
LU Factorization for Accelerator-based Systems

Emmanuel Agullo∗, Cédric Augonnet∗, Jack Dongarra†, Mathieu Faverge†,
Julien Langou‡, Hatem Ltaief† and Stanimire Tomov†

∗INRIA, LaBRI, University of Bordeaux, France
Email: Emmanuel.Agullo,Cedric.Augonnet@inria.fr

†Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA
Email: Dongarra,Faverge,Ltaief,Tomov@eecs.utk.edu
‡University of Colorado Denver, CO 80202, USA

Email: julien.langou@ucdenver.edu

Abstract—Multicore architectures enhanced with multiple
GPUs are likely to become mainstream High Performance
Computing (HPC) platforms in a near future. In this paper, we
present the design and implementation of an LU factorization
using tile algorithm that can fully exploit the potential of such
platforms in spite of their complexity. We use a methodology
derived from previous work on Cholesky and QR factor-
izations. Our contributions essentially consist of providing
new CPU/GPU hybrid LU kernels, studying the impact on
performance of the looking variants as well as the storage
layout in presence of pivoting, tuning the kernels for two
different machines composed of multiple recent NVIDIA Tesla
S1070 (four GPUs total) and Fermi-based S2050 GPUs (three
GPUs total), respectively. The hybrid tile LU asymptotically
achieves 1 Tflop/s in single precision on both hardwares. The
performance in double precision arithmetic reaches 500 Gflop/s
on the Fermi-based system, twice faster than the old GPU
generation of Tesla S1070. We also discuss the impact of the
number of tiles on the numerical stability. We show that the
numerical results of the tile LU factorization will be accurate
enough for most applications as long as the computations are
performed in double precision arithmetic.

Keywords-High Performance Computing; Dense Linear Al-
gebra; LU Factorization; Hybrid Architecture; Multiple GPU
Accelerators; Multicore; Tile Algorithm; Numerical Accuracy

I. INTRODUCTION

The LU factorization (or decomposition) of a matrix A
consists of writing that matrix as a matrix product A = LU
where L is lower triangular and U is upper triangular. It is
a central kernel in linear algebra because it is commonly
used in many important operations such as solving a non-
symmetric linear system, inverting a matrix, computing a
determinant or an approximation of a condition number. In
most cases, the decomposition is the computationally dom-
inant step. For instance, solving a linear system (Ax = b)
of n equations can be performed as an LU factorization
(A = LU), requiring θ(n3) operations, and two triangular
substitutions (Ly = b and Ux = y), requiring θ(n2)
operations. The performance of the decomposition is thus
critical and needs to be optimized especially for the emergent
platforms. This is why a large effort was recently dedicated

to accelerate it on multicore platforms [1], [2]. In this paper,
we propose to accelerate the LU factorization on a multicore
node enhanced with multiple GPU accelerators. We follow
a methodology previously employed in the context of the
Cholesky factorization [3] and QR factorization [4] that
we apply to the tile LU decomposition algorithm [1]. We
bring four contributions. First, we present the design of new
CPU/GPU hybrid kernels for performing an LU factorization
on a GPU associated to a CPU core. Second, we study
the impact on performance of the looking variants as well
as the storage layout (row or column major) in presence
of pivoting. Third, we adapt and tune our kernels for the
recent NVIDIA Tesla S1070 and S2050 (Fermi) Computing
Processors and we present experimental results on two
machines composed of such multiple GPUs. And last but
not least, we present the impact of the number of tiles on
the numerical accuracy.

The reminder of the paper is organized as follows. In
Section II, we present the LU factorization, some related
work and our experimental environment. The LU algorithm
we rely on, so-called tile LU factorization, splits the compu-
tational routines into tasks of fine granularity that can be run
concurrently on different GPUs. We describe the individual
tasks, the kernels, and their optimized hybrid CPU/GPU
implementation in Section III. In sections IV, V and VI,
we show how we schedule those operations through two
different runtime environments and discuss the subsequent
performance. We briefly discuss the numerical accuracy of
tile LU factorization in Section VII to motivate the use of
an efficient double precision factorization. We conclude and
present our future work in Section VIII.

