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A FULLY PARALLEL ALGORITHM FOR THE SYMMETRIC
EIGENVALUE PROBLEM*
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Absfract. In thes paper we present a parallel algerithm lor the symmetric 2lgebraic eigenvalue problem.
The algenthm is based wpon a divide and conguer scheme suggested by Cuppen for computing the
sigensysbem of 2 symmetric tridizgenal matrie We cxrend this ides 19 ofiain & parallel lgarithm thar retains
& pumber of acive parallel processes thal is greater than or equal o the inftial number throughowt the
vourse of the computaiion. We give a new deflaiion rechnigue which together with & robast rear finding
technique will assire compustation ol &n cigensyiem 16 Mall &ecaracy in the residuals and in the arthagenality
af slgenvectons, A briel andlyss of the numerical properties and sensitivity to round off emmor is presented
o indicabe where numerical difficulties may ocoar. The algariibim is ahle o explod parallelizsm ar all levels
af the cempuintion and & well soited o a variety off archileclunes,

Computaticnal resulls are presenfed for several machines. These resulis are very sncouarnging with
respredd Lo bath accuracy and speedup. A surprising resaln is chat the parzlle] algorithm, even shen mn in
serizl mode, can he significantly Taseer than the previcosly best sequential algerithm on large problzms, and
is eflective am moderate zize problems when mzn in serial made.
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1. Introduction, The symmetric eigenvalue problem is one of the most fundamental
problems of computational mathematics. If arises in many applications and therelore
represents an important area for alporithmic research. The problem has received
considerable attention in the literature and was probably the first algebraic eigenvalue
problem For which reliable methods were obtained. It would be surprising, therefore,
if a new method were to be found that would offer a significant improvement in
execution time over the fundamental algonthms available in standard software packages
such as EISPACK [12]. However, it is reasonable to expect that eigenvalue caleulations
might be accelerated through the use of parallel algorithms for parallel compulers that
are becoming available, We shall present such an algorithm in this paper. The algorithm
i5 able to exploit parallelism at all levels of the computation and is well suited 1o 3
variety of architectures, However, the surprizing result is that the parallel algorithm,
even when run in serial mode, is significantly faster than the previously best sequential
algorithm on large problems, and is effective on moderate size {order =30) problems
when run in seral mode,

The problem we consider i3 the following: Given a real #xa symmetric matmx
A, find all of the gigenvalues and corresponding eigenvectors of A It is well known
[14] that under these assumptions

(1.1 A=0DQ7 with QTQ= [,

so that the columns of the matrix {} are the orthonormal eigenvectors of A and
D =diag {&,, &, -, &) is the diagonal matrix of eigenvalues. The standard algorithm
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for computing this decomposition is first to use a fnite algorithm to reduce A to
tridiagonal form using a sequence of Houzeholder tranzlormations, and then to apply
a version of the QR-algorithm to obtain all the sigenvalues and eigenvectors of the
iridizagonal matrixz [14]. The primary purpose of this paper is to deseribe & methoed for
parallelizing the computation of the eigensystem of the ridiagonal matrix, However,
the method we present is intended o be used in conjuncticen with the initial reduction
o tridiagonal fomm o compute the complete eigensyatem of the orginal matrix A, We,
therefore, bricfly touch upon the issues involved in parallelizing this initial reduction
and suggest a way to combine the parallel initial reduction with the tridiagonal algorithm
o obiain a Mully parallel algorthm for the symmetric eigenvalue problem,

The method is based upon a divide and conquer algorithm suggested by Cuppen
[3]. A Ffundamental ool wsed (o implement thiz algorithm 35 a method that was
developed by Bunch, Mielsen and Sorensen [2] for updating the sigensystem of a
symmetric matrix after modification by a rank-one change. This rank-one updating
method was inspired by some eachier work of Golub [4] on modifed eigenvalue
problems. The basic idea of the new method is to wse rank-one modifications to tear
out selected off-diagonal elements of the (ndiagonal problem in order (o introduce 3
number of independent subproblems of smaller size. The subproblems are solved at
the lowest level vzing the subrouting TOLY from EISPACK and then rezulis of these
problems are successively glued together vsing the rank-one modification routine
SESUPLD that we have developed hased wpon the ideas presented in 2]

