
Squeezing the Most out of an Algorithm
in CRAY FORTRAN

JACK J. DONGARRA
Argonne National Laboratory
and
STANLEY C. EISENSTAT
Yale University

This paper describes a technique for achieving supervector performance on a CRAY-1 in a purely
FORTRAN environment {i.e., without resorting to assembler language). The technique can be applied
to a wide variety of algorithms m hnear algebra, and is beneficial m other architectural settings.

Categories and Subject Descriptors: G.1.3 [Mathemat ics of Computing]: Numerical Analysis--
numerical hnear algebra; G.4 [Mathemat ics of Computing]: Mathematical Software

General Terms: Performance

Additional Key Words and Phrases: Vector processing, linear algebra, efficiency, unrolling

INTRODUCTION

There are three basic performance levels on the CRAY-l--scalar, vector, and
supervector [4]:

Performance level Rate of execution,
MFLOPS 1

Scalar 0-4
Vector 4-50

Supervector 50-160

The difference between scalar and vector modes is the use of vector instructions
to eliminate loop overhead and take full advantage of the pipelined functional
units. The difference between vector and supervector modes is the use of vector

1MFLOPS is an acronym for million floating-point operations (adchtions or multiplications) per
second.

The first author's work was supported in part by the Applied Mathematical Sciences Research
Program (KC-04-02) of the Office of Energy Research of the U. S. Department of Energy under
Contract W-31-109-Eng-38.
The second author's work was supported m part by the Office of Naval Research under contract
N00014-82-K-0184 and by the National Science Foundation under grant MCS-81-04874.
Authors' addresses: J. J. Dongarra, Argonne National Laboratory. 9700 South Cass Avenue, Argonne,
IL 60439, S. C Eisenstat, Department of Computer Science and Research Center for Scientific
Computation, Yale University, P.O. Box 2158, New Haven, CT 06520

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984, Pages 219-230

220 • J. J Dongarra and S C Eisenstat

registers to reduce the number of memory references (and thus avoid letting the
one path to/from memory become a bottleneck).

Typically, programs written in FORTRAN run at scalar or vector speeds, so
that one must resort to assembler language (or assembler language kernels) to
improve performance. In this paper, we describe a technique for attaining
supervector speeds f rom F O R T R A N . 2

THE IDEAL SETTING 3

Most algorithms in linear algebra are easily vectorized. For example, consider
the following subroutine which adds the product of a matrix and a vector to
another vector:

SUBROUTINE SMXPY (NI, Y, N2, LDM, X, M)
REALY(*), X(*), M(LDM, ,)
DO20J = I, N2

DO 10 I= I, NI
Y(I) =Y(I) +X(J) * M(I,J)

I 0 CONTINUE
20 CONTINUE

RETURN
END

The innermost loop is a SAXPY [5] (adding a multiple of one vector to another)
and would be detected by a good vectorizing compiler. Thus, the CRAY CFT
FORTRAN compiler generates vector code of the general form:

Load vector Y
Load scalar X(J)
Load vector M(*, J)
Multiply scalar X(J) times vector M(*, J)
Add result to vector Y
Store result in Y

Note that there are three vector memory references for each two vector floating-
point operations. Since there is only one path to/from memory and the memory
bandwidth is 80 million words per second, the rate of execution cannot exceed
~53½ MFLOPS (less than 50 MFLOPS when vector start-up time is taken into
account)--vector performance.

Thus to attain supervector performance, it is necessary to expand the scope of
the vectorizing process to more than just simple vector operations. In this case,
a closer inspection reveals that the vector Y is stored and then reloaded in
successive SAXPYs. If instead we accumulate Y in a vector register (up to 64
words at a time) until all of the columns of M have been processed, we can avoid
two of the three vector memory references in the innermost loop. The maximum
rate of execution is then 160 MFLOPS (~148 MFLOPS when vector start-up
time is taken into account)--supervector performance.

