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Abstract. This paper presents a high performance eigensolver for dense symmetric matrices on multicore archi-
tectures. Based on the well-known divide and conquer (D&C) methodology introduced by Cuppen, this algorithm
computes all the eigenvalues of the symmetric matrix. The general D&C can be expressed in three stages: (1) Par-
titioning into subproblems, (2) Computing the solution of the subproblems and (3) Merging the subproblems. It is
therefore well-suited for data parallel algorithmic technics due to the number of independent computational tasks
which can potentially run concurrently. In particular, tile algorithms have recently shown very promising perfor-
mance results for solving linear systems of equations. The idea consists of splitting the input matrix into small
square tiles and reorganizing the data within each tile to be contiguous in memory for efficient cache reuse. The
authors propose to extend this idea to the D&C eigensolver algorithm. The tile DC (TD&C) eigensolver algorithm
described in this paper takes a dense symmetric matrix in tile layout as input, reduces it to symmetric band form
by applying orthogonal transformations and finally, applies the D&C approach on the symmetric band matrix to
calculate all eigenvalues. The whole execution flow can then be represented as a directed acyclic graph where nodes
are tasks and edges represent dependencies between them. A light weighted runtime system environment is used
to dynamically schedule the different tasks in order to ensure the data dependencies are not violated. The tasks are
scheduled in an out-of-order fashion with a special emphasis on the data locality and the pursuit of the critical path.
The performance results obtained for large matrix sizes and certain matrix types are staggering. The proposed TD&C
symmetric eigensolver reaches up to 14X speed up compared to the state-of-the-art numerical open source library
LAPACK and up to 4X speed up against the commercial numerical library Intel MKL V10.2. Performance results
are also reported comparing the TD&C symmetric eigensolver with other standard methods such as the bisection,
the QR iteration and MRRR. Last but not least, a study on the accuracy of the computed eigenvalues is provided
which gives a certain confidence on the quality of the overall TD&C symmetric eigensolver presented in this paper.
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1. Introduction. The objective of this paper is to introduce a new high performance
Tile Divide and Conquer (TD&C) eigensolver for dense symmetric matrices on homoge-
neous multicore architectures. The necessity of calculating eigenvalues emerges from var-
ious computational science disciplines e.g., in quantum physics [32], chemistry [34] and
mechanics [23] as well as in statistics when computing the principal component analysis
of the symmetric covariance matrix. As multicore systems continue to gain ground in the
high performance computing community, linear algebra algorithms have to be redesigned or
new algorithms have to be developed in order to take advantage of the architectural features
brought by these processing units.

The TD&C eigensolver algorithm for symmetric matrices described in this paper takes
root from the well-known D&C methodology introduced by Cuppen [10]. Many serial and
parallel Cuppen-based eigensolver implementations for shared and distributed memory have
been proposed in the past [16, 20, 24, 25, 35, 36, 38]. However, the symmetric matrix A
has first to be transformed into a tridiagonal matrix T by applying successive orthogonal
transformations. The D&C approach can then be expressed in three stages: (1) Partitioning
T into subproblems, (2) Computing the solution of the subproblems which are defined by a
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rank-one modification of a diagonal matrix and (3) Merging the subproblems in a bottom-up
fashion. This approach is therefore well-suited for data parallel algorithmic techniques due
to the number of independent computational tasks which can potentially run concurrently.
In particular, tile algorithms have recently shown very promising performance results for
solving linear systems of equations using Cholesky, QR/LQ and LU factorizations available
in PLASMA [39] library and other similar projects like FLAME [40]. The PLASMA concept
consists of splitting the input matrix into square tiles and reorganizing the data within each tile
to be contiguous in memory (block data layout) for efficient cache reuse. The authors propose
to extend this idea to the symmetric TD&C eigensolver case. The standard algorithms may
then have to be redesigned to match the tile layout underneath.