In the Following dizcussion we describe the partitioning of the indiagonal problem
into smaller problems by rank-one tearing. Then we describe the numerical algorithm
for gluing the results back together, The organization of the parallel algorithm is laid
oul, and Gnally some computational results are presented. Throughout this paper we
adhere 1o the convention that capital Roman leters represent matrices, lower case
Roman letters represent column vectors, and lower case Greek Letters represent scalars.
A superscript T denotes ranspose. All matrices and vectors are real, but the resulis
arg easily extendad 1o matrices over the comples field,

2. Partitioning by rank-one tearing. The crux of the algorithm 1z to divide a given
problem into two amaller subproblems. To do this, we consider the symmetric
iridizgonal matrix

el ﬁ-m."‘_(ﬂ a) ( ) s
ol T‘(ﬁe.er n)=lo ) el el oteD

where 1= k=n and g represents the jth unit vector of appropriate dimension. The
kth diagonal element -::-F Ty has been medified to give T, and the first diagonal element
of T, has been modified to give f_. Fotential numerical difficultics associated with
cancellation may be avoided through the approprate choice of & IT the diagonal
entrigs 1o be modifed are of the same sign, then 0 = £1 is chosen 50 that —89 has this
sign and cancellation is avoided. If the two diagonal entries are of apposite sign, then
the sign of @ 5 chozen 20 that —83 has the same sign as one of the elements and the
magnitude of & is chosen to avoid severe loss of significant digits when 87'8 is
subtracted from the other. Thiz is perbaps a minor detail, bur 0 dogs allow the
partitioning to be selected solely on the basis of position and without regard to numerical
considerations.

Mow we have two smaller tridiagonal eigenvalue problems to solve, According to
(1.1} we compute the two cigensystiems

-F-:l' G|D1'5';rp -'F'.'_":?IB:G:T-
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This gives

- QD Q7 0 ) ( 'Eh) T fa=e T
T ( 0 0,07 + 85 it (ee, 8

S (I R AT R

where g, = ) &, and g, = (] e,. The problem at hand now is to compute the sigensystem
of the interior matrix in (2.2). A numerical method for solving this problem has been
provided in [2] and we shall discuss this method in the next section.

[t should be fairly obvious how to proceed from here to exploit parallelism. One
simply repeats the tearing on cach of the two halves recursively until (he original
problem has been divided into the desired number of subproblems and then the
rank-one maodification routine may be applied (rom bottom up to glue the results
together again.

(2.2

3. The updating problem. The general problem we are required to solve is that of
computing the eigensystem of a matrix of the form

2 2 a

(3.1] QDT =D+ pzz”

where [ is a real n = n diagonal matrix, p is a nonzero scalar, and z is a real vector
of order n. Tt is assumed without loss of generality that z has Euclidean norm 1.

We seek a formula or an eigenpair for the matrix on the right-hand side of (3.1).
Let us assume for the moment that [} =diag (8,, 8;,- - . 8,) with &, <8,= - <8,
and that no component {; of the vector = is zero. In § 4 we discuss how this may always
ke arranged. If g, A is such an eigenpair, then

(D+pzzT)g = Ag,
and a simple rearrangement of terms gives
iD=allg=-plz"g)z

Tf A =& for some i then our assumption that the ith component of  is nonzero implies

z'q =0. This together with the assu mptmn of distinct eigenvalues implies that g is the
cigenvector & of [ but thtn 0= z"e would contradict the original assumption. Thus,
multiplying on the left by z T D —a07" is valid and gives

zTg=—p(zTq)2"(D-Al) "z
Crur assumplions again imply that = T.j- #{ hence
14 pz (D—al) "z =0
musl be satisfied by A. Starting with a A that is a root to this last equation and putting
g=8(D=Al"z

for some scalar & one may casily verify that g, A iz an cigenpair for D+ g2z,
If we write this equation in terms of the components £, of z, then A must be a
raot of the equation

(3.2) Amidp Tkl oy
. TiA} P M

Giolub [ 4] refers to this as the secular egquation and the behavior of its roots is pictorially
deseribed by the graph in Fig. 1.
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Moreover, as shown in [2] the ¢igenvectors (i.e., the columns of ¢ in (3.1} are
given by the formula

(1.3) =itz

with ¥, chosen to make ||| =1, and with &, = diag (5, - &, 8,— &, - -, &, — &,). Due
1o this structure, an excellent numerical method may be devised to find the roots of
the secular equation and s 4 by-product to compute the sigenvectors to full accuracy.
It must be stressed, however, that great care must be exercised in the numerical method
used to solve the secular equation and (o conztruct the eigenvectors from formula (3.2},

