = L7
triangle of & two-dimensional array, or te be packed in o one-dimensional array.
Inn the latter casze, the upper triangle mav be packed secquentially column by
eolumn (L7PLO = °L7), or the lower triangle may be packed sequentially column
by column (DPLO = °L7), Mote that for real symmetnc malrices packing the
upper triangle by columns iz equivalent to packing the lower triangle by rows,
and packing the lower triangle by columns is equivalent to packing the upper
trisngle by rows, (For complex Hermitian matrices, the only difference 1= that
the off-diagonal elements are conjusated.)

For triangular matrices the argument UPLO serves to define whether the
matrix 15 upper (UPLO = *L7) ar lewer (UPLO = °L'] triangular, In packed
storage the triangle has to be packed by colummn.

The band matrix routines allow storage in the same style as with LINPACK,
50 that the jth column of the matrix iz steced in the fth column of the FORTEREAN
array. For a general band matrixz, the diagonal of the matrix is atored in row
fie + 1 of the arcay. For a Hermitian or symmetric matrix, either the upper tri-
angle {UPLO = “L7) may be stored, in which case the leading disgronal i in roo
k4 1 of the array, or the lower triangle {{JPLED = 'L may be stored, in which
case the leading diagonal 15 in the first row of the arcay. For an upper trangular
hand matrix ([JPL{ = °["}, the leading diagonal is in row & -+ 1 of the areay, and
for a lower triangular band matrix (UPLO = °L7), the leading diagonal is in the
first row.

For & Hermitian matrix, the imaginary parts of the diagonal elements are of
eourse 0, and thus the imarinary parts of the corresponding FORTRAN arcay
elements need not be zet, hut are assumed to ha (. In the B and B2 routines,
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these imaginary parts will be set to 0 on return, except when & = 0, in which
case the routines exit immediately,

For packed triangular matrices, the same storage layout is used whether or not
DIAG = 'L""; that is, space is left for the diagonal elements even if those array
elernents are not referenced.

6. SPECIFICATION OF THE LEVEL 2 BLAS

Type and dimension for variables ocourring in the subroutine specificalions are
as follows:

INTEGER INCX, INCY, K, KL, KU, LDA, M, N
CHARACTELR*1 DIAG, TRANS, UPLO

For routines whose first letter is 5:

REAL ALFHA, EETA
REAL X(*), Y{*)
REAL A(LDA, *)
REAL AP(*)

For routines whose first letter is I

DOUBLE PRECISION ALPHA, BETA
DOUBLE PRECISION  X(%), Y{*)
DOUBLE PRECISION A(LDA, *)
DOUBLE PRECISION  AP(%)

For routines whose first letter is O

COMPLEX ALPHA
COMPLEX BETA
COMPLEX X({*1, ¥(™)
COMPLEX  A(LDA, *)
COMPLEX AP(*)

Except that for CHER and CHPR the scalar o is REAL, so that the Grst
declaration above is replaced hy

REAL ALFPHA

For routines whose first letter iz ¥, one of the alternative (nonstandard) specifi-
cutlons is:

COMPLEX*16 ALFPHA DOUBLE COMPLEX ALFPHA
COMFPLEX*16 BETA DOUELE COMPLEX BETA
COMPLEX*16 X(*), Y{*) DOUBLE COMPLEX  X({*), ¥(*)
COMPLEX=16  A(LDA, *) DOUBLE COMPLEX  A(LDA, *)
COMPLEX*16 AP(*) DOUBLE COMPLEX AP(")

except that for ZHER and ZHPR the first declaration above is replaced by
DOURLE PRECISION  ALFHA

The genvric numes, argument lists, and specifications for the extended BLAS
now follow. Hefer to Table I for the specific subroutine names,
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In the following argument lists, the array name AP iz wsed for the cases where
the matrix A is supplied in packed form; in all other cases, the arravy name A is
uged:

(1} General malrix vector products.
For a general matrix,
-GEMV(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, ¥, INCY)
for a gencral band matrix,

-GBMV{TRANS, M, N, KL, KU, ALPHA, A LDA, X, INCX, BETA, Y,
INCY)

Chperation:

if TRANE =N, v odx 4+
if TRANS =*T", y+—adx+ gy
if TRANS =°C", v+ adTx+ gy

(2) Svmmetric or Hermition matrix vector products,
For a symmetric or Hermitian matrix,