2 We recognize'that assembler code may be needed to achieve the highest level of performance, and
that its use in a small number of "k~rnels" is not a significant barrier to transportability. However,
the approach presented does lead to high levels of performance, is portable, and can be used to derive
algorithmlc improvements in a much wider class of problems than discussed in this paper.
3 See [4] for a more complete discussion.

ACM Transactions on Mathematical Software, VoL 10, No. 3, September 1984

An Algorithm in CRAY FORTRAN • 221

REALITY

The CRAY CFT compiler does not detect the fact that the result can be
accumulated in a register (and not stored between successive vector operations).
Thus, the rate of execution is limited to vector speeds.

But if we unroll [1] the outer loop (in this case to a depth of four) and insert
parentheses to force the arithmetic operations to be performed in the most
efficient order, then the innermost loop becomes

DO 10 I = I, NI
Y(I) = ((((Y(I) +X(J--3) * M(I, J-- 3)) +X(J--2) *M(I, J--2))

$ +X(J-- I) * M(I, J-- I)) +X(J) * M (I , J)
I 0 CONTINUE.

Now the code generated by CFT has six vector memory references for each eight
vector floating-point operations. Thus the maximum rate of execution is ~1063 ~
MFLOPS (~100 MFLOPS when vector start-up time is taken into account) and
the actual rate is -77 MFLOPS--supervector performance from FORTRAN.
The complete subroutine SMXPY4 is given in Appendix A.

GENERALIZATIONS

With this approach we can develop quite a collection of procedures from linear
algebra. The key idea is to use two kernels--SMXPY and SXMPY (add a vector
times a matrix to another vector; see Appendix II)-- to do the bulk of the work.
Since both kernels can be unrolled 4 to give supervector performance, the proce-
dures themselves are capable of supervector performance.

Many processes which involve elementary transformations can be described in
these terms, e.g., matrix multiplication, Cholesky decomposition, and LU facto-
rization (see Appendix III and [4, 6]). However, the formulation is often not the
"natural" one, which may be based on outer products of vectors or accumulating
variable-length vectors, neither of which can be supervectorized in FORTRAN.

Tables I-IV summarize the results obtained for these procedures on a CRAY
1-S (as well as on the new CRAY 1-M 5 and CRAY X-MP 6) when the subroutines
SMXPY and SXMPY were unrolled to the specified depth. All runs used the
CFT 1.11 FORTRAN compiler. By contrast, 30 MFLOPS is often cited as a
"good rate for FORTRAN" on the CRAY 1-S [3] and 100 MFLOPS as a "good
rate for CAL (Cray Assembler Language)" [3] (e.g., Fong and Jordan [4] report
107 MFLOPS for an assembler language implementation of LU decomposition
with pivoting).

4 Although there are only eight vector regmters, thin is sufficient for any depth of unrolling.
5 The CRAY 1-M is essentially a CRAY 1-S with "slow" memory. It is faster in these tests because
of a chaining anomaly--a vector load issues earlier on the CRAY 1-S, causing a scalar-vector multiply
to miss chain-slot time.
e The CRAY X-MP is a multiprocessor, each processor having a cycle time of 9.5 ns (versus 12.5 ns
for the CRAY 1-S) and three paths to/from memory (two for vector loads, one for vector stores).
These timings were obtained using only one processor. While, in principle, the extra paths should
remove the memory bottleneck, in practice the unrolled code still runs faster because there are fewer
vector startups and less memory traffic (and thus fewer bank conflicts).