In the following discussion we assume that p>0 in (3.2). A simple change of
variables may always be used to achieve this, so there is no loss of generality. The
method we shall describe was inspired by the work of Moré [9] and Reinsch [10],
[11], and relies on the use of simple rational approximations (o constrecl 3n |I,|:n'||_1'.-|:
method for the solution of equation (3.2}, Given that we wish to find the ith root &
of the function fin (3.2}, we may write this function as

JOAY =14+ (A)+(A)

whers

_':.-?_
a
A l=p Ea—a

x
and

W |:=
dla)=p T —Lo
=il Yy

From the graph in Fig. 1 il is seen that the root & lics in the open interval {8, &,
and lor A in this interval all of the terms of  are negative and all of the terms of &
are positive. We may derive an ilerative method for solving the equation

—g{A)=1+&(A)

by starting with an initial guess A, in the appropriate interval and then constructing
simple rational interpelants of the fomm
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where & is fixed at the current value of &,,, and the pitrameters p, g, v, 5 are defined
by the interpolation conditions

e s
_ prvad (ORI e OB
(3.4)
14
S R A
oY o

The new approximate A, to the root & is then found by solving

I
(3.5} gl—}l._l+r+ﬁ—j.-
It is possible to construct an initial guess which lies in the open interval (&, &), A
sequence of iterates {A, | may then be constructed as we have just described with A,
being derived from A, as A, was derived fram A, above, The following theorem, proved
in [2] then shows that this iteration converges quadratically from one side of the root
and does not need any safeguarding.

TheorEM 3.6, Ler p==0 fn (3.2). If the initial iterate A, lies in the apen interpal
(8, &) then the sequence of ilerates {A} as constructed In (3.4)-(3.5) are well defined
and satisfy Ay <Ay < b, for all k=0, Moreaver, the seguence converges guadratically
i the rond 3

In our implementation of this scheme (3.5) is cast in such a way that we solve
for the iterative correction 7= A, —A,. The quantities & = A, which are used later in
the eigenvector caloulations are maintained and these iterative corrections are applied
directly to themn as well as 1o the eigenvalue approximation. Cancellation in the
compaetation of these differences is thus avoided because the correclions become smaller
and smaller and are eventually applied to the lowest order bits. These values are then
used directly in the calculation of the updated eigenvectors to obtain the highest
possible accuracy. The rapid convergence of the ilerative method allows the
specification of very stringent convergence criteria that will ensure a relative residual
and orthogonality of eigenvectors to full machine accuracy. The slopping criteria used
are

(i) |STA)N= 5 max(]d,, |8.]), and

[ii} |l = o mind] & = Al |50 =AlD,
where A is the current iterate and 7 is the last iterative correction that was computed,
The condition on 7 is very stringent. The purpose of such stringent stopping criteria
will be clarified in the next section when we discuss orthogonality of computed
cigenvectors, Lel it suffice at this point to sav that condition (i} azsures 3 small residual
and that (ii} assures orthogonal sigenvectors,

In most problems these criteria are easily satisfied. However, there are pathalogical
situations involving nearly equal cigenvalues that make (i) very difficult to satisfy. It
is here that the basic root fnding method described above must be modified, The
problem stems from the fact that the iterative corrections cease 1o modify the value
of f due to round off error. When working in single precision, this situation can be
rectified through the use of extended precision accumulation of inner products in the
evaluation of f and its derivative. However, this becomes less attractive when working
in &d-kit arithmetic as is dons in most scientific caleulations. Whether or not we shall
be able 1o provide a root finder that will satisly these siringent requirements in 64-hit
arithmetic for very pathological cases remains to be scen.
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This has been a briel descaption of the rank-one updating scheme, Full theoretical
details are avallable in [2]. This calculation represents the workhorse of the parallel
algorithm. The method seems to be very robust in practice and exhibits high accuracy.
It does not seem o suffer the effects of nearly equal roots as Cuppen suggests [3] but
instcad was able to solve such ill-conditioned problems as the Wilkinson matrices
Woear [15, po 308] to full machine precizion and with shghtly bewer residual and
orihogonality propertics than the standard algorithm TOQL2 from EISPACEK. In the
next seclion we affer some reasons lor this behavior,