II. BACKGROUND

A. Standard LU Algorithm

LAPACK and SCALAPACK are the current de facto
standard libraries for performing advanced dense linear
algebra operations. The LU factorization implemented in
those packages is designed as a high-level algorithm re-
lying on basic block routines from the Basic Linear Al-
gebra Subprograms (BLAS) and the Basic Linear Algebra

Communication Subprograms (BLACS) for LAPACK and
SCALAPACK, respectively. The matrix is conceptually split
in blocks of columns, so called panels. At each column of
the panel being factorized, a partial pivoting scheme is used.
It consists of finding the element of highest magnitude (so-
called pivot) within the column, swapping the corresponding
rows and then dividing the other column elements by that
value. This process is repeated for each column within
the panel. The factorization then proceeds by an update
procedure of the trailing submatrix at each step of the
factorization until all the subsequent panels are processed.
This panel-update sequence, called blocking, enables the use
of the level-3 BLAS matrix multiplication (gemm) leading
to a better data reuse, which is critical on cache-based
architectures. However, a synchronization point is required
in-between, similar to a fork-join paradigm. Furthermore, the
parallelism only occurs within each phase (panel or update)
and is expressed at the level of BLAS and BLACS, which
ultimately leads to a limited performance.

B. Tile LU Algorithm

To alleviate this bottleneck, so-called tile algorithms per-
mit to break the panel factorization and the update of the
trailing submatrix into tasks of fine granularity. The update
phase can now be initiated while the corresponding panel is
still being factorized. Initially proposed for updating factor-
izations [5], the idea of tile algorithms consists of splitting
the panels in square submatrices (so-called tiles). Using
updating techniques to obtain tasks of fine granularity was
first exploited in the context of out-of-memory (often called
out-of-core) factorizations [6]. Two implementations of the
tile LU factorization for multicore architectures were more
recently proposed [1], [2]. Tile LU algorithm annihilates
matrix elements by tiles instead of rectangular panels as in
LAPACK. In this paper, we use the high-level algorithm
presented in [1], which relies on four kernels and whose
first panel-update sequence is unrolled in Figure 1.

 GETRF

 TSTRF

 TSTRF

 GESSM GESSM

 SSSSM SSSSM

 SSSSM SSSSM

Figure 1. Tile LU Factorization: first panel factorization and corresponding
updates.

C. Related work

Various projects provide GPU kernels for linear algebra.
The CULA library implements many BLAS and LAPACK
kernels [7], but those are limited to a single GPU and
problems that fit into the memory. Kurzak et al. accelerated
the QR decomposition of the PLASMA library with a single
GPU by designing non standard BLAS kernels. The PLA-
PACK [8] and the DPLASMA [9] linear algebra libraries
both target accelerator-based clusters. Both of them rely on
their own runtime systems that provide intra-node dynamic
scheduling capabilities.

Different runtime systems were designed to support
accelerator-based platforms. The StarSs [10] language is
an annotation-based language executed either on CPUs,
GPUs or Cell processors, respectively, using SMPSs, GPUSs
or CellSs. Diamos and Yalamanchili also propose to use
features that are similar to those available in StarPU in
the Harmony runtime system [11]. Sequoia [12] statically
maps hierarchical applications on top of clusters of hybrid
machines, and the Charm++ runtime system was extended
to support GPUs [13].

D. Experimental environment

The experiments have been conducted on two different
hybrid platforms in single and double precision arithmetics.
The first machine is a quad-socket quad-core host machine
based on an AMD Opteron(tm) Processor operating at
2.4 GHz. The cache size per core is 512 KB and the size
of the main memory is 32 GB. A NVIDIA Tesla S1070
graphical card is connected to the host via PCI Express 16x
adapter cards. It is composed of four GPUs C1060 with
two PCI Express connectors driving two GPUs each. Each
GPU has 4 GB GDDR-3 of memory and 30 processors (240
cores), operating at 1.44 GHz. The computational time ratio
between single and double precision arithmetics on this Tesla
S1070 is 6. We will refer to this machine as Tesla-C1060.
The second machine is a dual-socket hexa-core host machine
based on INTEL Nehalem Processors operating at 2.67 GHz.
Each core has 256 KB of L2 cache and each socket has
12 MB of L3 cache. The size of the main memory is 48 GB.
Three NVIDIA Fermi C2050 cars are connected to the
host with a 16x PCI bus. Each GPU has 3 GB of GDDR-
5 of memory and 14 processors (448 cores), operating at
1.15 GHz. ECC was disabled on these cards to have as much
memory as possible. The computation in double precision
arithmetic has been fixed in this last GPU generation and the
ratio compared to single precision arithmetic is now two. We
will refer to this machine as Fermi-C2050.

