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Abstract. This paper describes algorithms for solving narrow banded systems and the Helmholtz difference 
equations that are suitable for multiprocessing systems. The organization of the algorithms highlight the large 
grain parallelism inherent in the problems. 
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1. Introduction 

We consider algorithms for solving narrow-banded diagonally dominant linear systems which 
are suitable for multiprocessors. We describe a direct solver similar to that in [12] for tridiagonal 
systems, and in [9] for solving a banded system on a linearly connected set of processors. We 
will also provide and analyze a parallel implementation of the partitioning algorithm and the 
matrix decomposition which we refer to as a hybrid solver (direct and iterative) which is 
superior to the direct solver especially for strongly diagonally dominant systems. When the 
interconnection network is not sufficiently powerful, a bottleneck develops in one of the stages 
of the direct solver in which the cost of the computation is proportional to the number  of 
processors. This inefficiency may be alleviated by using an iterative scheme in this stage that 
takes full advantage of the parallelism offered even by a linear array of p processors. 

A similar approach is also used to handle the positive-definite system that arises from the 
standard five-point finite-difference discretization of the Helmholtz equation. This problem 
arises frequently in situations where fast solvers are of primary importance. In this paper  we 
consider the matrix decomposition solver that has been described in several papers, e.g. 
[1,2,6,10,11]. 

2. A partitioning algorithm for banded systems 

Let the linear system under consideration be denoted by 

A x  = f  (1) 

where A is a banded diagonally dominant matrix of order n. We assume that the number  of 
superdiagonals m << n is equal to the number of subdiagonals. On a sequential machine such a 
system would be solved via Gaussian elimination without pivoting at a cost of O(m2n)  
arithmetic operations. We describe here an algorithm for solving this system on a multi- 
processor of p processing units. Each unit may be a sequential machine, a vector machine, or an 
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array of processors. In this paper, however, we consider only p sequential processing units. 
Let the system (1) be partitioned into the block-tridiagonal form shown below 

A1 Ba 
C2 ,'12 

Xl 

B2 x2 

c._~ A._~ S._I x._~ 
C. Ap x. 

where Ai, 1 ~< i ~<p - 1, is a banded matrix of order q --- In /p  
A), 

(o oo) B~= Bi , l ~ < i ~ < p - 1  

and 

0 ' 

A 

L 

(2) 

and bandwidth 2m + 1 (same as 

(3a) 

(3b) 

in which b a and Ca+l are lower and upper triangular matrices, respectively, each of order m. 
The algorithm consists of four stages. 

2.1. Stage 1 

Obtain the LU-factorization 

A l -- L,U,., 1 ~< i ~< p (4) 

using Gaussian elimination without pivoting, one processor per factorization. Here L, is unit 
lower triangular and Ui is a non-singular upper triangular matrix. Note that each A~ is also 
diagonally dominant. 

The cost of this stage is O(m2n/p) arithmetic operations, no inter-processor communication 
is required. 

2.2. Stage 2 

If we premultiply both sides of (2) by 

diag(A - , At1,..., A; 1) 
we obtain a system of the form 

Iq El 
r2 i, ~2 

x1 

X2 

Xn-1 

Ix. 

gl 

g2 

gn-1 
g,, 

(5) 
5-1 ~ ~-1 

where 

e,= (~,, o), ~=(0,  ~), 
in which El and ~ are matrices of m columns given by 

E, - -A71(~i )  and ~=A71(0Ci ) 

and will in general be full. In other words /~, ~,,., and g,. are obtained by solving the linear 
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systems 

L, Uj[~, J~j, gj] = [(0 ), (ffi),' fi] for I, i~<p, 

here CI = 0 and By -'- 0. Each processor 2 6 k ~p - I handles 2m + 1 linear systems of the 
form LkUkV = r, while processors 1 and p each handles m + 1 linear systems of the same form. 

The cost at this stage is O(m2n/p) arithmetic operations, no inter-processor communications 
are needed. 

