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This paper describes a technique for achieving supervector performance on a CRAY-1 in a purely 
FORTRAN environment {i.e., without resorting to assembler language). The technique can be applied 
to a wide variety of algorithms m hnear algebra, and is beneficial m other architectural settings. 
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INTRODUCTION 

There are three basic performance levels on the CRAY-l--scalar, vector, and 
supervector [4]: 

Performance level Rate of execution, 
MFLOPS 1 

Scalar 0-4 
Vector 4-50 

Supervector 50-160 

The difference between scalar and vector modes is the use of vector instructions 
to eliminate loop overhead and take full advantage of the pipelined functional 
units. The difference between vector and supervector modes is the use of vector 

1MFLOPS is an acronym for million floating-point operations (adchtions or multiplications) per 
second. 
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registers to reduce the number of memory references (and thus avoid letting the 
one path to/from memory become a bottleneck). 

Typically, programs written in FORTRAN run at scalar or vector speeds, so 
that one must resort to assembler language (or assembler language kernels) to 
improve performance. In this paper, we describe a technique for attaining 
supervector speeds f rom F O R T R A N .  2 

THE IDEAL SETTING 3 

Most algorithms in linear algebra are easily vectorized. For example, consider 
the following subroutine which adds the product of a matrix and a vector to 
another vector: 

SUBROUTINE SMXPY (NI, Y, N2, LDM, X, M) 
REALY(*), X(*), M(LDM, ,) 
DO20J = I, N2 

DO 10 I= I, NI 
Y(I) =Y(I) +X(J) * M(I,J) 

I 0 CONTINUE 
20 CONTINUE 

RETURN 
END 

The innermost loop is a SAXPY [5] (adding a multiple of one vector to another) 
and would be detected by a good vectorizing compiler. Thus, the CRAY CFT 
FORTRAN compiler generates vector code of the general form: 

Load vector Y 
Load scalar X(J) 
Load vector M(*, J) 
Multiply scalar X(J) times vector M(*, J) 
Add result to vector Y 
Store result in Y 

Note that there are three vector memory references for each two vector floating- 
point operations. Since there is only one path to/from memory and the memory 
bandwidth is 80 million words per second, the rate of execution cannot exceed 
~53½ MFLOPS (less than 50 MFLOPS when vector start-up time is taken into 
account)--vector performance. 

Thus to attain supervector performance, it is necessary to expand the scope of 
the vectorizing process to more than just simple vector operations. In this case, 
a closer inspection reveals that the vector Y is stored and then reloaded in 
successive SAXPYs. If instead we accumulate Y in a vector register (up to 64 
words at a time) until all of the columns of M have been processed, we can avoid 
two of the three vector memory references in the innermost loop. The maximum 
rate of execution is then 160 MFLOPS (~148 MFLOPS when vector start-up 
time is taken into account)--supervector performance. 

2 We recognize'that assembler code may be needed to achieve the highest level of performance, and 
that its use in a small number of "k~rnels" is not a significant barrier to transportability. However, 
the approach presented does lead to high levels of performance, is portable, and can be used to derive 
algorithmlc improvements in a much wider class of problems than discussed in this paper. 
3 See [4] for a more complete discussion. 
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REALITY 

The CRAY CFT compiler does not detect the fact that the result can be 
accumulated in a register (and not stored between successive vector operations). 
Thus, the rate of execution is limited to vector speeds. 

But if we unroll [1] the outer loop (in this case to a depth of four) and insert 
parentheses to force the arithmetic operations to be performed in the most 
efficient order, then the innermost loop becomes 

DO 10 I = I, NI 
Y(I) = ((((Y(I) +X(J--3) * M(I, J-- 3)) +X(J--2) *M(I, J--2)) 

$ +X(J-- I) * M(I, J-- I)) +X(J) * M ( I ,  J) 
I 0 CONTINUE. 

Now the code generated by CFT has six vector memory references for each eight 
vector floating-point operations. Thus the maximum rate of execution is ~1063 ~ 
MFLOPS (~100 MFLOPS when vector start-up time is taken into account) and 
the actual rate is -77 MFLOPS--supervector performance from FORTRAN. 
The complete subroutine SMXPY4 is given in Appendix A. 