The TD&C symmetric eigensolver framework takes a dense symmetric matrix as input,
translates it into block data layout and reduces it to symmetric band form by applying suc-
cessive orthogonal transformations. This strategy of partially reducing the matrix allows us
the casting of most level 2 BLAS operations (memory-bound) during the panel factorization
required in the standard tridiagonalisation step to level 3 BLAS operations (compute-bound)
for high performance execution purposes. Indeed, the most time consuming part of any stan-
dard symmetric eigensolvers is the full reduction to tridiagonal form. This reduction phase
can take up to 90% of the elapsed time if only eigenvalues are needed and 50% if both, eigen-
values and eigenvectors are calculated. There are mainly two ways to compute the eigenval-
ues of the resulting symmetric band matrix: a) further reduce the matrix to tridiagonal form
using a bulge chasing procedure as developed by Luszczek et al. [30], and then apply the
standard D&C algorithm (or any other methods) to calculate the eigenvalues from the tridi-
agonal form, or b) directly compute the eigenvalues from the symmetric band matrix itself.
The latter approach is used in our TD&C eigensolver framework to calculate all eigenvalues
by extending the three stages of the standard D&C eigensolver, originally designed for the
symmetric tridiagonal matrix, to the symmetric band matrix. The whole execution flow can
then be represented as a directed acyclic graph where nodes are tasks and edges represent
dependencies between them. An efficient and light weighted runtime system environment
named QUARK [28] (internally used by the PLASMA library) is exploited to dynamically
schedule the different tasks and to ensure that the data dependencies are not violated. The
execution flow is now driven by the data dependencies. As soon as the dependencies are sat-
isfied, QUARK initiates and executes the corresponding tasks on the available computational
resources. This engenders an out-of-order execution of tasks which removes unnecessary
synchronization points and allows the different TD&C stages to overlap. In fact, by hinting
QUARK, we are able to resolve two interrelated issues which come into play with regard to
scheduling optimality: data locality and the pursuit of the critical path.

The TD&C symmetric eigensolver algorithm has been extensively evaluated across many
matrix types and against similar D&C symmetric eigensolver implementations from state-of-
the-art numerical libraries. The performance results obtained asymptotically and for some
matrix types are very impressive. Performance results are also reported comparing the TD&C
symmetric eigensolver with other standard methods such as the bisection, the QR iteration
and MRRR. Last but not least, a study on the accuracy of the computed eigenvalues is pro-
vided which gives a certain confidence on the quality of the overall TD&C symmetric eigen-
solver framework presented in this paper.

The remainder of this paper is organized as follows: Section 2 gives a detailed overview
of previous projects in this area. Section 3 recalls the standard D&C symmetric eigensolver
algorithm. Section 4 describes the TD&C symmetric eigensolver framework and provides
its algorithmic complexity. Section 5 gives some details about the parallel implementations
of the algorithm and highlights our contributions. Section 6 presents performance results of
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the overall algorithm on shared-memory multicore architectures against the corresponding
standard D&C routines from LAPACK [2] and the Intel vendor library MKL V10.2 [1] on
various matrix types. Also, performance comparisons against other numerical methods are
illustrated along with a study on the accuracy of the computed eigenvalues. Finally, Section 7
summarizes the results of this paper and discusses the ongoing work.

2. Related Work. This section describes previous works on D&C eigensolvers for sym-
metric band matrices. Band matrices naturally arise in many areas such as the electronic sim-
ulations in quantum mechanics, vibrating systems approximated by finite elements or splines
and also in the block Lanczos algorithm where a sequence of increasingly larger band sym-
metric eigenvalue problems are generated. Besides the overhead of the tridiagonalisation
step, this motivates attempts to compute the eigen decomposition directly from the band form
using variants of the standard D&C algorithm.

Arbenz et al. [3, 4, 5] investigated a generalized D&C approach for computing the eigen-
pairs of symmetric band matrices. The authors provide many important theoretical results
concerning the eigenanalysis of a low rank modification of a diagonal matrix. Arbenz [3], pro-
posed two methods for computing eigenpairs of a rank-b modification of a diagonal matrix.
The first approach consists of computing the rank b modification as a sequence of rank-one
modifications. The second approach lies in compressing the rank b modification to a small
b×b eigenproblem, solves it and then reconstructs the solution of the original problem [4, 5].
The first approach requires more floating point operations than the second one, which has se-
rial complexity in the O(n3) term. The author opted for the second approach. Unfortunately,
numerical instabilities in the computation of the eigenvectors have been observed [3], and
currently no numerically stable implementation of the second approach exists.

Also, Gansterer et al. [18] developed a D&C algorithm for band symmetric matrices
which computes the eigen decomposition. Their approach is based on the separation of the
eigenvalue and the eigenvector computations. The eigenvalues are computed recursively by
a sequence of rank-one modifications of the standard D&C technique. Once the eigenvalues
are known, the corresponding eigenvectors are computed using modified QR factorizations
with restricted column pivoting.