2.3. Stage 3 

Let J~ and F/ be partitioned, in turn, as follows 

/ ~ =  Mi and ~#,= Ni , 
Q, T, 

where P/, Qi, S,., and Tl ~ R rex". Also, let gi and xi be conformally partitioned: 

h2i-2 I 
= w~ 

gi /h2,_x } and 

As an illustration we show the 

:1,. 
Io 

i,. 
1'2 
m2 
Q2 

s~ 
N~ 
T~ 

/ Y2,'-2) 

X i "~- l yi2 i _ l " 

system (5) for p -- 3, 

s2 
I~ N2 

I,. T~ 
P3 I,. 
M3 L 
Q3 

Yo 

gl 

Yx 

Y2 
z2 

Y3 

Y4 

g3 
lm YS 

'h 0 
Wl 
hi 
h2 

= w 2 
h3 
h4 
W3 
h5 

Observe that the unknown vectors Yl, Y2, Y3, and Y4 (each of order m) are disjoint from the 
rest of the unknowns. In other words, the m equations above and the m equations below each 
of the p - 1 partitioning lines form an independent system of order 2m(p - 1), which we shall 
refer to as the "reduced system" Ky = h, which is of the form 

P2 
Q2 0 0 

0 $3 
i , .  T3 
/'4 Z., 

I" Tp-2 0 0 
P,-a Im o s,_a 
Qp-1 0 I,. Tp_ 1 

2", Im 

T 1 0 0 

i~ o s2 
o x. T2 

1"3 I,. 
Q3 o 

( Ya 

Y 2  

Y3 

Y4 

Y5 

Y6 

Y2p-S I 
Y2v-4 ] 

~Y2v-2I 

:h I 
h2 
h3 
h4 
hs 
h6 

h2p-S ] 

h2p-4 I 
h2v-3 [ 
,h2p-21 
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(6) 
The cost of the algorithm to be used for solving (6) depends on the interconnection network. 
Processor 1 contains T ! and hi, processor j ,  2 < j < ~ p -  1, contains Pj, Q.i, Sj, Tj, and h,.j_,, 
h2j_~, and processor p contains Pp, and h~,_,, Hence, if the processors are linearly connected 
we can only solve (6) sequentially at the cost of O(m3p) steps, where a step is the cost of an 
arithmetic operation or the cost of transmitting a floating-point number from one processor to 
either of its immediate neighbors. We should add here that since A is diagonally dominant it 
can be shown that (6) is also diagonally dominant and hence can be solved via Gaussian 
elimination without pivoting. 

2.4. Stage 4 

Once the y~'s are obtained, with Yl in processor 1, Y2~-2 and )'.,j-i in processor j 
(2 ~<j < p -  1), and Y:p-2 in processor p, the rest of the components of the solution vector of 
(5) may be computed as follows. Processor k, 1 ~< k ~< p, evaluates 

z ,  = w k - Mky2k_ 3 -- Nk)~, (7) 

with processors 1 and p performing the additional tasks 

Y o = h o - S l y 2  and Y2p-l = h 2 p - I -  Qp)hp-3, (8) 

respectively (M 1 and Np are non-existence and are taken to be zero in this equation). The cost 
of this stage is O ( m n / p )  steps, with no inter-processor communication. 

It can be shown that for a linear array of processors, the speedup of this algorithm over the 
classical sequential algorithm behaves as shown in Fig. 1 where Po and a o are O ( x / ~ ) .  Stage 
2 dominates the computation until Po, then the communication costs impact the performance 
and Stage 3 has a greater influence. 

For a linear array of processors, the bottleneck in this parallel algorithm is the process of 
solving the reduced system (Stage 3). It is the only stage whose cost increases as p becomes 
large. This inefficiency may be alleviated by solving the reduced system (6) using an iterative 
scheme that takes full advantage of the parallelism offered even by a linear array of p 
processors. Since the reduced system is diagonally dominant, the simplest iterative scheme that 
is suited for such a linear array of processors is the block-Jacobi algorithm which we outline 
below. 