ACM Transactions on Mathematical Software, Voi. 10, No. 3, September 1984

222 • J.J. Dongarra and S. C. Eisenstat

Table I. 300 x 300 Matrix Multiplication

MFLOPS
Unrolled

depth CRAY 1-M CRAY 1-S CRAY X-MP

1 39 40 106
2 60 53 151
4 83 72 161
8 101 86 170

16 111 96 177

Table II. 300 x 300 Cholesky Decomposition

MFLOPS
Unrolled

depth CRAY 1-M CRAY 1-S CRAY X-MP

1 31 33 68
2 48 45 99
4 67 60 118
8 81 70 131

16 86 78 139

Table III. 300 x 300 LU Decomposition with Pivoting

MFLOPS
Unrolled
depth CRAY 1-M CRAY 1-S CRAY X-MP

1 28 29 56
2 42 39 78
4 56 52 93
8 66 60 103

16 69 66 108

Table IV. 300 x 300 LU Decompositlon with Pivoting
(Using an Assembler Language Implementation
of ISAMAX •)

MFLOPS
Unrolled
depth CRAY 1-M CRAY 1-S CRAY X-MP

1 30 32 62
2 46 43 96
4 64 59 117
8 78 68 129

16 83 76 136

• The search for the maximum element in the pivot column
(ISAMAX [5]) does not vectorize and thus limits performance.
These hines were obtained using an assembler language imple-
mentation of ISAMAX.

CONCLUSIONS

W e h a v e desc r ibed a t e c h n i q u e t h a t can p r o d u c e s i gn i f i c an t ga ins in e x e c u t i o n

speed on t h e C R A Y - 1 . 7 M o r e o v e r , to t h e e x t e n t t h a t t h i s a p p r o a c h reduces loop

7 See [2] for another approach.

ACM Transachons on Mathematical Software, Vol. 10, No. 3, September 1984

An Algorithm in CRAY FORTRAN • 223

overhead and takes advantage of segmented functional units, it will be effective
on more conventional computers as well as on other "supercomputer" architec-
tures. Since optimized assembler language implementat ions of the S M X P Y and
S X M P Y kernels are easy to code (as much so as any kernel) and frequently
available, one can get most of the advantages of assembler language while
programming in F O R T R A N .

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

APPENDIX A

SUBROUTINE SMXPY4 (NI. Y, N:~. I2)M, X, M)
RZAn V(*), X(*), M(nDm')

PURPOSE:
Multlply matrix M ttmss vector X and add the result to vector Y.

PARAMETERS :

N1 INTEGER, number of elements in vector Y. and number of rows in
matrix M

Y RF_AL(N1), vec to r of length N1 to which is added the product M*X

N2 INTEGER, number of elements in vec tor X, and number of colu,.-~as
in matrix M

LI~ INTEGER, leading dimension of array M

X REAL(N2). vector of length N2

M REAL(LDM.N2), rr~trix of N1 rows and N2 columns

C ..

C
C
C

C
C
C

C
C
C

Cleanup odd vector

10

I =MDD(N2,2)
IF (J .Gig. 1) THEN

DO I0] = I, N1
Y(1) = (Y(1)) + X(J)'M(I,J)

CONTINUE
ENDIF

Cleanup odd group of two vectors

J =MOD(N204)
I~ (J . ~ . ~) THZN

DO 2 0 I = 1. N1
Y(1) = ((Y(1))

$ + x(J-1)*M(1.~-1)) + X(~)*M(I.J)
20 CONTINUE

ENDIF

Main loop - groups of four vec to rs

JMIN = J+4
DO 40 J = JMIN, N2, 4

ACM Transaetionson Mathem~iealSo~ware, Vol. 10, No 3, S ~ m ~ r l 9 ~

224 • J J, Dongarra and S C Eisenstat

C

DO 30 I = i, N1
Y(:) = ((((Y(:))

$ + x(J-3),~(i.j-3)) + x (j - 2) , r ~ (: , j - ~))
s + x(~-:).M(:,j-:)) + x(J) .M(:,J)

30 CONTINUE
40 CONTINUE

RETUI~
END

APPENDIX B

SUBROUTINE ~ (NI, Y, N2, LDM, X. M)
Y(.) , x(*), M(LDM,*)