4. Deflation and orthogonality of eigenvectors. AL the oulzel of this discussion we
made the assumption that the disgonal elements of £ were distinet and that no
component of the vector = was zerg. These conditions are not satisfied in general, 5o
deflation techmigues must be emploved 1o ensure their satisfaction, A deflation tech-
nigque was suggested in [2] to provide distinet cigenvalues which amounts to rotating
the basis for the gigenspace corresponding to a multiple gigenvalue 50 that only one
component of the vector z corresponding to this space 15 nonzero when represented
in the new basis. Those terms in (3.2} corresponding to zero components of 2 may
simply be dropped. The eigenvalues and eigenvectors corresponding to these zero
components remain static. In finite precision arichmetic the sitwation hecomes more
interesting. Terms corresponding e small components of = may be dropped, This can
huve a very dramatic etfect upon the amount of work reguired in our paralle]l method,
Az first observed by Cuppen [3], there can be zsignificant deflation in the updating
process as the original matrix is rebuilt from the subproblems,

Thiz deflation can occur in two ways in exact arithmetic, cither through zero
components of 2 or through multiple eigenvalues, In ocder o oblain an algonthm
suitable for finite precision arithmetic, we must refine these notions to include “nearly
zero’” components of = and “nearly equal” eigenvalues, Analyzsis of the Grst siluation
iz straightforward. The second situation can be guite delicate in certain pathological
cases, however, so we shall dizscuss it here in some detail, I torms out that the case of
nearly equal sigenvalues may be reduced to the case of small components of =

It is straightforward to see that when = 7e, = 0 the ith eigenvalue and corresponding
gigenvector of 12 will be an eigenpair for D4 pzz’. Let us ask the gquestion “when is
an cigenpair of [} a good approximation o an cigenpair for the modified matriz?™
This question is easily answered, Recall that |z]| =1, so

T e
(D + paz")e; = Bie| = |pdi| [|2] = |l
Thus we may accepd this eigenpair ag an eigenpair for the modified matax whenever
|pdi| = ol

where tol =0 iz our error tolerance. Typically tol = macheps (5|4}, where macheps
is machine precision and = is 3 constant of order unity, However, at each stage of the
updaling process we may use

tol = macheps sp{max(|&[, |3,[1+|o()

simee at every stage this will represent a bound on the spectral radivs of a principal
submatriz of A, Let us now suppose there are two eigenvalues of D separated by e
so that £ = &, — &, Consider the 2% 2 submatrx

& f
( a|+:|)+|n(§i|){§”f:;-rl}
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of D+ pzz" and let us construct a Givens transformation to introduce a zero in one
of the two corresponding components in z. Then

(W )l )
(4 )Joorenls )

where ¥ +a'=1, & =54 + 8,0 8., =80+ Biyy” and =14 12, Now, if we
put O equal to the nxn Givens transformation constructed from the identity by
replacing the appropriate diagonal block with the 2 2 rotation just eonstructed, we
have

(4.1} G pzz VGl = D+ p37 + E,
with EI-E:'T and ¢-|.’+1§=ﬂ:_ 'E;J.ﬁfu—gr:. Enrn-ir::"'?:ll =3‘r+|. and
LE ] = [ecy].

If we choose, instead, to zero out the ith component of =z, then we simply apply &,
an the right and its transpose on the left in equation (4.1) 10 obtain the desired similar
result. The only exception to the previous result is that the sign of the matrix F, is
reversed. OFf course this deflation is only done when

[eyer| = nol
15 satisfied.

The result of applying all of the deflations is to replace the updating problem
(3.1) with one of smaller size. When appropriate, this is accomplished by applying
similarity translormations consisting of several Givens transformations. 17 (7 represents
the product of these transformations the result is

Dy—pzz{ 0 )
G+ pez” -’=( + F
il pez ' WG o D,

where
| El=toly,
with #; of order unity. The cumulative effect of such errors s additive, and thus the

=

final computed sigensystern QD07 which satisfies
1A= QDQT| = mytol

where 1, 15 again of order 1 in magnitude. The reduction in size of ) — pz,20 aver
the original rank-one modification can be spectacular in certain cases. The effects of
such deflation can be dramatic, lor the amount of computation required to perform
the updating is greatly reduced.