Let 

G,= p,+, im ] i - - 1 , 2  . . . . .  p - l ,  G - - d i a g ( G , , G  2 . . . . .  Gt,_,) , (9) 

and let H be the block-tridiagonal matrix 

00)0(00 0 o _s,+,)], 

speedup 

O01 -- ~ 
Po P Fig. I, 
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i.e. K--  G - H. Now, the Jacobi iteration is given by 

Gytk+ l) = Hy(k )  + h.  (10) 

If each processor j ,  1 ~ j  ~< p - 1, transmits Tj and h2j-!  to processor j + 1, and each processor 
2 ~ j ~ p - 1 ,  transmits Ss to processor j + l ,  at a total cost of m ( 2 m +  1) steps, then the 

• (k) _ _  (k) T (k) T T matrices G, H, the right-hand side h, and an iterate y - ( Y l  . . . . .  Y~v-2 )  are stored in 
processors 2, 3 . . . . .  p as shown in Table 1. 

Now, the Jacobi scheme may be organized on a linear array of p processors as follows. 
(a) Preprocessing. 
Each processor 2 ~<j ~< p obtains the LU-factorization of Gj-1, and generates the random 

,,(o) and ,(o), vectors :2j-~ -~2j-. 
(b) Iteration: k = 0, 1, 2 . . . . .  
Each processor j = 2, 3 . . . . .  p performs the following: 
(1) Computes (k) (~) • • U,+1 = Q j y ~ - a  and transmit it to processor j + 1; note that Q,, - O. 

(2) Computes v~)~ = Ss_O;(~) 2 and transmits it to processor j - 1; note that $1 - 0. 
(3) 

(¢'/=(¢' ¢,, ,¢,)+ ) ~h2j_2  ' 

. t k )  _ 0 note that u (k) = vi, - . 

(4) Given the factorization of Gj_I, solve the linear system 

[~v2j -3 | 
%-1 / , ,Ck+ l ) /=  

As a result, the cost per iteration is roughly 6m 2 steps. Thus, if the number of iterations r 
necessary to achieve a "reasonable" accuracy is small, the cost of this iterative scheme will be 
independent of p and appreciably smaller than the cost of the direct solver used in Stage 3 
(O(map)). For strong diagonally systems (1), convergence of the iterative scheme should be fast 
as the system has been preconditioned by diag(A~ 1 . . . . .  A~I). 

We have made extensive use of LINPACK [4]. 
This Jacobi scheme may be replaced by a C.G.-like algorithm, Orthomin 1, eng. see [5] or [13] 

for solving the reduced system Ky = h in (6). The only restriction on this scheme is that 
(K + K T) must be positive definite. We consider two preconditioners: MI = G in (9), and M2 
being the lower block triangular part of (6), i.e. 

I °' ] 
½ G: 

v._, a._, 

Table 1 

Processor 2 Processor 3 lh-oeemor j ~ p 

sa s,_, s._, 
O~ O,~ "'" Q~ ""  
h I, h~ h~, h~ ha~_.~, h~.~_~ hap_.~, h~,_~ 

• • . ¢.p-1 
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where G~ is given by (9), and 

~;(0 
The Orthomin (1) scheme is given by 

(a) Initial step. 

Yo is chosen arbitrarily, 

ro = h - Ky  o, 

s o -~ M - l r o ,  

Po = So, qo = KPo, 

(b) Iteration: i = 0, 1, 2 . . . . .  

(1) "r, = qTqi , 

(2) a,--  r?q, / r , ,  

(3) 1+1 =Yi  + aiPi ,  

(4) r,.+l = r, - a,q,, 

(5) s;+ 1 = M - l r i + l ,  

(6) u,+ 1 = Ks,+ 1, 

(7) ,8,=--(uT+,q,)/r,, 
(8) /',+1 = s,+l + #,p,., 

(9) q,+l = u,+l + fliq;. 

u 0 = Ks  0 . 