GENERALIZATIONS 

With this approach we can develop quite a collection of procedures from linear 
algebra. The key idea is to use two kernels--SMXPY and SXMPY (add a vector 
times a matrix to another vector; see Appendix II)-- to do the bulk of the work. 
Since both kernels can be unrolled 4 to give supervector performance, the proce- 
dures themselves are capable of supervector performance. 

Many processes which involve elementary transformations can be described in 
these terms, e.g., matrix multiplication, Cholesky decomposition, and LU facto- 
rization (see Appendix III and [4, 6]). However, the formulation is often not the 
"natural" one, which may be based on outer products of vectors or accumulating 
variable-length vectors, neither of which can be supervectorized in FORTRAN. 

Tables I-IV summarize the results obtained for these procedures on a CRAY 
1-S (as well as on the new CRAY 1-M 5 and CRAY X-MP 6) when the subroutines 
SMXPY and SXMPY were unrolled to the specified depth. All runs used the 
CFT 1.11 FORTRAN compiler. By contrast, 30 MFLOPS is often cited as a 
"good rate for FORTRAN" on the CRAY 1-S [3] and 100 MFLOPS as a "good 
rate for CAL (Cray Assembler Language)" [3] (e.g., Fong and Jordan [4] report 
107 MFLOPS for an assembler language implementation of LU decomposition 
with pivoting). 

4 Although there are only eight vector regmters, thin is sufficient for any depth of unrolling. 
5 The CRAY 1-M is essentially a CRAY 1-S with "slow" memory. It is faster in these tests because 
of a chaining anomaly--a vector load issues earlier on the CRAY 1-S, causing a scalar-vector multiply 
to miss chain-slot time. 
e The CRAY X-MP is a multiprocessor, each processor having a cycle time of 9.5 ns (versus 12.5 ns 
for the CRAY 1-S) and three paths to/from memory (two for vector loads, one for vector stores). 
These timings were obtained using only one processor. While, in principle, the extra paths should 
remove the memory bottleneck, in practice the unrolled code still runs faster because there are fewer 
vector startups and less memory traffic (and thus fewer bank conflicts). 
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Table I. 300 x 300 Matrix Multiplication 

MFLOPS 
Unrolled 

depth CRAY 1-M CRAY 1-S CRAY X-MP 

1 39 40 106 
2 60 53 151 
4 83 72 161 
8 101 86 170 

16 111 96 177 

Table II. 300 x 300 Cholesky Decomposition 

MFLOPS 
Unrolled 

depth CRAY 1-M CRAY 1-S CRAY X-MP 

1 31 33 68 
2 48 45 99 
4 67 60 118 
8 81 70 131 

16 86 78 139 

Table III. 300 x 300 LU Decomposition with Pivoting 

MFLOPS 
Unrolled 
depth CRAY 1-M CRAY 1-S CRAY X-MP 

1 28 29 56 
2 42 39 78 
4 56 52 93 
8 66 60 103 

16 69 66 108 

Table IV. 300 x 300 LU Decompositlon with Pivoting 
(Using an Assembler Language Implementation 
of ISAMAX •) 

MFLOPS 
Unrolled 
depth CRAY 1-M CRAY 1-S CRAY X-MP 

1 30 32 62 
2 46 43 96 
4 64 59 117 
8 78 68 129 

16 83 76 136 

• The search for the maximum element in the pivot column 
(ISAMAX [5]) does not vectorize and thus limits performance. 
These hines were obtained using an assembler language imple- 
mentation of ISAMAX. 

CONCLUSIONS 

W e  h a v e  desc r ibed  a t e c h n i q u e  t h a t  can  p r o d u c e  s i gn i f i c an t  ga ins  in e x e c u t i o n  

speed  on t h e  C R A Y - 1 .  7 M o r e o v e r ,  to  t h e  e x t e n t  t h a t  t h i s  a p p r o a c h  reduces  loop 

7 See [2] for another approach. 
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overhead and takes advantage of segmented functional units, it will be effective 
on more conventional  computers  as well as on other  "supercomputer"  architec- 
tures. Since optimized assembler language implementat ions of  the S M X P Y  and 
S X M P Y  kernels are easy to code (as much so as any kernel) and frequently 
available, one can get most  of  the advantages of  assembler language while 
programming in F O R T R A N .  
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APPENDIX A 

SUBROUTINE SMXPY4 (NI. Y, N:~. I2)M, X, M) 
RZAn V(*), X(*), M(nDm') 

PURPOSE: 
Multlply matrix M ttmss vector X and add the result to vector Y. 