Later, Gansterer et al. [19] and Ward et al. [41] proposed another alternative for the
generalized D&C algorithm, which rather computes approximate eigenvalues and eigen-
vectors of symmetric block tridiagonal matrices. Bai and Ward [6] proposed a parallel
and distributed version of it. Their algorithm calculates all eigenvalues and eigenvectors
of a block-tridiagonal matrix to reduced accuracy by approximating the rank deficient off-
diagonal blocks of lower magnitudes with rank-one matrices.

The tile D&C symmetric eigensolver algorithm (TD&C) presented in this paper differs
from Arbenz’s algorithm [4, 5] in the fact that it uses the first approach (sequence of b rank-
one updates) for the solution of the low-rank modifications. The first approach, based on a
sequence of b rank-one updates, has also been used by Gansterer et al [18]. However, our
TD&C algorithm differs from [18] in the representation of the subdiagonal blocks, which are
not rank deficient. Although, our proposed algorithm has been developed in close analogy to
Ward et al. [41] algorithm, but without the use of an approximation of the subdiagonal blocks.
The details are discussed in Section 3.

3. The Standard D&C Symmetric Eigensolver Algorithm. This section recalls the
methodology underlying the standard Cuppen’s D&C algorithm for symmetric eigensolver.

The symmetric dense matrix A first has to be reduced into a tridiagonal matrix, T , using
successive orthogonal transformations. The D&C approach can then be expressed in three
phases:

• Partition the tridiagonal matrix T into several subproblems in a recursive manner.
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• Compute the eigen decompositions of each subproblem, which are defined by a
rank-one modification of a diagonal matrix.

• Merge the subproblems and proceed to the next level with a bottom-up fashion.
This method amounts to constructing a binary tree with each node representing a rank-one
tear and hence, a partition into two subproblems. Figure 3.1 shows a tree of depth three
representing a splitting of the original problem into eight smaller subproblems. There are
two simple eigenvalue problems to be solved at each leaf of the tree. Each of these problems
may be considered as an independent problem without any data dependencies with the other
leaves of the tree. The tree is then traversed in reverse order where at each node the results
are merged from the left son and the right son calculations.

Level 2

Level 1

Level 0

Level 3

problem 0

problem 0 problem 1

problem 0 problem 1 problem 2 problem 3

problem 0 problem 1 problem 2 problem 3 problem 4 problem 5 problem 6 problem 7

FIG. 3.1. A Divide and Conquer tree

The D&C approach is sequentially one of the fastest methods currently available if all
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eigenvalues and eigenvectors are to be computed [11]. It also has attractive parallelization
properties as shown in [38]. Finally, it is noteworthy to mention the deflation process, which
occurs during the computation of the low rank modifications. It consists of preventing the
computation of an eigenpair of a submatrix (matrix of a son in the tree) that is acceptable to
be an eigenpair of the larger submatrix (matrix of a father in the tree). Therefore, the greater
the amount of deflations, the lesser the number of required operations, which leads to a better
performance. The amount of deflations depends on the eigenvalue distribution as well as
the structure of the eigenvectors. In practice, most of the application matrices arising from
engineering areas provide a reasonable amount of deflations, and so the D&C algorithm runs
at less than O(n2.5) instead of O(n3).

The next section explains how the standard D&C symmetric eigensolver has been ex-
tended to work on a symmetric band matrix using tile algorithms (TD&C).

4. The Tile D&C Symmetric Eigensolver Algorithm. This section highlights the skele-
ton of the divide and conquer eigensolver for dense symmetric matrices using tile algorithms
(TD&C). The dense matrix is first reduced to band form with a given bandwidth b. The
three stages of the standard D&C symmetric eigensolver are then developed to be applied
directly on the band matrix to calculate the eigenvalues. The general algorithm can then be
represented as a Directed Acyclic Graph (DAG) where nodes represent tasks, either the panel
factorization or update of a tile, and edges represent dependencies among them. The last
subsection details the algorithmic complexity of the overall framework.

4.1. Matrix Reduction to Symmetric Band Form. Designated as a solution to over-
come the overhead of fork-join approaches, tile algorithms consist of breaking the panel
factorization, and trailing submatrix update steps into smaller tasks that operate on a square
tile (i.e., a set of b contiguous columns where b is the tile size) in order to fit the small core
caches of the underlying hardware.