When M = M 1 we refer to the scheme as PBAND2, and as PBAND3 when M = M z. The 
cost of the arithmetic of one iteration of Orthomin (1) is naturally higher than one iteration of 
the block-Jacobi scheme PBAND1. While one iteration of the block-Jacobi scheme is practically 
free of inter-processor communication, an iteration of Orthomin (1) requires solving systems of 
the form M s - - - r ,  and requires that the result of two inner products be made available to all 
processing units. Hence, Orthomin (1) is to be preferred only on multiprocessors with powerful 
interconnection networks. 

3. The matrix-decomposition algorithm on a multiprocessor 

Consider the Helmholtz problem 

- V 2 u  + a2u = ep(x,  y )  (11) 

on the unit square with Didchlet boundary conditions. Using a uniform mesh of size h = 1 / ( n  
+ 1), the usual five-point finite difference discretizafion of (11) yields the linear system 

- I .  T - I  n u 2 

-- " , ( 1 2 )  

- I .  T ~u. ] / f  " 

where u a, fi ~ R", and T/= [ -1 ,4  + a 2, - 1 ]  is a tfidiagonal matrix of order n. Assuming that 
the number of processing units p is such that q = n / p  is an integer that is greater than or equal 
to 4, the system (12) may be partitioned as shown below 
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E 

E T N E 

E T N 

~2 /'2 

~tp-1 fp -1  

Up ' ~fp 

where 

0 0 o) 
and N = [ -  I . ,  T, - I . l  are of order qn, 

T 
. . . . .  a n d  

If the multiprocessor consist of p processing units, 
(MD-algorithm) may be organized as follows. 

3.1• Stage 1 

Each matrix T has the spectral decomposition 
T =  QAQ 

where Q is an orthogonal matrix whose elements are given by 

eTQei = ¢2 / (n  + 1) sin(o'~r/(n + 1)), 1 ~< i, j ~< n 

and A = diag(>. 1 . . . . .  ~.) ,  with 

hj = (2 + a 2) + 4 sin:(j~r/(n + 1)), 1 ~<j < n. 

Now, (13) is reduced to the form 

M E 
E T M E 

229 

g T M E 

E T M 

where M = [ - 1 . ,  A ,  - 1 . ]  is of order qn. 

0 , = 0 ~ , ,  and $ i = ~ /  

(13) 

j• ( T T T = . . . . .  / , q ) ,  l < i < p .  

the matrix decomposition algorithm 

vl g] 

02 ~2 

(14) 

I F 

G I F 

t "  

hi 

h2 

hp-1 

h p  

(16) 

G I F 

G I 

e .  

Ol 

02 

lop-1 
op 

in which {) = diag(Q . . . . .  Q) is of order qn. Here, the ith processing unit performs the q sine 
transforms 

g(i-1)q+k = ~f(i-1)g+k, 1 <~ k <~ q, (15) 
where gi = T r T giq) , 1 <~ p• (g(i-1)q+l . . . . .  <~ i 

3.2• Stage 2 

Premultiplying both sides of (14) by diag(M-1 . . . . .  M - l ) ,  we obtain a system of the form 
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where 

hi  ( T T T T , . . . ,  Viq) ' h(i-1)q+l . . . . .  h iq )  , oi = (v ( i -1 )q+l  T T 

G=M-1E  T, F=M-1E ,  and h~=M-l~i, l < . i ~ p .  From the structure of M, we see that 
solving a linear system of the form Mx = r, where x = (~1 . . . .  , }q,,)T and r= (Pl . . . . .  pq.)T, 
consists of solving n independent positive-definite tridiagonal systems Tjxj = rj, 1 ~ j  <~ n, each 
of order q. 

- 1 h j  - 1 },, +j Pn +j 

19(q-- 2) n +j 

P(q--1)n+j 

0 
G =  , and 

F--  tt2 
0 ' 

respectively, with H,. being a diagonal matrix of order n, 

} = z ,  (=> 

y['> 

Mh~ -- ~ may also be solved by considering the n independent systems 

where 

Tjdj (O=s frO, l~<j~<n 

s}o = 

T ejg(i-1)q+ l 
T ejg(i-Dq+2 

e}giq 

and h( i_ l )q+ k = 

eT d(,'> 
eTa(j). 