III. KERNEL IMPLEMENTATION

A. Design

The tile LU algorithm of interest is based on four com-
putational kernels, described as follows:

GETRF This kernel performs the standard LU factoriza-
tion of a tile as in LAPACK and generates a permutation
vector according to the pivot selection;

GESSM This kernel applies to a tile from the left the
permutations followed by a triangular solve using the per-
mutation vector and the lower triangular tile computed by
the GETRF kernel;

TSTRF This kernel performs the block LU factorization
on a pair of tiles, one on top of the other, where the upper
tile (also the diagonal tile) is already upper triangular. A
permutation vector is also produced as well as a unit, lower
triangular tile as a result of swapping rows in order to
prevent overwriting of existing data;

SSSSM This kernel applies the permutations and the
transformations computed from the TSTRF kernel to two
stacked tiles from the left. A triangular solve is applied
to update the top tile using the unit, lower triangular tile
from TSTRF. A matrix-matrix multiplication is then applied
to update the bottom tile using the full tile computed by
TSTRF.

Critical for the performance of the overall algorithm,
SSSSM is the most compute intensive kernel and asymp-
totically dominates all three other kernels in terms of flops.
We integrated MAGMA BLAS matrix-matrix multiplication
(gemm) and triangular matrix solver (trsm), specifically
tuned for the tile LU algorithm. Moreover, we developed a
hybrid TSTRF kernel which takes advantage of look-ahead
technics, similar to the one-sided hybrid LU factorizations
in MAGMA for single GPU. The other two kernels, GETRF
and GESSM, were adapted and derived from the MAGMA
library. Those kernels have been implemented in single and
double precision arithmetics.

B. Tuning

Two parameters must be selected to tune the tile-LU
algorithm: the size of the tiles, and the internal blocking used
by the different kernels. Empirical tuning was performed
on the most compute intensive kernel (SSSSM). While it is
crucial to optimize the most time consuming kernel, large
internal blocking results in a fast SSSSM kernel but slows
down the overall performance due to the overhead brought
by the extra flops [14]. Several sets of parameters were
thus tested to find the combination that not only maximizes
the performance of the kernel, but also that of the overall
algorithm.

Once tuned for a specific hardware, an efficient runtime
environment to ensure a proper scheduling across the host
(multicore system) and the device (GPU accelerators) be-
comes paramount.

IV. STATIC SCHEDULING

A. Design

Originally implemented to schedule the Cholesky and QR
factorizations on the Cell processor [15], the hand-coded

static scheduler has been extended to handle the dispatch
of the hybrid kernels (from Section III) across all CPU-
GPU pairs available on the system in one dimensional cyclic
fashion. Figure 2 shows how the column-wise partitioning
is achieved. This static runtime imposes a linear scheduling
order on all the kernels during the factorization. This order
enforces the execution of a predetermined subset of kernels
on a particular CPU-GPU pair.

Two distinct global progress table are required to first
ensure numerical correctness and second, to get high perfor-
mance. The first progress table keeps track of dependencies
among the different tasks at different steps of the factor-
ization. A dependency check is performed before executing
each kernel by examining the local copy of the progress
table. The hosting CPUs stall with busy waiting on volatile
variables until the corresponding dependencies are satisfied,
which simultaneously triggers the release of the kernel to
the designated CPU-GPU pair.

The second progress table is required to avoid unnecessary
copies from/to CPU to/from device GPU and therefore,
optimize the performance of the overall algorithm. In fact,
at any specific time of the computation, a same data tile
can reside both on the host’s and/or device’s main memory
(MM). The issue is to determine the consistency of the data.
This problem is well-know in cache coherency protocols.
The second progress table helps to keep track of:

• which data tile is considered as final output to ensure
data consistency with the other processing units (PUs).
If the tile is located on the device’s MM, it is copied
back to the host’s MM for a true shared access with
the other PUs available on the system.

• which data tile is still transient and has not yet reached
its final state. This tile cannot be shared among other
PUs (false-sharing).

This progress table is incremented at each step of the
factorization. Each CPU thread hosting a GPU probes the
progress table about the state of the data tile it is about to
access. If the data tile state is final, no transfer is necessary
and the computation proceeds. If its state is transient, the
CPU thread will initiate a transfer to its GPU in order to
acquire the up-to-date data tile prior to execute its scheduled
task.

This turns out to considerably decrease the number of
communications involved between a CPU-GPU pair, which
is critical given that the PCI bus is two orders of magnitude
less efficient than the computational power of the accelera-
tors.