C
C PURPOSE:
C M u l t i p l y m a t r i x M t imes v e c t o r X and adcl the r e s u l t t o v e c t o r Y,
C
C PARAMETERS :
C

C N1 INTEGER, number of e lerr~nts i n v e c t o r Y, and number of rows i a
C m a t r i x M
C
C Y REAL(N1). vector of length N1 to which is added the product M*X
C
C N2 INTEGER. number of elemsnts in vector X0 and number of coLunms
C tn matrix M
C
C LDM INTEGER.]eadLng dm~nsion of array M
C
C X REAL(N2), vector of length N2
C
C M REAL(LDM. N2). rnatrlx of NI rows and N2 colurr~s
C

C
DO 20 J = I, N2

DO i0] = I. N1
Y(1) = (Y(1)) + X(J)'M(I.J)

I0 CONTINUE
20 CONTINUE

C
RETURN
END

SUBROUTINE SXMPY (N1, LDY, Y, N2, LI)X, X. LDM, M)
~ L Y(L~, *), X(LDX,,), M(LDM,*)

C
C PURPOSE:
C Multlply row vector X ttln~s matrix M and add the result to row
C vector Y.
C
C PARAMETERS:
C
C NI INTEGER. ntrnber of columns in row vector Y. and number of
C columns in matrix M
C

ACM Transactions on Mathematical Software, Vol. 10, No 3, September 1984

An Algorithm in CRAY FORTRAN • 225

LDY INTEGER. l e a d i n g d i r r ~ n s i o n o f a r r a y Y

Y ~ (L D Y , N I) , row v e c t o r of l e n g t h N1 t o w h i c h i s a d d e d t h e
p r o d u c t X*M

N3 INTEGER, n u m b e r o f c o l u m n s i n r ow v e c t o r X, a n d n u n ' b e r o f
rows i n m a t r l x M

LDX INTEGER. l e a d i n g d i n ~ n s l o n of a r r a y X

X REAL(LDX,N2), row v e c t o r o t l e n g t h N2

LDM INTEGER, l e a d i n g d t r n e n s l o n o f a r r a y M

M RF~L(LDM, N I) , m a t r l x of N2 rows a n d N1 c o l u m n s

C .

C
DO 20 J = i, N2

DO I0 I = i, N1
Y(I.]) = (Y(I,I)) + X(I.J)*M(J.I)

I 0 CONTINUE
20 CONTINUE

RETURN
END

APPENDIX C

SUBROUTINE ~ (A. LDA, NI, N3, B, LDB, N2, C, LDC)
REAL A(LDA,'), B(LDB,'), C(LI~.*)

C
C PURPOSE:
C Multiply matrix B tin~s matrlx C and store the result in matrix A.
C
C PARAMETERS :
C
C A REAL(LDA.N3), matrix of N1 rows and NS columns
C
C LDA INTEGER, leading dimension of array A
C
C N1 INTEGER, number of rows in matrlces A and B
C
C N3 INTEGER, number of columns In matrlces A and C
C
C B REAL(LDB,N2), matrix of NI rows and N2 columns
C
C LDB INTEGER. leading dimension of array B
C
C N2 INTEGER. number of columns in matrix B, and number of rows in
C matrix C
C
C C REAL(LDC.N3). matrlx of N2 rows and N3 coltr~as
C
C LDC INTEGER, leadlng dm~nslon of array C
C
C .

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984

226 • J.J. Dongarra and S. C. Eisenstat

DO 20 J = i, N3
DO I0 1 = I. N1

A(I,J) = 0.0
10 CONTINUE

CALL SMXPY (N2,A(I, J) ,NI ,LDB,C(I, J) ,e)
20 CONTINUE

RErlRN
END

S~R~rlNz u.Z (A. LDA. N, ROWl, I~0)
REAL A(LDA, "), ROWI(*), T

C
C PURPOSE: t
C Form the Cholesky factorlzatlon A = L*L of a synn-etrlc positive
C definite matrix Awtth factor L overwriting A.
C
C PARAMETERS"
C
C A REAL(LDA.N), matrix to be decomposed; only the lower triangle
C need be supplied, the upper triangle is not referenced
C
C LDA INTEGER, leading dimension of array A
C
C N INTEGER, nurber of rows and columns in the matrix A
C
C ROWI EEAL(N), work array
C
C INFO INTEGER, = 0 for normal return
C = I if I-th leading minor is not posltlve deflnlte
C
C ..