The matrix reduction to symmetric band form follows this algorithmic strategy and relies
on highly optimized compute-intensive kernels to achieve high performance. It is composed
of eight kernels total. Four kernels come directly from the one-sided QR factorization [9]
and the four others have been recently implemented to handle the symmetry property of the
matrix when updating the trailing submatrix around the diagonal. The complete algorithm
of the symmetric band reduction can be found in Section 5 from Luszczek et al. [30]. The
reduced band matrix has a semibandwidthof size b. Now, there are two possibilities to get the
eigenvalue from the band matrix. The matrix can be further reduced to achieve the tridiagonal
form using a bulge chasing procedure as in [30]. The tile size, b, becomes a critical parameter
to be tuned as the bulge chasing technique requires a matrix with a small bandwidth in order
to efficiently run. Another way is to compute the eigen decomposition from the band form and
again, a particular attention on the tile size, b, is necessary as explained later in Section 4.5.

The next subsections show how the same concepts of the standard D&C method de-
scribed by Cuppen [10] hold for calculating the eigenvalues of a symmetric band matrix.

4.2. Partitioning into Subproblems. Similarly to Cuppen’s D&C for tridiagonal ma-
trices, the band matrix A can be divided into p parts. Let:

A =



B1 CT
1

C1 B2 CT
2

C2
. . . . . .
. . . Bp−1 CT

p−1
Cp−1 Bp

 ∈ Rn×n, (4.1)
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For simplicity purposes, we describe the technique for p = 2 but it is easy to generalize for
any p < n with n being the size of the matrix. If we split A into two parts, A can be written:

A =
(

B1 CT
1

C1 B2

)
, (4.2)

where Bi ∈ Rpi×pi , p1 + p2 = n, and C1 is the upper triangular tile of A which is to be “cut
out”. Thus, A can be written in such form:

A =
(

B1 0
0 B2

)
+R, where Bi ∈ Rpi×pi , p1 + p2 = n (4.3)

There are several ways to define the matrix R. Arbenz [3] shows that it is possible to have the
rank of R = b if one defines:

R =
b

∑
j=1

δ jv jvT
j , (4.4)

where

δ j 6= 0, and v j := θ jep1−b+ j +
1

δ jθ j

j

∑
m=1

ap1+m,p1−b+ jep1+m.

This is equivalent in a matrix notation to:

R = V ∆V T , V =


O
Θ

C1Θ−T ∆−1

0

 , (4.5)

where Θ,∆ are diagonal matrices and where

C1 =

 ap1+1,p1−b+1 · · · ap1+1,p1
. . .

...
ap1+b,p1

 ∈ Rb×b.

More generally, R can be represented by:

R =


Op1−b O O O

O M CT
1 O

O C1 C1M−1CT
1 O

O O O Op2−b

 (4.6)

where M = Θ∆ΘT , ∆ = ∆T and ∆ and Θ are any regular matrices.
Gansterer and al. [18] have chosen M = I. For this choice, R is in most cases unbalanced,

meaning that ‖CT
1 M−1C1 ‖ can be much smaller or larger than ‖ M ‖= I. However, if C1 =

XΣY T is the singular value decomposition (SVD) of C1, then M =−Y ΣY T and CT
1 M−1C1 =

−XΣXT . So both these matrices are symmetric negative definite and have the same norm
and condition number as C1. The modification R obtained this way is balanced and has the
form (4.5) with Θ = Y , and ∆ = −Σ. Muller and Ward [6, 19] choose to “approximate” the
off-diagonal tile C1 by lower rank matrices using their singular value decomposition.
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Our TD&C eigensolver implementation is designed along those lines. The choice of
the matrix R is based on the computation of the singular value decomposition of the off-
diagonal tile C1. We note that computing the SVD of C1 costs O(b3) floating point operations.
Assuming that b� n, the computation cost for the SVD is negligible compared to the overall
cost of the entire algorithm. Furthermore, the SVD yields the actual rank of C1 and makes it
possible to take advantage of eventual rank deficiencies.

Going back to the standard Cuppen’s algorithm, we plug in the new notations and A can
then be rewritten such as:

A =
(

B1 0
0 B2

)
+R,

=
(

B̃1 0
0 B̃2

)
+ΣZZT

(4.7)

where B̃1 = B1−Y ΣY T , B̃2 = B2−XΣXT and Z =
(

Y
X

)
.