Let us now consider the possible limitations on orthogonality of eigenvectors due
e nearly egqual roots. Owr ficst result i3 4 perturbation lemma that will indicate the
inherent difficully associated with nearly equal roots,

Limma 4.2, Let

T bt poads JL’L]'”
) 1 _(151—1‘:5;—,1' Ba= AL
where [ ix defined by formuta (3.2). Then for any A, p e {8:i=1,++, n}
I =
{4.4) alq.|= LA =il

A =] DA )]
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FProgf. Mote that

(8.5) R ( - £ ) Lol

Ao B = ANE — ) LA (YT
Biut
A—p 1 1
E=AHE =] (BN (e
Thus
[J.—,r.-;":l,ui— £ —=ﬂ£i—ﬂf—ﬁ—hﬂ-ﬁ-]-1'{p}
=B — A& —p) S k—A  E e
and the result follows. O

Mote that in (4.3} g, is always a vector of unit length, and the set of o vectors
selected by setting A equal to the roots of the secular equation is the set of cigenvectors
for D+ pzz", Moreover, (4.4) shows that those sipenvectors are mutually orthogonal
whenever A and g are set (o distingt roots of £ Finally, the term |A — u| appearing in
the denominator of {4.4) sends up a warning that it may be difficult to atain erthogonal
eigenvectors when the roots A and p are close. We wish to examine this situation now,
We will show that, as a result of the deflation process, the {5} are sufficiently separated,
and the weights £ are uniformly large cnough that the roots of © are bounded away
from cach other. This statement 15 made explicit in the Tollowing.

Lemings d.6. Ler A be the root of §in the ith subinterval (&, &), I the deflarion
dest iz satizfied then eilher

tal?
(i 16— Al=H6— 8] and |6 -—-AlZ—— — =, ar
i) 1 2By | | | | pl iy — &) + 27

i tal®
(i1} -Ej_ﬂ"-l:—:él'sl-l_ﬁrl and |8, - -’-.EF[E.H_&::‘-
Froof, In case (1) the Fact that J{A) =10 provides

H 2 n ¥
P E—E-’—=!+ e

.I"I-"'_la_. j:rll.ﬁ_._-i-l

From this equation we find that
2 A ol
e g L

A—& Tty By — &'

and it follows readily that

|oli? )
| e I FPRE
[Bies '(|a...—a,|+:|;r| Jogd

The deflation rules assure us that | g7 = tol®/| p| and the result Tollows. Case (ii) is
similar, O

The form of the result given in Lemma 4.6 will have importance in the fellowing
lemma which gives hetter insight 1o the guality of numerical orthogonality attainable
with this scheme. The bounds obtained are certainly less than one would hope for.
Moreaver, it is unfortunate that only the magnitude of the weights enter into the
estimate. This obviously does not take mnto account the deflation due to nearly equal
eigenvalues. Unfortunately, we have not been able to improve these estimates by other
means and are lefl with this crude bound.
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Leninia 4.7, Suppose thar L and £ are numerical approximations te exact raots A
and poof . Aszume that these roots are distiner and let the relative errors for the quantities
G, =X and & — g be denoied by 0, and w,, respectively. That is, the computed quaniities

[4.8) G—A=08—-AN1+8) and &=gf=(8&=-pdl+m)

Jori= 1,2, o Lergg and g be defined according to formula (4.3) wsing the compured
quanditics given in (480 I¥ |8, |m]=e= 1, then

14
g gal = g7 Eq.| = s{2+ r‘,u( :)

with E o diggonal marrix whose ith diagenal element iz

FProof. From formula (4.3) we have

BT ( & ) Ll
25 = 15 — A& = e W18+ ) S [N A

_(;_ £ L £ ) o i
= (B —AME— ) 508 —ANE— )1+ 80+ 5 ) LR EnY?

due to the orthogonality of the exact vectors, Thus,

|'H'.- aml =

T ( i )(. ; 1 ) #
FAG G-\ T o) o En

Since the quanticy

3.1 £
A - 2
fas BN ey
Ry &
=1 (B = AP(1+8)
and singe
+e+
A F‘,,__r A
(1-g)(1—z)

the result follows, (]