/ ,,T,4(O 

, l < k < q .  

Hence the ith processing unit, 1 ~< i ~<p, handles the following tasks: 
(1) The factorizations 

Tk=LkDkL T, ( i - 1 ) q + l  <~k<iq. 

07c) 

- 1 hy -- 1 ~(q-2)n+j 
--1 Xj ~(q-1),,+y 

Hence, F and G are obtained by solving the positive-definite systems 

Tjby = - e a, 1 ~ j  ~< n (17a) 

and 

Tjc j=-eq ,  l~<j<~n. (17b) 

Observing that each T~ is a symmetric Toeplitz matrix, then if cj = (y1 (y) . . . . .  y~j))T, bj is given 
by bj = (yqO) . . . . .  "hO)) r, e.g. see [8]• Note that G and F are of the form 
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where L k is unit lower bidiagonal and D k is diagonal with positive elements• 
(2) Solving 

L k D k L T c k  = --eq, (i  -- 1)q + 1 <~ k <~ iq, 

where 

= . . . . .  

(3) Solving 

LjDjL'fdJ i)= s y  ), 1 <~j ~ n. 

For p = 4, and q = 4, the matrix of coefficients of system (16) is of the form 

' I  D 
I D 

I D 
I D 
D I D 
D I D 
D I D 
D I D 

D I 
D 
D 
D 

where D denotes a diagonal matrix. 

3.3. Stage 3 

1 
I 

D 
D 
D 

I D 
D I 
D 
D 
D 

1 
1 

of order 2 n ( p  - 1), 

H w =  u, 

where 

F 

in which 

and 

Again, as we have seen in the previous section, we extract from (16) an independent system 

(18) 

r n 

r 

u = ( h T : h T + l ,  hrq, T . . T "r T 
• h 2 q + l , . . . , h ( p _ l ) q  , h(p-1)q+l) , 

T T 
W Vq+l~ 02q+1, ' ' '~ V(p-1)q~ Q 
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In turn, this system consists of n independent pentadiagonal systems each of order 2 (p  - 1) 
and is of the form 

P k %  = u~, l <~ k <~ n,  

where 

Pk = , 

¢t, 
in which 

~ =  k) 1 ' 

'eTh q 

eTkh q+ l 

eTh2q 

U k = eTh2q+! , and w k 

e lh (p -Dq  

eTkh(p-1)q+ l 

(19) 

0) 
y(~) 

e~.vq 

eT'l-)q+ 1 

er~,_q 

e/~'2q+ 1 

eJOrv(p_ ~)q 

e~u(p-l)q+ l 

Note that H and Pk, 1 < k ~< n, are non-singular, and it can be verified that each system (19) 
may be solved using Gaussian elimination without pivoting. Processing unit i solves P~u k = u~ 
for k = (i - 1)q + 1 . . . . .  iq. 

3.4. Stage 4 

Finally, the rest of the components of the solution of (16) are extracted as foUows: 
(a) Processing unit 1. 

v j = h j - H i V q + l ,  1 < j ~ < q - 1 ,  

Co) Processing unit i. 

vo_l)q÷ j =h(i_l)q+ j - (  Hjv,  q+l + Hq_/+lvo_a~q), 2 ~<j< q - 1, 

(c) Processing unit p. 

v¢p_~)q+j=h(p_~)q+j-  Hq_j+~%,_a)q, 2 < j <  q. 

3.5. Stage 5 

Onoe vi . . . . .  ~p are computed the solution of (13) is obtained via the sine transforms 

u k = Q v ~ ,  k - - 1 , 2  . . . . .  n 

with the i th processing unit computing uo_l)q+ ~ . . . .  , uiq. 
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The cost of the arithmetic (alone) of this algorithm is O(n log 2 n) and is dominated by the 
sine transforms in Stages 1 and 5. If the arithmetic is overlapped with the inter-processing 
communication (through the global memory), the total cost remains O(n log 2 n). 