V. ALGORITHMIC OPTIMIZATIONS

We introduce four incremental optimizations integrated
into the application to improve the overall performance.
First, we manually adjust the order of the loops, and then
we optimize the compute kernels so that they fit to the
specificities of GPUs.

GETRF TSTRF GESSM SSSSM

0 1 2 3 4

5 0 1 2

3 4 5

0 1

2

Figure 2. Task partitioning across six processing units.

A. Looking Variants

We study in this section the effect of three looking
variants, which have an influence on the overall scheduling.

The right-looking variant (RL) consists in updating first
the trailing submatrix, located on the right side of the current
panel, before the execution of the next panel starts. This
looking variant generates many concurrent tasks which can
potentially run in parallel.

The left-looking variant (LL), also called the lazy variant,
applies all subsequent updates generated from the left side
to the current panel before proceeding with the next panel.
Since the updates are restricted to the panel only, data reuse
is maximized while at the same time parallelism can get
limited.

The methodology of this static scheduling allows for
pipelined execution of factorizations steps, which usu-
ally provides similar benefits to dynamic scheduling to
some extent. For example, the execution of the inefficient
Level 2 BLAS operations can be overlapped by the effi-
cient Level 3 BLAS operations. This phenomenon has been
successfully demonstrated for the scheduling of one-sided
factorizations in the context of homogeneous multicore [16].
However, when tackling hybrid system components, i.e.,
multicore associated with GPU accelerators, a tremendous
gap in terms of sequential performance may exist between
the hybrid CPU-GPU kernels and the GPU kernels as seen
in Section III-B. Therefore, one of the main disadvantages
of the static scheduling is a potential suboptimal scheduling,
i.e., stalling in situations where work is available.

Figures 3(a) and 3(b) clearly describe this drawback of
the static scheduling on four CPU-GPU pairs. The dark
purple colors represent the panel tasks (GETRF and TSTRF)
and the light green colors are the update kernels (GESSM
and SSSSM). The panel tasks are hybrid and the GPU
needs the CPU to perform the Level 2 BLAS operations
while the update kernels are highly efficient Level 3 BLAS
operations performed on the GPU only. Figure 3(a) shows
the RL variant with lots of stalls represented by white empty
spaces. The panel tasks indeed become a bottleneck and
the updates tasks cannot proceed until the completeness

of the panel tasks. Figure 3(b) presents the LL variant.
The scheduling contains less gaps but still suffers from the
lack of parallelism, especially in the beginning. And this
inefficiency is even more exacerbated by the slow panel
hybrid kernels.

A new looking variant has then been implemented to
alleviate this bottleneck combining the previous LL version
with a breadth-first search task execution (BF-LL). Each
CPU-GPU pair applies all subsequent transformations, once
for all, (update and panel tasks) on a particular tile on the
current panel before proceeding with the tile below it. The
obtained trace as seen in Figure 3(c) is very compact and
dense as shown in the bottom trace. On Figure 4, the BF-
LL variant therefore clearly outperforms the other variants
for all problem sizes. Noteworthy to mention that some
natural load imbalance starts to appear toward the end of
the traces. This explains the irregularities observed on the
different curves of Figure 4.

(a) Right Looking (RL).

(b) Left Looking (LL).

(c) Breadth-First (BF-LL).

Figure 3. Trace of the different looking variants.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000 25000 30000 35000

G
flo

p/
s

Matrix order

Mix variant
Right looking
Left Looking

Figure 4. Looking variants for static SGETRF on Tesla-C1060

B. Block Pivoting

LAPACK and SCALAPACK apply permutations sequen-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000

G
flo

p/
s

Matrix order

Mix-rm variant
Mix-trtri variant

Mix-swp variant
Mix variant

Figure 5. Algorithmic optimizations for static SGETRF on Tesla-C1060

tially i.e., they swap rows one after another. This operation
can be extremely slow on GPUs. For that reason, we have
implemented a single GPU kernel that applies all permuta-
tions within a block at once. Applying this technique to the
BF-LL variant improves the performance by a few percents
on Figure 5.

C. Triangular Solve

The second optimization consists in splitting the call to
triangular solve (trsm) on the GPU by a triangular matrix
inversion (trtri) on the CPU followed by (1) a triangular
matrix-matrix multiplication (trmm) and (2) a matrix-matrix
multiplication (gemm) both on the GPU to further improve
the performance of the most compute intensive GPU kernel.
The same modification has been proposed by Volkov and
Demmel [17]. This affects the overall stability analysis of
the algorithm but, as long as a reasonable pivoting strategy
is used (so that the norm of L is not too large), we can
guarantee that the scheme stays normwise stable. The benefit
in terms of performance is however very significant: on
Figure 5, the asymptotic speed is now 821 Gflop/s compared
to 638 Gflop/s before.