SYMVI(UPLO, N, ALPHA A LDA, X, INCX, BETA, ¥, INCY)
-HEMV(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)

for a symmetric or Hermitian matrix in packed storage,

_SPMV{UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
HEMWV{UPLO, N, ALPHA, AP, X, INCX, BETA, ¥, INCY)

for a symmetric or Hermilion band matrix,

SSBMV(UPLO, N, K, ALFHA, A, LDA, X, INCX, BETA, ¥, INCY)
-HEMV{UPLO, N, K, ALFHA, A, LDA, X, INCX, BETA, Y, INCY)

Operation:
¥o— oadx + [y
(3} Triongluar malrix vector produsts,
For a triangular matrix,
_-TREMWV{UPLO, TRANS, DIAG, N, A, LIDA, X, INCX)
for a triangular matrix in packed storage,
-TPMWV{UPLO, TRANS, INAG, N, AP, X, INCX)
for a triangular band matnzx,
-TEMVI(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
Operation:

if TRANS ='W, x o= Ax;
if TRANS ='T", x+ ATx;
if TRANS = '(", 2+ A"x.
ALAM Transistione on Mathemmtics] Software, Vol. 14, Ne. 1, March L1085
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{4} Triangular eguation solvers,
For & triangular matrix,
-TRSV(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
for & triangular matrix in packed storage,
-TPSVIUPLO, TRANS, DIAG, N, AP, X, INCX)
for o triangular band matrix
_TBESVIUPLD, TRANS, DIAG, N, K, A, LDA, X, INCX)
Operation:
if TRANS ='N’, x+—= A5
if TRANS = 'T", x .+ A™"x;
if TRANS ='C°, x+— A "x,

(5) General rank-1 updates.
For s general matrx,
_GER_(M, N, ALPHA, X, INCX, Y, INCY, A, LDDA)
for real matrices,
SGER or DGER performs the cperation 4 «— exy” + A;
for complex matrices,

CGERC or ZGERC performs the operation A «— axi” + A, and
CGERU or ZGERU performs the operation A «— axy” + A.

(B} Syrmmetric or Hermidion rank-T updoles,
For a symmetric or Hermitian matrixz,

_SYR(UPLO, N, ALPHA, X, INCX, A, LDA)
_HER(UPLO, N, ALPHA, X, INCX, A, LDA)

for a symmetric or Hermitian matrix in packed storage,

_SPR(UPLO, N, ALPHA. ¥, INCX, AP)
HPR(UPLO, N, ALPHA, X, INCX, AP)

Operation:
A — axE” + Az
for real symmetric matrices, thiz is simply

A—oxxT 4+ A

AL Tracections on Mathemadical 2oftware, Yol. 14, Moo 1, March 1588,
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(71 Symmetric or Hermition rank-2 updates,
For a symmetric or Hermitian matrix,

SYRZ(UPLO, N, ALPHA, X, INCX, ¥, INCY, A, LDA)
_HERZ{UPLO, N, ALPHA, X, INCX, ¥, INCY, A, LDA)

for a symmetric or Hermitian matrix in packed storage,

_SPR2(UPLD, N, ALPHA, X, INCX, ¥, INCY, AP}
_HPR2(UPLO, M, ALPHA, X, INCX, ¥, INCY, AP)

(peration:
Ae— axy’ + oy’ 4+ A;
for real symmetric matrices, this is simply

A — .5.-1_1_.-'"" + n;_*_.-'.!l;T A

7. RATIONALE

The three basic matrix-vector operations chosen (Section 2) were obvious can-
didates because they occur in a wide range of linear algebra applications and
aecur at the innermost level of many algorithme, The hard decizsion was to restrict
the scope only to these operations, since there are many other potential candi-
dates such as matrix scaling and sequences of plane rotations. Similarly, we could
have extended the scope by applving the operations to other types of matrices
such ss complex symmetric or augmented band matrices. We have aimed at a
reasonable compromise between a much larger number of routines each perform-
ing one type of operation (e.g., x «— L™7x), and a smaller number of routines with
a maore complicated set of options, There are in fact, in each precision, 16 real
routines performing altogether 42 different operations, and 17 complex routines
performing 58 different operations.