PARAMETERS : 

N1 INTEGER, number of elements in vector Y. and number of rows in 
matrix M 

Y RF_AL(N1), vec to r  of length  N1 to which is added the product  M*X 

N2 INTEGER, number of elements in vec tor  X, and number of colu,.-~as 
in matrix M 

LI~ INTEGER, leading dimension of array M 

X REAL(N2). vector of length N2 

M REAL(LDM.N2), rr~trix of N1 rows and N2 columns 

C ...................................................................... 

C 
C 
C 

C 
C 
C 

C 
C 
C 

Cleanup odd vector 

10 

I =MDD(N2,2) 
IF (J .Gig. 1) THEN 

DO I0 ] = I, N1 
Y(1) = (Y(1)) + X(J)'M(I,J) 

CONTINUE 
ENDIF 

Cleanup odd group of two vectors 

J =MOD(N204) 
I~  (J . ~ .  ~) THZN 

DO 2 0  I = 1. N1 
Y(1) = ((Y(1)) 

$ + x(J-1)*M(1.~-1)) + X(~)*M(I.J) 
20 CONTINUE 

ENDIF 

Main loop - groups of four vec to rs  

JMIN = J+4 
DO 40 J = JMIN, N2, 4 
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C 

DO 30 I = i, N1 
Y(:) = ((((Y(:)) 

$ + x(J-3),~(i.j-3)) + x ( j - 2 ) , r ~ ( : , j - ~ ) )  
s + x(~-:).M(:,j-:)) + x(J) .M(:,J) 

30 CONTINUE 
40 CONTINUE 

RETUI~ 
END 

APPENDIX B 

SUBROUTINE ~ (NI, Y, N2, LDM, X. M) 
Y(.) ,  x(*),  M(LDM,*) 

C 
C PURPOSE: 
C M u l t i p l y  m a t r i x  M t imes  v e c t o r  X and adcl the  r e s u l t  t o  v e c t o r  Y, 
C 
C PARAMETERS : 
C 

C N1 INTEGER, number of  e lerr~nts  i n  v e c t o r  Y, and number of rows i a  
C m a t r i x  M 
C 
C Y REAL(N1). vector of length N1 to which is added the product M*X 
C 
C N2 INTEGER. number of elemsnts in vector X0 and number of coLunms 
C tn matrix M 
C 
C LDM INTEGER. ]eadLng dm~nsion of array M 
C 
C X REAL(N2), vector of length N2 
C 
C M REAL(LDM. N2). rnatrlx of NI rows and N2 colurr~s 
C 

C 
DO 20 J = I, N2 

DO i0 ] = I. N1 
Y(1) = (Y(1)) + X(J)'M(I.J) 

I0 CONTINUE 
20 CONTINUE 

C 
RETURN 
END 

SUBROUTINE SXMPY (N1, LDY, Y, N2, LI)X, X. LDM, M) 
~ L  Y(L~, *), X(LDX,,), M(LDM,*) 

C 
C PURPOSE: 
C Multlply row vector X ttln~s matrix M and add the result to row 
C vector Y. 
C 
C PARAMETERS: 
C 
C NI INTEGER. ntrnber of columns in row vector Y. and number of 
C columns in matrix M 
C 
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LDY INTEGER. l e a d i n g  d i r r ~ n s i o n  o f  a r r a y  Y 

Y ~ ( L D Y ,  N I ) ,  row v e c t o r  of  l e n g t h  N1 t o  w h i c h  i s  a d d e d  t h e  
p r o d u c t  X*M 

N3 INTEGER, n u m b e r  o f  c o l u m n s  i n  r ow  v e c t o r  X, a n d  n u n ' b e r  o f  
rows  i n  m a t r l x  M 

LDX INTEGER. l e a d i n g  d i n ~ n s l o n  of  a r r a y  X 

X REAL(LDX,N2), row v e c t o r  o t  l e n g t h  N2 

LDM INTEGER, l e a d i n g  d t r n e n s l o n  o f  a r r a y  M 

M RF~L(LDM, N I ) ,  m a t r l x  of N2 rows a n d  N1 c o l u m n s  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
DO 20 J = i, N2 