D. Storage Layout

One critical part of the standard LU factorization is the
pivoting scheme. The LU algorithm as implemented in
LAPACK uses partial pivoting which generates swapping
between rows. The tile LU factorization uses a pairwise
pivoting scheme which implies pivoting between a pair of
tiles. This generates more pivoting than the standard LU
factorization and also presents some stability issues which
are explained in Section VII. The storage layout optimiza-
tion enables to improve the memory accesses on the GPU
when pivoting by transposing the matrix accordingly. The
swapping of rows, which are now contiguous in memory,
can use coalescent memory accesses to substantially improve
the overall performance of the application.

Implementation and experimentation were therefore car-
ried out with tiles in two storage layouts – column and
row major correspondingly. On Figure 5, we obtain about
882 Gflop/s by converting the matrix into a Row-Major
layout. Previous work for example, has shown that the
computational cost for pivoting can be prohibitively high
for performance.

E. Scalability

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000

G
flo

p/
s

Matrix order

4 GPUs
3 GPUs
2 GPUs
1 GPU

Figure 6. Scalability of static SGETRF on Tesla-C1060

Figure 6 shows the strong scalability of the SGETRF
algorithm with respect to the number of GPU-CPU pairs.
We obtain a 1.9 speedup on 2 GPUs and a 3.6 speedup
on 4 GPUs. While the successive optimizations ensure that
enough parallelism is created, the scalability is limited by the
contention on the bus. As shown on the trace on Figure 3(c),
this statically scheduled algorithm also suffers from some
load imbalance which affects its scalability.

VI. DYNAMIC SCHEDULING

The dynamic scheduler described in this section proposes
a more productive and portable approach to schedule the tile
LU factorization across a hybrid system.

A. Design

The application to be scheduled can be split into multiple
tasks. We use the StarPU [18] runtime system to schedule
these tasks dynamically simultaneously on CPU cores and
on CUDA devices. StarPU is a library that schedules tasks on
accelerator-based platforms. It automates data management
and provides a flexible framework to design scheduling
policies. The two main steps required to port an application
on StarPU are first to register all data to StarPU, and then
to split the computation into tasks that access registered
data. StarPU provides performance portability by making it
possible to concentrate on purely algorithmic concerns and
on kernel optimization rather than dealing with low-level
and non portable problems such as data management.

1) Data management: Once a piece of data has been
registered, StarPU ensures that it is available for the different
tasks that need to access it, either from a CPU or from a
GPU. StarPU keeps track of the location of the different
data replicates and make sure that they remain coherent:
when a task modifies a piece of data, all other replicates are
automatically invalidated.

2) Task scheduling: The task structure proposed by
StarPU contains a multi-versioned kernel, named codelet,
and the list of data which should be accessed by the task,
as well as the access mode (e.g., read or read/write). The
codelet structure encapsulates the different implementations
of the task on the different types of processing units: when
StarPU assigns the task to a certain type of processing unit
(e.g., CUDA or OpenCL), the appropriate implementation
is called. StarPU will not assign a task to a processing unit
for which the codelet is not implemented. It is therefore not
required to give an implementation of the codelet for each
type of processing unit.

Task dependencies are either explicit or implicitly derived
from data dependencies. In the tile-LU algorithm, StarPU
automatically detects dependencies so that we simply unfold
the DAG describing the tile-LU algorithm in a sequential
fashion.

StarPU provides various scheduling strategies to address
a wide scope of applications. For the tile-LU algorithm,
we used the HEFT-TMDP-PR policy. This strategy relies
on performance predictions based on previous executions,
which make it possible to accurately distribute the load be-
tween the heterogeneous processing units. This strategy also
minimizes data transfer overhead by initiating asynchronous
data transfers as soon as a task is attributed to a processing
unit prior to its actual execution. The total amount of data
transfers is also reduced by predicting data transfer time,
and therefore avoiding to schedule tasks on processing units
that do not have a local copy of the input data. More details
on the HEFT-TMDP-PR policy are available in a previous
study [18].