We feel that to extend the scope further would significantly reduce the chances
of having the routines implemented efficiently over a wide range of machines,
because it would place too heavy a hurden on implementors, On the other hand,
to restrict the scope further would place too narrow a limit on the potential
applications of the Level 2 BLAS,

We have adhered to the conventions of the Level 1 BLAS in sllowing an
increment argument Lo be associated with cach vector, so that a vector could, for
example, be a row of a matrix. This increment may be negative, in which case
the elements of the vectors are taken in reverse order. This affects the definition
of the operation. For example, if m = n = 3 and INCX and INCY are both
negative, the ~GEMY routines with TRANS = ‘N’ perform the eperation

Ha Mz @ X M
Yz | ol O Oex B X + 3 ¥z |
1 Gtz Maz Amy Wk

In contrast to the Level 1 BLAS, however, we do not allow [NCX or
INCY to be 0. This feature would have little usefulness, it would complicats
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implementation of the routines on many vector machines, and when the associ-
ated vector is an output vector, its meaning is ambignous.

Ar noted earlier, corresponding to the real reuting SGER we specily faro
complex routines: CGERC (for 4 — axi™ + A) and CGERU ifor A4 — axy™ + A).
Both are frequently required. An alternative would be to provide a single
complex routine CGER with an option armument; however, this arpument would
become redundant in the real routine SGER. Rather than have redundant
arguments, or different argument lizts for the real and complex routines, we have
chosen two distinet complex routines; they are analogous to the Level 1 BLAS
CDOTC (¢ +— 7y) and CDOTU (e« x"¥).

Mote that no check has been included for singularity, or near singularity, in
the triangular equation-solving routines. The requirements for such a test depend
on the application, and =so we felt that this should not be included, but should
instead be performed before calling the triangular solver.

On eertain machines that do not use the ASCII sequence on all of their
FORTEAN systems, lowercase characters may not exist, so thet the mnocent
looking argument ‘¢, passed through the argument TRANS for designating a
transposed matrix, i= not in the FORTRAN character set. Some TUNIVAC
gvalems do not have a lowercage representation using the “field data™ character
set. On the COC NOS-2 system, a mechamism 15 provided for a full 128 ASCII
character set by using pairs of 6-bit host characters for certain 7-hit ASCIT
charscters. This means that there 15 a two-for-one physical extenzion of the
lopical records that contain lowercase letters. This fact can hamper portability
of ¢odes written on ASCIT machines that are later moved to CIDC avsterns. The
only safe way to proveed 1s to convert the transperted text entirely into the
FORTREAN character set. On the other hand, we bhelieve that users on ASCII
character set svstems may wish 1o treal upper- and lowercase letters as eguivalent
in meaning. If this iz done, it means that text that will be transported to machines
of unknown types must have the ASCI set mapped into the FORTRAN charactar
get before the text is moved.

The band storage scheme used by the GBE, HE, 5B, and TE routines has
columns of the matrixz stored in eclumns of the array, and diagonals of the matrix
stored in rows of the array. This is the storage scheme used by LINPACK. An
alternative scheme (used in some EISPACK routines [8, 13]) has rows of the
matrix stored in rows of the array, and diagonals of the matnx stered in columns
of the arrav. The latier acheme has the advantsge that a band matrix-vector
product of the form ¥ «— oAz + Sv can be computed using long vectors (the
diagonals of the matrix) stored in contiguous elements, and hence is much mors
cificient on some machines (g.g, CDC Cyber 2050 than the first scheme. Other
computations involving band matrices, however, such as x +— T, x +— T7'x, and
LU, and U707 factorization, cannot be organized by diagonals"; instead, the
computation sweeps along the band, and the LINPACK slorage scheme has Lhe
advantage of reducing the number of page swaps and allowing contizuous vectors
(the celumns of the matrix) to be used.

We considered the possibility of generalizing the rank-1 and rank-2 updates to
rank-k updates, Rank-% updates with k= 1 {but & == n} can achieve significantly
better performance en some machines than rank-1 [4], But to take advantage of

ACM Transections on Mathemedics] Saftware, Vaol, 14, Mo, 1, March 1985
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anma AR T dim bewidik sculler mairia zx-wectar scalar y-vedlss
SEMN THAME M, N, ALPHA, &, LDw, X, MK, BETA, ¥, INCY )
_OEREY TRANS, M, N, KL, FUJ, ALPHA, &, LDa, X, IMCC, BETA, ¥, INCY )
SMEAY UPLGH M, ALPILA, A&, LIS, X, IMOC, BETA, ¥, IMCY 5
_HEMY({ UPLO, L K, ALPHA, A, LDa, 3, [KGI, BATA, ¥, IMCY )
HPSR, UPLO, H, ALFHA, AF, X, INCX, BETA, Y, [MCY 3§
SV UPLD, M, ALPHA, &, LDk, ¥, THCM, AATA. T, IRCTY 3
SR UL, H, B, ALFHA, A, LD&, X, INCK. BETA, Y. INCY }
~EIWTEL UPLE, M, ALFHA, AP, K. INCX, BETA, ¥, INCY }
~THET] LTFLC:, TRAMS, Dlad, M, LO4, X, IMCK &