DO I0 I = i, N1 
Y(I.]) = (Y(I,I)) + X(I.J)*M(J.I) 

I 0  CONTINUE 
20 CONTINUE 

RETURN 
END 

APPENDIX C 

SUBROUTINE ~ (A. LDA, NI, N3, B, LDB, N2, C, LDC) 
REAL A(LDA,'), B(LDB,'), C(LI~.*) 

C 
C PURPOSE: 
C Multiply matrix B tin~s matrlx C and store the result in matrix A. 
C 
C PARAMETERS : 
C 
C A REAL(LDA.N3), matrix of N1 rows and NS columns 
C 
C LDA INTEGER, leading dimension of array A 
C 
C N1 INTEGER, number of rows in matrlces A and B 
C 
C N3 INTEGER, number of columns In matrlces A and C 
C 
C B REAL(LDB,N2), matrix of NI rows and N2 columns 
C 
C LDB INTEGER. leading dimension of array B 
C 
C N2 INTEGER. number of columns in matrix B, and number of rows in 
C matrix C 
C 
C C REAL(LDC.N3). matrlx of N2 rows and N3 coltr~as 
C 
C LDC INTEGER, leadlng dm~nslon of array C 
C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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DO 20 J = i, N3 
DO I0 1 = I. N1 

A(I,J) = 0.0 
10 CONTINUE 

CALL SMXPY (N2,A(I, J) ,NI ,LDB,C(I, J) ,e) 
20 CONTINUE 

RErlRN 
END 

S~R~rlNz u.Z (A. LDA. N, ROWl, I~0) 
REAL A(LDA, "), ROWI(*), T 

C 
C PURPOSE: t 
C Form the Cholesky factorlzatlon A = L*L of a synn-etrlc positive 
C definite matrix Awtth factor L overwriting A. 
C 
C PARAMETERS" 
C 
C A REAL(LDA.N), matrix to be decomposed; only the lower triangle 
C need be supplied, the upper triangle is not referenced 
C 
C LDA INTEGER, leading dimension of array A 
C 
C N INTEGER, nurber of rows and columns in the matrix A 
C 
C ROWI EEAL(N),  work array 
C 
C INFO INTEGER, = 0 for normal return 
C = I if I-th leading minor is not posltlve deflnlte 
C 
C ...................................................................... 

C 
INFO = 0 
D O 3 0  I = I , N  

C 
C Subtract multiples of preceding cohrrns frcrrt I-th colt.nln of A 
C 

DO I0 J = I, I-i 
ROWI(J) = -A(I,J) 

10 CONTINUE 
CALL b-T/XPY (N-I+I,A(I,I),I-I,LDA,ROWI,A(I,I)) 

C 
C Test for non-posltive definite leading minor 
C 

IF (A(I,I) .LZ. 0.0) THEN 
INFO = I 
GO TO 40 

ENDIF 
C 
C Form I-th column of L 
C 

T = I.O/SQRT(A(], I)) 
A(I, I) = r 
DO 20 J = I+i, N 

A(J,]) = T*A(J,I) 
2 0 CONT I NUE 
30 CONTINUE 
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40 RE'TURN 
END 

SUHR(X~INE LU (A, LDA, N, IPVT, INTO) 
INTEGER ImrT(*) 
REAL A(LDA,*), T 

C 
C PURPOSE: 
C Form the LU factorlzatlon of A, where L is lower trlangular and U 
C is unlt upper trlangular, with the factors L and U overwriting A. 
C 
C PARAMETERS : 
C 
C A REAL(LDA,N), matrix to be factored 
C 
C LDA INTEGER, leading dimension of the array A 
C 
C N INTEGER, number of rows and columns in the matrix A 
C 
C IPVT INTEGER(N). sequence of plvot rows 
C 
C INTO INTEGER, = 0 norrrml return. 
C = J I f  L(J,J) Is zero (whence A is singular) 
C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
INFO = 0 
D O 4 O J = I ,  N 

C 
C F o r m  J - t h  co lL r fn  of  L 
C 

CALL ~ ( N - J + I , A ( J , J ) , J - 1 , L D A , A ( 1 , J ) . ~ A ( J . 1 ) )  
C 
C S e a r c h  f o r  p i v o t  
C 