B. Performance results

Figure 7 present performance results obtained with either
the static or the dynamic schedulers. The three optimizations
of sections V-D, V-B and V-C are applied again. Dynam-
ically scheduled tasks are submitted following the Right-
Looking ordering. We therefore show the speed of both
the Right-Looking (RL) and the Breadth-First Looking (BF-
LL) statically scheduled algorithms. It is worth noting that
data transfer time is not accounted in the static algorithms.
Contrary to the static algorithm that was manually tuned
to minimize the amount of data transfers and to balance
the load, the dynamic scheduler has to take decisions even
before all tasks have been submitted. For small problems,
static algorithms thus perform better than the dynamic
one. For larger problems, the dynamic scheduler is able

 0

 200

 400

 600

 800

 1000

 1200

 0 8192 16384 24576 32768 40960

G
fl
o

p
/s

Matrix order

Static BF-LL
Dynamic RL + CPUs

Dynamic RL
Static RL

Figure 7. Static vs. Dynamic scheduling on the 3 GPUs of Fermi-C2050

to distribute the load better than the RL algorithm even
though tasks are submitted in the same order in both cases.
The static algorithms are unable to handle problems larger
than the size of the GPUs, while StarPU transparently
handles larger problems. In the future, we plan to unfold
the dynamically scheduled DAG following the BF-LL order
in order to guide the dynamic scheduler. This would make
it possible to benefits from the expertise introduced within
the static algorithm while preserving code maintainability.
Performance portability is also illustrated on the curve
obtained when using all CPUs in conjunction with the GPUs
on Figure 7.

VII. NUMERICAL ACCURACY

We have mentioned above that the use of double precision
may be critical when relying on the Tile LU factorization.
We now illustrate this claim. The purpose of this section
is not to accomplish a full study of the numerical stability
and accuracy of the Tile LU algorithm; this would deserve
an entire manuscript. Our goal is to justify that Tile LU
algorithm can be used in practice on the matrices we usually
consider and to highlight its limits.

Pivoting is necessary during the LU factorization process
in order to ensure the stability of the algorithm. The standard
way to perform pivoting is partial pivoting: for each column,
one pivot is used to eliminate all the others elements of
this column. The pivot is chosen to be an element in the
column with the largest magnitude. This scheme is, for
example, implemented in LAPACK and ScaLAPACK and it
is practically stable; in the sense that pathological matrices
exist for which it is not stable; but, these matrices have
not been observed in practical applications. During the Tile
LU algorithms, the partial pivoting scheme is altered in
order to enable a pipeline in the update of the columns.
Indeed, for a single column, several pivots can be used
during the elimination process. The pivoting scheme for Tile

 1

 10

 100

 1000

 1 10 100 1000

||A
x-

B
||o

o
(r

at
io

 to
 L

ap
ac

k)

NT

N=10240
N=9216
N=8192
N=7168
N=6144
N=5120
N=4096
N=3072
N=2048
N=1024

Figure 8. Numerical accuracy of the residual (‖Ax − b‖∞, logarithmic
y-axis) when the number of tiles per row (t, logarithmic x-axis) varies, for
random matrices A of various orders N in double precision. The residual
is normalized to the residual obtained with LAPACK.

LU is a block variant of pairwise pivoting and we call it
block pairwise pivoting. Stability of pairwise pivoting has
been studied in [19]. The authors experimentally showed
that pairwise pivoting is less stable than partial pivoting.
This motivates this experimental section on the stability
of block pairwise pivoting. A preliminary study has been
proposed in [20] but this only addresses the case of two
tiles. In practical applications, our algorithms will have tens
to hundreds of tiles.

Our main result can be stated as follows. We experimen-
tally observe that, when compared to partial pivoting, the
stability of block pairwise pivoting is independent of the
size of the tiles and solely depends on the number of tiles
in a column. As the number of tiles increases, the accuracy
of the factorization deteriorates. We observe that, on random
matrices tile LU performed on 1, 000-by-1, 000 tile matrix
loses at most 2-digit of accuracy with respect to partial
pivoting.