In a general form (p > 2):

B = diag(B̃i)+
p−1

∑
i=1

ΣiZiZT
i (4.8)

where,
B̃1 = B1−Y1Σ1Y T

1 ,
B̃i = Bi−Yi−1Σi−1Y T

i−1−XiΣiXT
i , for 2 ≤ i ≤ p−1,

B̃p = Bp−Xp−1Σp−1XT
p−1,

and

Z1 =


Y1
X1
0
0

 , Zi =


0
Yi
Xi
0

 , f or 2 ≤ i ≤ p−2, and Zp−1 =


0
0

Yp−1
Xp−1

 .

It is noteworthy to mention that the SVD of the off-diagonal upper triangular tiles are inde-
pendent from each other.

The next step is the computation of the eigen decompositions for each updated block B̃i.

4.3. Solution of the subproblems. The second phase corresponds to the spectral de-
composition of each symmetric diagonal tile (B̃i). This is done through calling the appropriate
LAPACK routine for symmetric matrices. As a result, we can write:

B̃i = QiDiQT
i . (4.9)

The diagonal matrices Di contains the eigenvalues of B̃i and the matrices Qi are the corre-
sponding eigenvectors.
Thus, the original matrix A can be rewritten as follows:

A =
(

B̃1 0
0 B̃2

)
+ΣZZT

=
(

Q1 0
0 Q2

){ (
D1 0
0 D2

)
+ΣUUT

}(
Q1 0
0 Q2

)T
(4.10)
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where U = QT Z.

The eigenvalues of A are therefore equal to those of

{ (
D1 0
0 D2

)
+ΣUUT

}
. This is

equivalent to (D+UUT )y = λy where U ∈ ℜn×b is a matrix of maximal rank b ≤ n.
Having computed the local spectral decompositions of each tree leaf, the global spectral

decomposition can then be calculated by merging the solution subproblem as described in the
next subsection.

4.4. Amalgamation of the subproblems. The amalgamation phase consists of travers-
ing the tree in a bottom-up fashion where at each node the results are merged from the left
son and the right son calculations. The merging step handles the computation of the spectral
decomposition of (D+UUT )y = λy. Here again, it is obvious that all the merging operations,
which perform a rank-b updating process between two adjacent eigenvalue subproblems, can
concurrently run within the corresponding levels.

There are different methods for computing the eigen decomposition of a low rank modi-
fication of an Hermitian matrix (D+UUT )y = λy. Two main strategies can be distinguished:

• “b×1” approach that computes a sequence of b rank-one modifications of a diagonal
matrix.

• “1×b” approach that computes a rank-b modification of a diagonal matrix,
Arbenz [3] followed the “1×b” approach to compute the eigenpairs of a rank-b modification
by transforming the problem into a b× b smaller eigenproblem. Unfortunately, numerical
instabilities in the computation of the eigenvectors have been observed [3]. The orthogonality
of the eigenvectors may be lost if close eigenvalue are present. The resulting algorithm lose
2 to 4 decimal digits compared to LAPACK.

We propose to take advantage of the stability of the existing methodology of the standard
D&C algorithm to rather follow the first approach and compute a sequence of b rank-one
modifications for calculating the eigenvalues of (D+UUT )y = λy.

The rank-one modification:
Each rank-one modification consists of computing the eigensystem of a matrix of the form

Q̃D̃Q̃T = (D+σuuT ). (4.11)

where D is a real n×n diagonal matrix, σ is a nonzero scalar, and u is a real vector of order
n and has Euclidean norm equal to 1. We seek a formula or an eigenpair of the system for
the matrix on the right hand side of (4.11). The eigenpair can be computed based on the
following theorem 4.1.

THEOREM 4.1. Let B = D+σuuT , where D=diag{d1,d2, ...,dn}, n ≥ 2, and ‖ u ‖2= 1.
Let d1 5 d2 5 d3 5 ... 5 dn be the eigenvalues of D, and let λ1 5 λ2 5 λ3 5 ... 5 λn be the
eigenvalues of B.
Then as Wilkinson [42] showed, we can λi = di + σ µi, where 1 5 i 5 n, ∑

n
i=1 µi = 1 and

0 5 µi 5 1. Moreover, an important property is that:
• d1 5 λ1 5 d2 5 λ2 5 ... 5 dn 5 λn, if σ > 0,
• λ1 5 d1 5 λ2 5 d2 5 ... 5 λn 5 dn, if σ < 0,

Finally, if the di are distinct and all the elements of u are nonzero, then the eigenvalues of B
strictly separate those of D. Golub [22] has shown that for the above situation (di are distinct
and all the elements of u 6= 0), the eigenvalues of B are equal to the root of the rational
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function of

w(λ ) = 1+σuT (D−λ I)−1u

= 1+σ ∑
n
i=1

u2
j

d j−λ

(4.12)

The corresponding eigenvectors q1,q2, ...,qn are given by

qi = (D−λiI)−1u/ ‖ (D−λiI)−1u ‖2 (4.13)

This theorem restates results of [8, 22, 37, 42], where we refer the reader for more details on
the proof.