T -- A B S ( A ( J , J ) )  
K = J  
DO 10 I = J + l ,  N 

IF (ABS(A(I,J)) .GT. T) THEN 
T = ~ ( A (  I ,  J ) )  
K f I  

END IF 
10 CONTINUE 

l ~ ( J )  = K 
C 
C T e s t  f o r  z e r o  p i v o t  
C 

IF ( r  .EQ. 0 . 0 )  
INTO = J 
GO TO 50 

ENDIF 
C 
C Interchange rows 
C 

DO20 I=I, N 
T = A(J, I) 
A(J.I) = A(K,I) 
A(K, I )  = T 

20 CONTINUE 
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C 

F o r m  i o t h  row of  U 

A(J.J) = 1.0/A(J.ff) 
CALL SXMPY (N-J.LDA.A(i. J+l).i-I.LDA.A(i. i).LDA.A(I .J+1)) 
T = - A ( J , i )  
DO 80 I = i f+l ,  N 

A(i.I) = T*A(J.I) 
30 CONTINUE 
40 CONTINUE 

50 RETURN 
END 

APPENDIX D 

SUBROUTINE LLTS (A, LDA, N, X, B) 
REAL A(LDA. * ) ,  X('), B ( * ) ,  XK 

C 
C PURPOb-'E: 
C Solve the syrm~trlo poslttve definite systemAx = b given the 
C Cholesky factorlzatlon of A (as computed in LLT). 
C 
C PARAMETERS: 
C 
C A REAL(LDA,N) , n~trlx which has been deccn~osed by routine LLT 
C in preparation for solving a system of equations 
C 
C LDA INTEGER. leading dtmsns,on of array A 
C 
C N INTEGER. mrnber of rows and columns in the rretrix A 
C 
C X REAL(N). solution of linear system 
C 
C B RF_AL(N). r~ght-hand-side of linear system 
C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C 

C 

DO 10K= I, N 
X(K) = B(K) 

I0 CONT I NLq~ 

DO 30 K= i, N 
XK = X(10"A(K.K ) 
DO 20 I = K+I, N 

X ( 1 )  = X ( I )  - A ( I , K ) * X K  
~0 CONTINUE 

X(K) = XK 
30 CONTINUE 

DO 50 K =N, I, -1 
XK = X(10*A(K.K) 
DO 40 I = I. K-I 

X ( I )  = X ( I )  - A ( K , I ) * X K  
40  CONTINUE 

X(K) = XK 
50 CONTINUE 
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C 

END 

b-'UBROUrINE LUS (A, IDA, N, IPVT, X, B) 
IN'rBQ~ IPVT(*) 
REAL A(LDA,'), X(*). B(*), XX 

C 
C PURPOSE: 
C Solve the linear systemAx = b given the LU factorizatlon of A (as 
C computed in LU). 
C 
C PARAMETERS : 
C 
C A RF_AL(LDA,N), matrix which has been decm~posed by  routine LU 
C in preparation for solwng a system of equations 
C 
C LDA INTEGER, leading durension of the array A 
C 
C N INTEGER, ntn~er of rows and coltnns in the rrntrlx A 
C 
C IPVT INTEGER(N), sequence of pivot rows 
C 
C X REAL(N), solution of linear system 
C 
C B REAL(N), rtght-hand-slde of linear system 
C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " . . . . . . . . .  " ' ' ' ' - - "  . . . . .  

C 
DO 10K= I, N 

X(K) = B(K) 
I0 CONTINUE 

C 

C 

C 

C 

D O 2 0 K = I ,  N 
L = IPVT(K) 
XK = X(L) 
X(L) = X(K) 
X(~O =XK 

20 CONTINUE 

DO40 K= i, N 
XK = X(IQ'A(K,K) 
DO B0 I = K+I, N 

X ( 1 )  = X ( 1 )  - A ( I , K ) * X K  
30 CONTINUE 

X(K) = XK 
40 CONTINUE 

DO 60 K = N ,  1,  - I  
XK = X(K) 
DO 50 1 = 1, K-1 

X(1)  = X(1)  + A ( I , K ) * X K  
50 CONTINUE 
60 CONTINUE 

RETURN 
END 
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