Here, we consider ten matrices of order ranging from
1024 to 10240 that were randomly generated with a uniform
distribution. For each matrix, Figure 8 shows the infinity
norm of the residual (‖Ax − b‖∞) obtained for Tile LU
relatively to the residual obtained with LAPACK. LAPACK
LU algorithm implements a standard partial pivoting scheme
consisting of choosing the element of highest magnitude as
pivot for the current column. When using one single tile, Tile
LU exactly performs a partial pivoting scheme. Therefore,
Tile LU and LAPACK lead to the exact same residual in that
case (t = 1, leftmost point of Figure 8). When the number of
tiles per row (the matrix is composed of t×t tiles if there are
t tiles per row) increases, Figure 8 shows that the numerical
accuracy decreases. One decimal digit of accuracy is lost
(ratio equal to 10) when 10 to 30 tiles are used, depending on
the matrices considered. On the right-most part of the graph

(the scale is logarithmic), we study the loss of accuracy
when considering up to an improbable number of 1, 000 tiles
that would not fit in the memory of our target machines if
we were considering a tile size optimized for performance.
Only two matrices out of ten loose a second decimal digit of
accuracy (ratio equal to 100). One of our main observation
is that the stability is influenced by the number of tiles used
in the algorithm, and is not influenced by the size of the
tiles. If this cannot be considered as a statistical result, it still
shows that the degradation of Tile LU on numerical accuracy
is not necessarily dramatic. Indeed, an iterative refinement
procedure often recovers several decimal digit per iteration.
Therefore, a Tile LU factorization in double precision is
likely to lead to a very acceptable numerical accuracy. On
the contrary, in single precision, the numerical accuracy of
the standard LU factorization with partial factorization is
often barely high enough to yield to the solution. Therefore,
the computation of the solution of a linear system may fail
because of one or two lost decimal digits.

 0

 100

 200

 300

 400

 500

 0 8192 16384 24576 32768

G
fl
o

p
/s

Matrix order

All
3 GPUs
2 GPUs
1 GPU

12 CPUs

Figure 9. Scalability of dynamic DGETRF on Fermi-C2050

As a partial conclusion, for the matrix sizes and tile sizes
we consider, we have shown that the obtained accuracy is
critical in single precision but is likely to be acceptable in
double precision, emphasizing the importance of efficient
numerical solvers in double precision. On Figure 9, the
dynamically scheduled DGETRF kernel reaches 500 Gflop/s
on our Fermi-based system, which is half of the speed
obtained by the single precision algorithm on the same
platform. The different results that we have presented in
single precision are also directly applicable to the double
precision implementation.

VIII. CONCLUSION

We have presented the design and implementation of a
new hybrid algorithm for performing the tile LU factor-
ization on a multicore node enhanced with multiple GPUs.
This work completes our study of one-sided factorizations
on such platforms. We have shown that we could reach very
high performance thanks to new CPU/GPU hybrid kernels.
These kernels have been specifically tuned to fully exploit

the potential of the NVIDIA Tesla S1070 and the new
generation Fermi-based S2050 GPU accelerators. Tile LU
achieves 1 Tflop/s in single precision arithmetic and 500
Gflop/s in double precision on the Fermi-based system. The
numerical accuracy of the LU factorization is very sensitive
to the underlying algorithm. From a high-level point view,
we rely on the Tile LU factorization algorithm. We have
exhibited that the numerical accuracy decreases when the
number of tiles increases. For the matrix sizes and tile sizes
we consider, we have shown that this degradation is critical
in single precision but acceptable in double precision, high-
lighting the importance of using efficient double precision
hardware and software.

This work aims at unifying PLASMA (initially designed
for homogeneous multicore architectures) and MAGMA
(initially designed for single-GPU architectures) and the
resulting software will be incorporated in those libraries. The
purpose is to constitute a library equivalent in functionality
to LAPACK. We plan to pursue this work with two-sided
factorizations (Hessenberg reduction, tridiagonalization and
bidiagonalization). We are also investigating memory bound
algorithms such as the solution step that follows a one-
sided factorization. For those algorithms, minimizing data
movement is critical. This is still a complex and open
problem on heterogeneous machines.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore archi-
tectures,” Parallel Computing, vol. 35, pp. 38–53, 2009.

[2] E. Chan, E. S. Quintana-Ortı́, G. Gregorio Quintana-Ortı́, and
R. van de Geijn, “Supermatrix Out-of-Order Scheduling of
Matrix Operations for SMP and Multi-Core Architectures,” in
Nineteenth Annual ACM Symposium on Parallel Algorithms
and Architectures SPAA’07, June 2007, pp. 116–125.

[3] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst,
S. Thibault, and S. Tomov, GPU Computing Gems. NVIDIA,
2010, vol. 2, ch. Faster, Cheaper, Better - a Hybridization
Methodology to Develop Linear Algebra Software for GPUs,
accepted, to appear.

[4] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR Factorization on a Multicore
Node Enhanced with Multiple GPU Accelerators,” 25th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2011).