_TEW UFLG, TRAMS, DIAG, H. K. A, LDa, X, 183X 5

_TP8N URLD, TRANS, DIAG, H, AP, X, ERGX

STREWE UPLO, TRANS, DA, . AL LDn, X, [HCX )

STHEWE UPLO, TRANS, Dras, . K. A, LD, 3, IHEX

TESWE UPLO, TRANS. DIAG, M, AR, X, INCX )

nan e “plivan 4im Bealar TWEQIOF Y¥oveoclor mairia

JGER_( M, W, ALFHA, X, INCX, ¥, IRCY, A, LDA )

MER [ UPLO, H, ALPHA, X, INCX, A, LDd )

EFRE [ UPLO, N, ALFHA, X, INCX, AP ¥

JHERZ[ RIFLO, H, ALFHA, X, OINGC, Y. INCY. A, LD4 )

HPRRL UPLOD, M, ALFHA, X, INGL, Y, INCY, 4P

_SYR [ UPLD, N, ALPHA, X, MK, A, LDW )

5FE [ URLO, N, ALMLL, X, TNGX, AF }

_EYRR( UPLD, M, ALFHA, X, INGC, ¥, INCY, &, LDW )

_EMEE UPLD, M, ALFHA, X, [MEC, ¥. INGY. AF )

Fig. 1. Rank-1 update of o band motriz.

this usually requires complicating the calling algorithm; and moreover, rank-k
updates with & = n would allow an even higher leval operation such as matrix
multiplication “in by the back door.” We prefer to keep to a clean concept of
genuine matrix-vector operations,

APPENDHX A

In this appendix we illustrate how to use the full matriz update routines to ohtain
rank-1 and rank-2 updates to band matrices. We assume the vectors x and v are
such that no fill-in occura outside the band, in which case the update affects
only & full rectangle within the band matriz A. This is illustrated in Figure 1
tor the case where m = n =9, & = 2, ku = 3, and the update commences in
row {and column) | = 3. We see that the update affects only that part of 4
indicated by the dotted lines, that is, the (& + 1)-by-(ku + 1) part of A atarting
at .
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The routines that we could have included are _GEBE, _5BE, and _2BE2 (in
the complex case, _HER and _HERZ), Their argument lists could have been

_GBR(M, M, KL, KU, L, ALPHA, X, INCX, ¥, INCY, A, LDA)
SBR(UPLO, N, K, L, ALPHA, X, INCX, A, LDA)
SBR2(UPLO, M, K, [, ALPHA, X, INCX, ¥, INCY, A, LDA)

where the arpument L denotes the starting row and column for the update, and
the elements = and v, of the vectors x and v, are in elementz X (1) and ¥{1) of
the arrava X and ¥,

Calls to SGER can be achieved by

KM = MIN(KL + 1, M — L + 1)
KM = MIN(KU + 1, N = L + 1)

CALL SGER(KM, KN, ALPHA, X, INCX, Y, INCY, A(KU + 1, L),
MAX(KM, LDA = 1))

Callz to S5BR can be achieved by

KN=MIN(K +1, N— L + 1)
IF (UPLO EQ. “U") THEN

CALL SSYR('L’, KN, ALPHA, X, INCX, A(K + 1, L), MAX(1, LDA — 1))
ELSE

CALL S8YR(L', KN, ALPHA, X, INCX, A(1, L), MAX(1, LDA — 1))
END IF:

and similarly for calls to SEEEZ,

APPENDIX B

In thiz appendiz we propose an additional set of real and complex Level 2 routines
that allow extended-precision matrix-vector operations to he performed. The
names of these routines are obtained by preceding the character representing the
FORTEAM data type (5 or ) by the character E. The matrix is alwavs stored
in working precision (which 15 single precision for the E3- and EC- zet of
routines, and double precizion for the ED- and EZ- zet). The computation must
be performed in extended precision {(which iz more accurate than the working
precigion).