Thiz shows that orthogonality can be assured whenever it is poszible 1o provide
small relative errers when computing the differences & — A, Since, as we mentioned in
% 3, these quantitizs are updated with the iterative corrections fo A and since deflalion
has guaranteed that the quantities in Lemma 4.6 are bounded away from zero, it will
be possible in theory to provide small relative errors. Obviously, the analysis given
here, simple as it may be, could form the core of @ rigorous error analysis of the
method. As ver we lack a root Ainder that could be proven to satisfy numerically the
relative error requirements. The one described above will do so in finite precision but
may require extended precision accumulation of inner products in pathological cases.
However, in practice we have nol experienced difficulty with the exception of contrived
examples., Cuppen [3] has shown that the computed cigenvectors may be safely
rearthogonalized when needed. We hope to avoid this aliernative, though.
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5. Beduction to dridisgonal form and related issues. This algothm is designed to
work in conjunction with Householder's reduction of 4 symmetric matrix oo tridiagonal
form. In thiz standard technique a sequence of r =1 Householder transformations is
applicd to form

Ay = (T = apwow AT = aomew (),

— TR ‘:I
(0 2)

where Ty 15 a tridiagonal matrx of order k-1, See [12] for details. We note here that
we can form (= aww 1Al — aww ) using the following alporithm.

with

ALGORITHM 5.1,

I. ¥=Aw
R T L TR
3. Replace A by A—arw’ —awy’,

Steps 1 and 3 may all ke parallelized because A may be paritioned into blocks of
columns A= (4, , A, --, A and cach of the contributions corresponding to these
columpz may be carried out independently in Steps | and 3. For example, in Step 3,

I B R
where the vectors w and ¥ have been partitioned in a corresponding manner. In Step
2 the partial results will have to be stored in temporary locations until all are completed
and then they may he added together to obiain the final result. Mote also that when
the calculations are arranged this way advantage may be taken of vector operalions
when they are available.

Algorithm 5.1 has some dizadvantages when incorporated inte the reduction of a
symmetric mairix to tridiagonal form. At the &th stage of the reduction we have

(TCM ﬁi“'.::ﬁr)
Bejei AN

The reduction 15 advanced one step through the application of Algorithm 5.1 1o the
submatrix A"*'. First, a fork-join synchronization construct is imposed since the
matriz-veclor product requires the entire matrix A™ to be in place hefore this product
can be completed, 50 that no portion of 3tep 2 may begin until Step 1 15 Gnished.
Second, due to symmetry, only the lower triangle of A'Y need be computed and this
implizs that vector lengths shorten during the computation.

When uvsed in conjunction with the rank-one tearing scheme, these drawbacks
miay be overcome, Suppose the final result of this decomposition is T and that this
matrix would be paritioned into (T, T3, - - -, T.,) by the rank-one tearing if it wers
known. It is not necessary to wait until the entire reduction is completed, for T
represents 4 leading principal submatnx of T, Thus, as soon as the first subtridiagonal
matriz T, 18 exposed, the process of computing its cigensysiem may be initiated.
Similarly, as soon as 15 is exposed ils eigensyatem may be computed, Then a rank-ons
update may occur, and 50 on. [n this way a number of independent processes may he
spawned early on, and the number of such processes ready 1o execute will remain
above a reasonable level throughout the course of the computation. An efficient
implementation of this scheme is dificult and will be the subject of a subsequent paper.
[zzues such as proper level of partitioning will have added imporance due to the desire
ta have parallel processes set in motion as soon as possible.
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When we do not wizh (o ind eigenvectors there iz no reason to store the produwct
} of these Houssholder transformations. Mor is it necessary (o accumulate the produect
of the swccessive eigenvector transformations resulting from the updating problem.
That 15, we do not need to overwrile £ with

o-o§ J)é

where )y, ¢ and ) are the matrices appearing in (2.2) and (3.1) above, Instead, we
ray simply discard & Then the vecior , may be formed as 'F', is transformed o L3
in (2.2) by accumulating the produciz of the ransformations constrected in TOLZ that
make up £, against the vector e If there is more than one division, then &) will have
been calculated with the updating scheme. In this case we do not calenlate all of
but instead use the component-wise formula for the eigenvectors o pick ol the
appropriate components needed to form g, .

This algenthm can be peneralized to bandle band matrices as well, Instead of
performing a rank-one tearing to split the matrix into two independent subproblems,
we procesd by making (m 4+ 1m /2 rank-one changes designed 1o split the matrix, (e
is the half bandwidth, s = | for tridiagonal matrices).

Sfrataten Wt
* ®* oM |x
ith row “ M= X
i+ 1th row ¥ X | xH =
Ml M X X
NE S ar e

The three rank-ons changes for this band matriz, {m=2), invalve the lollowing
clemenis:

Wi i=1 A asla

Tie1,i—a LIFRS
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sz in itz 143

The order in which they are applied does not matler in exact arithmetic, We have not
studied the numerical properiies of this scheme, however.