[5] G. H. Golub and C. F. V. Loan, Matrix Computations, 2nd ed.
Baltimore, MD, USA: The Johns Hopkins University Press,
1989.

[6] E. L. Yip, “Fortran subroutines for out-of-core solutions of
large complex linear systems.” Technical Report CR-159142,
NASA, November 1979.

[7] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini,
and E. J. Kelmelis, “CULA: hybrid GPU accelerated linear
algebra routines,” in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, vol. 7705, Apr. 2010.

[8] M. Fogué, F. D. Igual, E. S. Quintana-ortı́, and R. V. D. Geijn,
“Retargeting plapack to clusters with hardware accelerators
flame working note #42,” 2010.

[9] G. Bosilca, A. Bouteiller, T. Herault, P. Lemarinier, N. Saeng-
patsa, S. Tomov, and J. Dongarra, “A unified HPC en-
vironment for hybrid manycore/GPU distributed systems,”
LAPACK Working Note, Tech. Rep. 234, Oct. 2010.

[10] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo,
and E. S. Quintana-Ortı́, “An Extension of the StarSs Pro-
gramming Model for Platforms with Multiple GPUs,” in
Proceedings of the 15th International Euro-Par Conference
on Parallel Processing. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 851–862.

[11] G. F. Diamos and S. Yalamanchili, “Harmony: an execution
model and runtime for heterogeneous many core systems,” in
HPDC ’08: Proceedings of the 17th international symposium
on High performance distributed computing. New York, NY,
USA: ACM, 2008, pp. 197–200.

[12] K. Fatahalian, T. Knight, M. Houston, M. Erez, D. Horn,
L. Leem, J. Park, M. Ren, A. Aiken, W. Dally, and P. Han-
rahan, “Sequoia: Programming the memory hierarchy,” in
ACM/IEEE SC’06 Conference, 2006.

[13] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn, “Scaling Hierarchical N -body Simulations on GPU
Clusters,” in Proceedings of the ACM/IEEE Supercomputing
Conference 2010 (to appear), 2010.

[14] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra, “Comparative
study of one-sided factorizations with multiple software pack-
ages on multi-core hardware,” 2009 International Conference
for High Performance Computing, Networking, Storage, and
Analysis (SC ’09), 2009.

[15] J. Kurzak and J. J. Dongarra, “QR factorization for the
CELL processor,” Scientific Programming, Special Issue:
High Performance Computing with the Cell Broadband En-
gine, vol. 17, no. 1-2, pp. 31–42, 2009.

[16] J. Kurzak, H. Ltaief, J. J. Dongarra, and R. M. Badia,
“Scheduling dense linear algebra operations on multicore
processors,” Concurrency Computat.: Pract. Exper., vol. 21,
no. 1, pp. 15–44, 2009, DOI: 10.1002/cpe.1467.

[17] V. Volkov and J. Demmel, “LU, QR and Cholesky fac-
torizations using vector capabilities of GPUs,” Tech. Rep.
UCB/EECS-2008-49, 2008.

[18] C. Augonnet, S. Thibault, and R. Namyst, “StarPU: a
Runtime System for Scheduling Tasks over Accelerator-
Based Multicore Machines,” INRIA, Technical Report 7240,
Mar. 2010. [Online]. Available: http://hal.archives-ouvertes.
fr/inria-00467677

[19] L. N. Trefethen and R. S. Schreiber, “Average-case stability
of Gaussian elimination,” SIAM J. Matrix Anal. Appl., vol. 11,
pp. 335–360, May 1990.

[20] E. S. Quintana-Ortı́ and R. A. van de Geijn, “Updating an
LU factorization with pivoting,” ACM Trans. Math. Softw.,
vol. 35, no. 2, pp. 1–16, 2008.

http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397
http://dx.doi.org/10.1002/cpe.1467
http://hal.archives-ouvertes.fr/inria-00467677
http://hal.archives-ouvertes.fr/inria-00467677

	Introduction
	Background
	Standard LU Algorithm
	Tile LU Algorithm
	Related work
	Experimental environment

	Kernel Implementation
	Design
	Tuning

	Static scheduling
	Design

	Algorithmic Optimizations
	Looking Variants
	Block Pivoting
	Triangular Solve
	Storage Layout
	Scalability

	Dynamic scheduling
	Design
	Data management
	Task scheduling

	Performance results

	Numerical Accuracy
	Conclusion
	References