Such routines are uselul, for exampls, in the accurate computation of residuals
in iterative refinement. Moany mechines hove extended-precision regisibers in
which extended-precizgion computation is performed af little or no extra cost. In
order to allow the additional precigion Lo be carried through a series of calls 1o
these routines, however, at lesst one, in some cases both, of the vectors x and ¥
must be stored in extended precision.

These routines are to perform the operations descrnbed in Section 2 as follows:

For the matriz-vector operations,
¥o— wAx + Gy, v o— A = Oy, vo— ad Ty + Gy,

o, 3, A, and x are working precision, ¥ iz extended precigion, and the computation
of ¥ iz to be performed in extended precision.

ACHM Trazsections on Mathemedical Safiware, Yol. 14, Mo, 1, March 19688
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For the triangular operations,

x— Tr, x — T, £ o= TTe,
2 T £ T Ty o= T Ty

L

T iz working precizion, x is extended precision, and the computation of x is to be
performed in extended precizion.

For the rank-1 and rank-2 updates,

A gxv’ &+ 4 A — -::'.I_‘:?T + A,
Hoe— axi™ + H, H+— axi” + &z’ + H,

a, A, and H are working precision, ¥ and ¥ are extended precision, and the
computation is to be performed in extended precision.

The precize nature of the extended-precizion data type cannol be specified
here. The amount of extra precigion available will depend on the architecture of
the machine and the compiler; whether this 12 sulficient will depend on the
application, For the rest of this appendix, we assume double precision is used to
implement extended precision in the ES and EC routines, and guadruple precision
in the EI} and EZ routines (note, however, that gquadruple precizion is oot
gpecified in IEEE arithmetic)., Then the ES- set of routines can he called and
implemented in standard FORTEAN 77. The EC- set requires the addition of a
COMPLEX*16 data type, as does the basic Z- set, but can be uszed across o wide
range of machines, The ED-set requires the addition of a REAL*16 (quadruple-
precizion KEAL) data type, while the EC- zet requires a COMPLEX®*32 (guad-
ruple-precision COMPLEX) data tvpe; these data types are provided on some
systems. We atrongly recommend that, if implementors provide extended-preci-
sion routines uging theze data types, they adhere to the specifications deseribed
here, so that at least a limited degree of portability may be achieved.

To test thoroughly that extended precizion is used as speeificd in the internal
eompulations requires an extra degree of sophistication from the test program.
For all these reasons, neither o model implementation of the extended-precision
routines nor a test program for them has been included in [7]; code for the ES-
and EC- setz of routines may be oblained from the authors.

The specifications of the arguments remain exactly a5 in Section § cxeept for
the following:

for ESGEMV, ESGEBMV, ESSYMV, ESSEMV, ESSPMV, ESGER, ESSYR2,
and ESSPRE,

DOUBLE PRECISION ¥ (*)

for the corresponding EC routines,
COMPLEX*1G ¥{*] {or equivalent)
for the corresponding KLY routines,
REAL*16 Y(*} (or equivalent)

for the corregponding EZ routines,

COMPLEX*22  ¥{®) {or equivalent)
ACM Transectinns ce Matkamatical Sedtwene, Vol 14, Mo L, March 194858,



16« JJ Dongareg, J. Du Croz, 3, Hammading, and B, J. Hangon

for ESTREMY, ESTEMY, ESTPMV, ESTRSY, ESTESY, ESTPSV, ESGER,
ESSYR, ESSPR, ES53YRZ, and ESSPRZ,

DOUBLE PRECISION X%

for the corresponding EC roulines,

COMPLEX*16 Xi*} (or equivalent}

for the corresponding EIY routines,

REEAL*16 Xi(*) (or equivalent)

for the corresponding B4 routines,

COMPLEX"32 XEI(*} {or equivalent)

APPENDIX C
This appendixz containg the calling sequences for the Level 2 BLAS,

,[ L] w - - :I [ (1] ¥ O i) L] L] L - i 1] [ i
bt e S U
|: L] L L - LN | } [ & _:I
|: ¥ |k [ " LN } { * _:I
|; |i__1l__1l__1l| L " ] s |: ' ':l
[ L L L] L] L] * :I f )] }
{ L] . & - - :I I:' {. ]
{ " - L [ a3
¢ - ) e
A+ Iy T
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