6. The parallel algorithm. Although it is fairly staightforsard from § 2 to see
how to obtain a parallel algorthm, certain details are worth discussing further. We
shall begin by describing the partitioning phase. This phase amounts to constructiing
a binary tree with each node representing a rank-one fear and hence a parition into
two subproblems. A tree of height 2 therefore reprezsents a sphtting of the omginal
problem into & smaller cigenvalue problems. Thus, there are two standard symmetric
rridiagonal eigenvalue problems to be solved at each leal’ of the tree, Each of these
problems may be spawned independently without fear of data conflicts. The tree is
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then traversed in reverse order with the eigenvalue vpdating rowtine SESUPD applied
at each node joining the results from the left son and right son calculations, The leaves
cach define independent rank-one uwpdating problems and again there are no data
conflicts between them. The only data dependency al a node is that the left and right
son calculations must have been completed. When this condition is satisfied, the results
of two adjacent sigenvalue subproblems are ready (o be joined through the rank-one
updating process and this node may spawn the updating process immediately. Informa-
tion reguired at a node 1o defing the problem consists of the index of the element torn
out, together with the dimension of the left and right son problems. For example, if
n=>50 with & tree of height 3 we have

Friz. 2 The computacionzl ree.

This tree defines & subproblems at the lowest level. There are two calls to TOQLZ required
at each leaf of the tree in Fig, 2 (o solve iridiagonal eigenvalue problems. The beginning
indices of these problems are 1, 7, 13, 1%, 26, 32, 38, 44 and the dimension of each of
them may be read off from left to right at the lowest level as 6, &, 6, 7, 6, &, 6,7
respectively. As soon as the calculation for the problems beginning at indices 1 and 7
have been completed a rank-one update may proceed on the problem beginning at
index 1 with dimension 12, The remaining vpdating problems at this level begin at
indices 13, 28, 38. There are then two updating problems at indices 1 and 26 each of
dimension 25 and a final vpdating problem at index 1 of dimension 50

Evidently, we lose a degree of large grain parallelizm as we move up a level on
the tree, However, there is more parallelism to be found at the root finding level and
the amount of this increases as we travel up the (ree so there is ample opporiunicy Tor
load balancing in this scheme. The parallelism at the root finding level stems from the
fact that each of the oot calculations is independent and requires only read access to
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all but one array. That is the arcay that contaings the diagonal entries of the matrix 4,
deseribed in § 3, For computational efficiency we may decide on an advaniageous
number of processes to create at the outser. In the example above that number was 8,
Then as we travel up the tree the root-finding procedure is split into 2,4, and finally
& parallel pars in each node at levels 3, 2, 1, respectively. As these computations are
roughly equivalent in complexity on a given level it is reasonable to expect to keep
all processors devoted (o thizs computation busy throughout.

7. Implementation and library issoes. The implementation described here is for
compulers with @ shared memory architecture. The algorithm itsell 5 not limited to
this memory model; however, Jessop [5] has an implemeantation of a similar algorithm
for a hypercube that is also based upon Cuppen’s divide and conguer scheme.

Obviously, the implementation of this scheme is not 5o straightforward as simply
parallelizing & loop using a fork-join construct, The synchronization mechanism
requires more sophistication since it must be able to spawn processes at the root finding
level based upon computation that has taken place, This process allocation problem
is dvnamic rather than static since, due o the possibility of deflation, it will not be
known in advance how many roots will have 1o be caleulated at a given level. If there
are only & few roots to be found, then the desire for reasonable granularity will dictate
fewer processes to be spawned,

In addition to requiring 2 certain level of sophistication in the synchronization
scheme, we would like 1o adhers as much as possible to the principles of transportability.
This algorithm is obviously a candidate for a library subrowtine and potentially will
find use on & wide variety of machines. When designing library subroutines, one wishes
to conceal maching dependencies as much as possible from the user. These important
considerations seem to be difficult to accommodate if we are to invoke parallelism ac
the level described above. It would appear that the user must be conscious of the
number of parallel processes reguired by the library subroutings theowghout his pro-
pram. Should the library routines be called from multiple branches of a user's parallel
program, then he could inadvertently attempt to ¢redle many more processes than
allowed due 1o physical limitations.