4. Numerical results 

The algorithms described above require more arithmetic operations than the well-known 
sequential algorithms currently in use for solving the problems described above. Hence, they 
should not be competitive on sequential machines. We have used all of our parallel schemes as 
sequential solvers and have obtained results of equal numerical accuracy with LINPACK [4], 
for solving narrow banded systems, and with FISHPACK for solving the Helmholtz equation. 

PBAND consumed twice the time as the routines SGBFA and SGBSL from LINPACK on a 
VAX-780 for solving the system of linear equations (1) with n = 512, m = 5, and the number of 
processors p = 16. This ratio of time consumed held for three examples: A k = [ a ~ ) ] ,  1 <~ k <~ 3, 

with ~t~) '~iy , i ~ j ,  obtained by a random number generator, and the diagonal elements a ~  ) = a k 

given by a 1 = 32, a 2 = 5, and a 3 = 3. All A k are  non-singular with A 1 being the only diagonally 
dominant matrix. In Table 2 we compare the number of iterations required by PBAND1, 2, and 
3 to achieve a residual of 2-norm less than 10 -s. We see, then, that if the multiprocessor 
possesses a reasonably powerful interconnection network, the PBAND 3 version of Orthomin 
(1) can be an effective scheme for solving the system when A is not diagonally dominant but the 
reduced system has a positive definite symmetric part. 

We ran our FORTRAN program on the CRAY X-MP-4 using the multitasking features 
available on the machine [3]. The CRAY X-MP-4 has four processors which can be used by a 
single FORTRAN program. In running the band solver we using one, two, three, and four 
processors to solve the problem. Table 3 shows the results for PBAND3 for a positive-definite 
random matrix of various orders. For large problems using two processors the speedups are 
almost perfect. Results with three and four processors show some degradation in preformance, 
but considering the level of granularity the results are quite impressive. 

We also implemented the same program on the Denelcor HEP. The Denecor HEP is a 
MIMD computer which supports tightly coupled parallel processing. The fully configured 
computing system offered by Denelcor consists of up to 16 processing elements (PEMs) sharing 
a large global memory through a crossbar switch. Within a single PEM, parallelism is achieved 
through pipelining independent serial instructions streams called processes. The principal 
pipeline that handles the numerical and logical operations consists of synchronous functional 

Table 2 

Algorithm a 1 ffi 32 a 1 = 5 a 1 = 3 

PBAND1 2 4 29 
PBAND2 1 3 23 
PBAND3 1 3 10 

Table 3 

n Bandwidth Time (seconds) Speedup Speedup Speedup 
1 processor 2 processors 3 processors 4 processors 

512 11 0.024 1.8 2.40 2.86 
4096 15 0.256 1.98 2.86 3.75 

16384 31 2.12 1.995 2.91 3.87 
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n Bandwidth Speedup over running sequentially 

512 11 6. 
4096 15 8. 

16384 31 Too large to run 

Table 5 

p 1 8 16 32 

FISHPACK 12 
Helm 36 37 37 

units that have been segmented into an eight-stage pipe. The HEP we used had only a single 
PEM, and the maximum speedup over the same process running sequentially is between eight 
and ten. For further details on the HEP architecture see the article [7] by H. Jordan. See also 
Table 4. 

Similarly, we compared HELM with the cyclic reduction scheme of FISHPACK [13] for 
solving the Poisson equation (a = 0) on the unit square with mesh size 1/129, i.e. n = 128, for 
p -- 8, 16, and 32 processors. Both schemes succeeded in producing residual of 2-norms less than 
10 -5. Table 5 shows the time in seconds consumed by HELM and FISHPACK running on a 
VAXll/780 for different values of p. 

The results in Table 5 reflect the fact that HELM performs redundant arithmetic operations 
compared to their sequential scheme in FISHPACK (cyclic reduction). One may also conclude 
that with an "appropriate" inter-connection of the p processors, HELM may achieve a speedup 
of p/3 over FISHPACK's sequential algorithm. True speedups achieved by these parallel 
algorithms over the sequential counterparts can only be measured by actual runs on a specific 
multiprocessor. 
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