The problem we are requiring to solve is that of the merging of the right and the left
subproblem. For simplicity, let us describe the merging process for p = 2. However it is easy
to generalize for p > 2, and we will give the general form at the end of this subsection. As
mentioned above, each merging step consists of a sequence of rank-one updates.

A =
(

B̃1 0
0 B̃2

)
+ΣZZT

=
(

B̃1 0
0 B̃2

)
+σ1z1zT

1 +σ2z2zT
2 + · · ·+σbzbzT

b

(4.14)

Substituting (4.9) into (4.14) yields

A =
(

Q1 0
0 Q2

){(
D1 0
0 D2

)}(
Q1 0
0 Q2

)T

+σ1z1zT
1 +σ2z2zT

2 + · · ·+σbzbzT
b

(4.15)
Then, the rank-b modification will be computed recursively as a sequence of b rank-one up-
dates.

First rank-one update:

A =
(

Q1 0
0 Q2

){ (
D1 0
0 D2

)
+σ1u1uT

1

}(
Q1 0
0 Q2

)T

+σ2z2zT
2 + · · ·+σbzbzT

b

=
(

Q1 0
0 Q2

){(
Q̃11 Q̃12
Q̃21 Q̃22

)(
D̃1 0
0 D̃2

)(
Q̃11 Q̃12
Q̃21 Q̃22

)T
}(

Q1 0
0 Q2

)T

+σ2z2zT
2 + · · ·+σbzbzT

b

(4.16)
where,

u1 =
(

Q1 0
0 Q2

)T

z1

and D̃i is the rank-one updated eigenvalues of Di, and Q̃ are the eigenvectors resulting from
the rank-one update.
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Second rank-one update:

A =
(

Q1 0
0 Q2

)(
Q̃11 Q̃12
Q̃21 Q̃22

){ (
D̃1 0
0 D̃2

)
+σ2u2uT

2

}(
Q̃11 Q̃12
Q̃21 Q̃22

)T (
Q1 0
0 Q2

)T

+ · · ·+σbzbzT
b

=
(

Q1 0
0 Q2

)(
Q̃11 Q̃12
Q̃21 Q̃22

){(
Q̂11 Q̂12

Q̂21 Q̂22

)(
D̂1 0
0 D̂2

)(
Q̂11 Q̂12

Q̂21 Q̂22

)T
}(

Q̃11 Q̃12
Q̃21 Q̃22

)T (
Q1 0
0 Q2

)T

+ · · ·+σbzbzT
b

(4.17)
where,

u2 =
(

Q̃11 Q̃12
Q̃21 Q̃22

)T (
Q1 0
0 Q2

)T

z2

and D̂i is the rank-one updated eigenvalues of D̃i and Q̂ are the eigenvectors resulting of
the rank-one updates.

This process of rank-one updates is recursively applied to all the zi rank-one vectors 1≤ i≤ b.
Thus, at the

bth rank-one update:

A = Q1 · · ·Qb−2Qb−1 {D} QT
b−1QT

b−2 · · ·QT
1 +σbzbzT

b

= Q1 · · ·Qb−2Qb−1

{
D+σbubuT

b

}
QT

b−1QT
b−2 · · ·QT

1

= Q1 · · ·Qb−2Qb−1Qb {Λ} QT
b QT

b−1QT
b−2 · · ·QT

1

(4.18)

where,
ub = QT

1 · · ·QT
b−2QT

b−1zb and Λ = diag{λ1,λ2, · · · ,λn} are the eigenvalues of A.

As a result, once the sequence of b rank-one updates has been computed, we obtain
Λ = diag{λ1,λ2, · · · ,λn}, which are the eigenvalues of the matrix A.