We believe there is hope for implementing this algarithm while adhering to the
goals set ot in the previous two paragraphs. It may be accomplished by adopting a
programming technique that is inspired by the work of Lusk and Cverbeek [7], [8]
and by Babb [1] on methedologices for implementing transpertable parallel codes. We
use a package called SCHEDULE [13] that we have been developing while this
algorithm was being devised and tested. SCHEDULE is a package of Fortran sub-
routines designed 1o aid in programming explicitly parallel algorithms for numerical
caleulations. The design goal of SCHEDULE is to aid a programmer familiar with a
Forlran programming environment to implement a parallel algorithm in & style of
Fortran that will lend itsell 1o transporting the resulting program across a wide variety
of parallel machines. An important part of this package 15 the provision of 2 mechanism
for dynamically spawning processes even when such a capability is not present within
the parallel language extensions provided for a given machine. The Alliant computer
is an example, A detailed discussion of this package is beyond the scope of this paper
and will be presented elsewhers. A deseription of the package and its capabilities is
available in [13].

. Performance. [nthissection we present and analyze the results of this algorithm
on 3 number of machines, The same algorithm has been run ona YAX 117785, Denelear
HEP, Alliant FX/#, and a CRAY X-MP-4.
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Tamneiz £.1
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We have compared our implementation of the algorithm described in this paper
to TOLZ from the EISPACK collection. Table 2.1 gives the ratio of execulion tme lor
TOLZ Meom EISPACK run sequentially and the algorithm presented here run in parallel
on the same machine. In all cases, the TOLE code vzed 1o test against and the TOL2
code pzed ar lowest level in our algorichm were exactly the same code. Both the parallel
algorithm and the serial version of TQLZ were called by a commaon driver test routine
during the same computer run. This assurces that both routines were compiled under
the same compiler options and ran in the same computing environment to produce
this timing data_ The timings for TQL2 were obtained by executing it as a single process,
By this we mean that the code for TOLZ executed on a single processor of the Alliant
and CRAY machines and as the only created process execuling on the HEF machine,
In all cazes the computaions were carried out as though the tridiagonal matrix had
come from Houssholder's reduction of a dense symmetric matrix (o tridiagonal Torm,
The identicy was passed in place of the orthogonal basis that would have been provided
by this reduction, but the arithmetic operations performed were the same as those that
woutld have been required to transform that basis into the eigenvectors of the original
symmetric matrix,

Az can be seen in Table 8.2, the performance of the parallel algorithm as imple-
mented @ rn on a sequential machine is guite impressive. The surprising result here
is the observed speedup even in serial mode of execution, This 15 unvseal in a parallel
algorithm. Often more work s associated with synchronization and computational
overhead required to split the problem into parallel parts.

These resulis are remarkable because in all cases speedups preater than the number
of physical processors were oblained, The gain iz due to the numerical propertics of
the defation portion of the parallel algonthm, We do not fully understand why the
algorithm performs as much deflation as is apparent by the comparisons. In all cases
the word length was &4 bits and the same level of accuracy was achieved by both
methods. The measurements of accuracy used was the maximum 2-norm of the residuals
Tq—Ag and of the columns of Q70 — I The resulis in Table .1 are typical of the
performance of this algorithm on random problems with speedups becoming mors
dramatic as the matrix order increazes, In problems of order 500 speedups of 15 have
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Taner £.3
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been observed on the CRAY-XMP-4 and speedups over 50 have been observed on
the Alliant FX/2, which are 4 and & processor machines respectively. The CRAY
results can actually be improved becavse parallelizm at the root inding level waz not
exploited in the implementation run on the CRAY but was fully exploited on the Alliant.

In Tables 2.3 and 5.4 we show 3 more complets set of runs on the Alliant/ FXE&.
These test problems show two types of behavior. In the (1, 2, 1) matrix not very much
defiation takes place. On the random matrix considerable deflation takes place. The
observation of Cuppen that this deflation occurs in many cases was very Torunate. Tt
brought our attention to this algorithm, but we did not really expect the remarkable
performance observed here, In the cise where many eigenvectors are sought along
with the eigenvalues this algorithm seems to be very promising. However, as we
mentioned in § 5 it is not necessary to compute the ¢igenvectors if they are not needed.
We cannot recommend this algerithm in the case where only a few eigenvalues and
gigenvectors are sought. A multisectioning algorithm such as the one developed by
Lo, Philippe and Sameh [6] is to be preferred in this case.
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