C
INFO = 0
D O 3 0 I = I , N

C
C Subtract multiples of preceding cohrrns frcrrt I-th colt.nln of A
C

DO I0 J = I, I-i
ROWI(J) = -A(I,J)

10 CONTINUE
CALL b-T/XPY (N-I+I,A(I,I),I-I,LDA,ROWI,A(I,I))

C
C Test for non-posltive definite leading minor
C

IF (A(I,I) .LZ. 0.0) THEN
INFO = I
GO TO 40

ENDIF
C
C Form I-th column of L
C

T = I.O/SQRT(A(], I))
A(I, I) = r
DO 20 J = I+i, N

A(J,]) = T*A(J,I)
2 0 CONT I NUE
30 CONTINUE

ACM Transactions on Mathematical Software, Vol. 10, No 3, September 1984

An Algorithm in CRAY FORTRAN • 227

40 RE'TURN
END

SUHR(X~INE LU (A, LDA, N, IPVT, INTO)
INTEGER ImrT(*)
REAL A(LDA,*), T

C
C PURPOSE:
C Form the LU factorlzatlon of A, where L is lower trlangular and U
C is unlt upper trlangular, with the factors L and U overwriting A.
C
C PARAMETERS :
C
C A REAL(LDA,N), matrix to be factored
C
C LDA INTEGER, leading dimension of the array A
C
C N INTEGER, number of rows and columns in the matrix A
C
C IPVT INTEGER(N). sequence of plvot rows
C
C INTO INTEGER, = 0 norrrml return.
C = J I f L(J,J) Is zero (whence A is singular)
C
C .

C
INFO = 0
D O 4 O J = I , N

C
C F o r m J - t h co lL r fn of L
C

CALL ~ (N - J + I , A (J , J) , J - 1 , L D A , A (1 , J) . ~ A (J . 1))
C
C S e a r c h f o r p i v o t
C

T -- A B S (A (J , J))
K = J
DO 10 I = J + l , N

IF (ABS(A(I,J)) .GT. T) THEN
T = ~ (A (I , J))
K f I

END IF
10 CONTINUE

l ~ (J) = K
C
C T e s t f o r z e r o p i v o t
C

IF (r .EQ. 0 . 0)
INTO = J
GO TO 50

ENDIF
C
C Interchange rows
C

DO20 I=I, N
T = A(J, I)
A(J.I) = A(K,I)
A(K, I) = T

20 CONTINUE

ACM Transactions on Mathematical Software, Voi. 10, No. 3, September 1984

228 • J.J. Dongarra and S. C. Eisenstat

C

F o r m i o t h row of U

A(J.J) = 1.0/A(J.ff)
CALL SXMPY (N-J.LDA.A(i. J+l).i-I.LDA.A(i. i).LDA.A(I .J+1))
T = - A (J , i)
DO 80 I = i f+l , N

A(i.I) = T*A(J.I)
30 CONTINUE
40 CONTINUE

50 RETURN
END

APPENDIX D

SUBROUTINE LLTS (A, LDA, N, X, B)
REAL A(LDA. *) , X('), B (*) , XK

C
C PURPOb-'E:
C Solve the syrm~trlo poslttve definite systemAx = b given the
C Cholesky factorlzatlon of A (as computed in LLT).
C
C PARAMETERS:
C
C A REAL(LDA,N) , n~trlx which has been deccn~osed by routine LLT
C in preparation for solving a system of equations
C
C LDA INTEGER. leading dtmsns,on of array A
C
C N INTEGER. mrnber of rows and columns in the rretrix A
C
C X REAL(N). solution of linear system
C
C B RF_AL(N). r~ght-hand-side of linear system
C

C .