The whole algorithm for p > 2 can be easily described now. In this case, the binary
tree has a depth k = log2(p) if p is a power of 2; k = log2(p)+ 1 otherwise. Thus, the tree
consists of k levels. The leaves at the bottom of the tree (level=k) are the matrices B̃i. Thus,
as we mention above, the tree is traversed in a bottom-up fashion, where at each level l,
2l−1 independent merging problems are computed. Again, we notice that each merging step
consists of a sequence of rank-one updates. Thus, after each rank-one update of the merging
step, a sequence of matrix-vector products should be applied to take into account the synthesis
of the intermediate eigenvector matrices. The desired eigenvalues of A are then computed at
the top level l = 1 i.e., the root of the tree. Figure 4.1 depicts the amalgamation phase of
the TD&C algorithm for a tree of depth k = 3, where the original matrix is split into eight
subproblems.

4.5. Algorithmic Complexity. In this section, we calculate the number of floating-point
operations (flops) required by the tile DC (TD&C) symmetric eigensolver algorithm. We
recall that b corresponds to the tile and the bandwidth sizes. The matrix is divided into p
blocks/tiles i.e., p = n/b with n being the size of the matrix.

The algorithmic complexity of the full tridiagonal reduction is O(4/3n3). The calcula-
tion of the number of flops for the band reduction step is then straightforward. It requires
4/3n× (n−b)× (n−b) flops and gets therefore closer to O(4/3n3) for small bandwidth size
b.
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FIG. 4.1. A description of the amalgamation procedure.

The flop calculation for the band D&C algorithm to get the actual eigenvalues is more
complicated. The flop count for each phase is reported below:

• Partitioning phase: this phase is characterized by the singular value decomposition
of the off-diagonal blocks and the construction of the new diagonal blocks Ãi as
defined by equation (4.7). The number of flops is then at most:
(p−1)× (8/3)b3 +(p−1)×2×2b3 flops.

• Subproblems solution phase: this phase computes the spectral decompositions of
each symmetric Ãi as described by Equation (4.9), which requires:
p× (14/3)b3 flops.

• Amalgamation phase: each merging step of two-by-two leaves involves the appli-
cation of a sequence of b rank-one modifications of diagonal matrices and thus,
necessitates the computation of:

- a rank-one vector ui = QT
i zi,

- an eigen solution of D+σiuiuT
i .

The cost of computing ui is a matrix-vector product with all the previous QT
i accu-

mulated from the deeper levels of the tree. The eigen decomposition of a rank-one
modification problem D + σuuT ∈ Rn×n demands two distinct computation steps:
(1) the zero finding algorithm, which requires an average of 5n2 operations and
(2) the calculation of n eigenvectors, which costs 2n2 operations. The number of
flops involved in the eigen decomposition of a rank-one modification is O(7n2). In
practice, this number is the worst case scenario as the remarkable phenomenon of
deflation takes place and may reduce dramatically this cost depending on the number
of non-deflated vectors. Now, if we sum up all eigen decomposition computations
occurring at all tree levels with a depth k = blog2(p)c, the cost of the amalgamation
step is:

= ∑
k−1
i=0 2i× b

2 (b+1)×2( n
2i )2 +∑

k−1
i=1 2i×b× ib×2( n

2i )2 +∑
k−1
i=0 2i×b×7( n

2i )2
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= ∑
k−1
i=0

b
2 (b+1)×2n2( 1

2 )i +∑
k−1
i=1 b× i×b×2n2( 1

2 )i +∑
k−1
i=0 b×7n2( 1

2 )i

= 2b2n2 +4b2n2 +14bn2

u O(6 b2n2) flops.
The total arithmetic complexity of the band D&C algorithm will be dominated by the amal-
gamation phase and will require at most O(6 b2n2) flops.

Finally, the cost of the TD&C for computing all eigenvalues of a dense symmetric ma-
trix is O(4/3n3 + 6 b2n2). It is straightforward to see that the size of the bandwidth b will
have a huge impact on the overall algorithm complexity. The TD&C symmetric eigensolver
algorithm will be cost-effective if and only if b ≪ n. Also, if all corresponding eigenvectors
are to be calculated, the TD&C symmetric eigensolver will not be suitable as the cost will be
dominated by the accumulation of the intermediate eigenvector matrices for each single rank-
one modification. This would involve matrix-matrix multiplications and thus, the overall cost
will substantially increase and become dominated by 8

3 bn3 flops. Other methods, such as the
inverse iteration, need to be explored if the eigenvectors are required.