C

C

C

DO 10K= I, N
X(K) = B(K)

I0 CONT I NLq~

DO 30 K= i, N
XK = X(10"A(K.K)
DO 20 I = K+I, N

X (1) = X (I) - A (I , K) * X K
~0 CONTINUE

X(K) = XK
30 CONTINUE

DO 50 K =N, I, -1
XK = X(10*A(K.K)
DO 40 I = I. K-I

X (I) = X (I) - A (K , I) * X K
40 CONTINUE

X(K) = XK
50 CONTINUE

ACM Transactions on Mathematical Software, Vol. 10, No 3, September 1984

An Algorithm in CRAY FORTRAN • 229

C

END

b-'UBROUrINE LUS (A, IDA, N, IPVT, X, B)
IN'rBQ~ IPVT(*)
REAL A(LDA,'), X(*). B(*), XX

C
C PURPOSE:
C Solve the linear systemAx = b given the LU factorizatlon of A (as
C computed in LU).
C
C PARAMETERS :
C
C A RF_AL(LDA,N), matrix which has been decm~posed by routine LU
C in preparation for solwng a system of equations
C
C LDA INTEGER, leading durension of the array A
C
C N INTEGER, ntn~er of rows and coltnns in the rrntrlx A
C
C IPVT INTEGER(N), sequence of pivot rows
C
C X REAL(N), solution of linear system
C
C B REAL(N), rtght-hand-slde of linear system
C
C . " " ' ' ' ' - - "

C
DO 10K= I, N

X(K) = B(K)
I0 CONTINUE

C

C

C

C

D O 2 0 K = I , N
L = IPVT(K)
XK = X(L)
X(L) = X(K)
X(~O =XK

20 CONTINUE

DO40 K= i, N
XK = X(IQ'A(K,K)
DO B0 I = K+I, N

X (1) = X (1) - A (I , K) * X K
30 CONTINUE

X(K) = XK
40 CONTINUE

DO 60 K = N , 1, - I
XK = X(K)
DO 50 1 = 1, K-1

X(1) = X(1) + A (I , K) * X K
50 CONTINUE
60 CONTINUE

RETURN
END

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984

230 • J.J. Dongarra and S. C. Eisenstat

ACKNOWLEDGMENTS

We would like to thank the National Magnetic Fusion Energy Computer Center
for providing computer time to carry out some of the experiments, Cray Research
for their cooperation, and Alan Hinds for many stimulating discussions on code
optimization.

REFERENCES
I. DONGARRA, J. J., AND HINDS. A.R. Unrolhng, loops in FORTRAN. So#ware--Practice and

Experience 9 (1979), 219-229.
2. DUFF, I.S. The solution of sparse linear equations on the CRAY-1. CRA Y Channels 4, 3 (1982),

4-9.
3. DUFF, I. S., AND REID, J.K. Experience of sparse matrix codes on the CRAY-1. Comput Phys.

Commun. 26 (1982), 293-302.
4. FONG, K., AND JORDAN, T. L. Some hnear algebra algorithms and their performance on the

CRAY-1. UC-32. Los Alamos Scientific Laboratory, June 1977.
5. LAWSON, C., HANSON, R., KINCAID, D., AND KROOH, F. Basic linear algebra subprograms for

FORTRAN Usage. ACM Trans. Math So#w. 5 (1979), 308-371.
6. ORBITS, D. A., AND CALAHAN, V.A. Data flow considerations in implementing a full matrix

solver with backing store on the CRAY-1. Systems Engineering Laboratory Rep. 98 Univ. of
Michigan, Sept. 1976.

ACM Transactions on Mathematical Software, Vol. 10, No. 3, September 1984