The next section gives some details about the parallel implementation of the TD&C
symmetric eigensolver algorithm and highlights our contributions.

5. Parallel Implementation Details. This section describes the major drawbacks of the
standard D&C symmetric eigensolver parallel implementations found in the state-of-the-art
numerical libraries as well as in some previous works. Also, our threefold main contributions
are clearly laid out in this section.

5.1. The Standard D&C Parallel Implementations. Over the last decade, great efforts
have been expended in building efficient numerical libraries for solving eigenvalue problems.
Among these, the best known are LAPACK (for shared-memory machines) and SCALA-
PACK (extension to distributed memory). They rely on optimized BLAS and PBLAS re-
spectively, which can be optimized for each computing environment. LAPACK and SCALA-
PACK are designed on top of the level 1, 2, and 3 BLAS/PBLAS, and nearly all of the par-
allelism in the LAPACK/SCALAPACK routines is contained in the BLAS/PBLAS. Their
D&C symmetric eigensolvers require as a first step the transformation of the symmetric dense
matrix into a tridiagonal form. This first reduction step is actually common with respect to
other well-known methods i.e., QR iteration, bisection and MRRR. More details about these
latter algorithms can be found in [14, 15, 16, 17, 21, 26, 27, 29, 33, 38]. There are mainly two
bottlenecks with those approaches: (1) because of the underlying BLAS/PBLAS libraries,
they follow the expensive fork/join paradigm which impedes the parallel efficiency and cre-
ates unnecessary synchronization points and (2) the panel factorization occurring during the
reduction phase is completely memory-bound – the entire unreduced part of the matrix is
loaded into memory to only perform at most level 2 BLAS operations. In other words, the
processing time to get the data loaded to memory is actually higher than the computing time
itself, which is not an option on multicore architectures. Some parallel implementations have
been proposed to overcome some of these drawbacks [6]. However, the lack of flexibility
of their runtime system environment do not permit a systematic way of removing the syn-
chronization points and resolving load balancing issues that may occur while computing the
eigenvalues.

5.2. Our Threefold Contributions. This section describes our contributions in three
bullets: (1) Integration of a dynamic runtime system environment, (2) Improving the data
locality while pursuing the critical path and (3) Removal of undesired synchronization points.
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5.2.1. Dynamic Scheduling with QUARK. The main issue when writing a parallel al-
gorithm, and perhaps the most critical, is how to distribute the data and the work across the
processing units in an efficient way. We have integrated QUARK [28] – a dynamic runtime
system environment – into our TD&C symmetric eigensolver algorithm. The whole algorithm
can be represented as a DAG. The goal of QUARK is to dynamically schedule the different se-
quential tasks (nodes of the DAG) and to ensure the data dependencies are not violated (edges
of the DAG). However, QUARK does not explicitly build the DAG prior to the execution for
scalability purposes but rather unrolls it on the fly. Therefore, the execution flow is solely
driven by the data dependencies. As soon as the dependencies are satisfied, QUARK initiates
and executes the corresponding tasks on the available worker threads. Also, a dynamic-type
scheduler is preferred over a static one especially, because the work of the TD&C algorithm
depends strongly on the amount of deflations. QUARK is thus capable of reducing any load
imbalances happening during runtime by applying for instance, work stealing strategies.

There are many other details about the internals of the scheduler including its dependency
analysis, memory management, and other performance enhancements that are not covered
here. However, information about this scheduler can be found in [28].

5.2.2. Enhancing Data Locality by Grouping Tasks. The reduction of the dense ma-
trix to band form using tile algorithms is extremely parallel and relies on high performance
kernels, which are composed by successive level 3 BLAS calls. In fact, the sequential kernel
performance is contingent to the size of the tile i.e., the bandwidth b. Table 5.1 and Table 5.2
show the timing in seconds to reduce a dense matrix to band form with different tile/band-
width sizes and the total number of tasks required for this reduction, respectively. The critical
impact of b is reported in the second column of both tables. A small bandwidth b will dramat-
ically affect the efficiency of the reduction phase and increase the elapsed time due to (1) the
huge bus traffic required to load all the kernel calls into memory, (2) the inefficiency of the
kernels on small b and (3) the runtime system overhead of scheduling very fine granularity
tasks. At the same time, as analyzed in Section 4.5, the performance of the TD&C symmetric
eigensolver on a band matrix strongly depends on the band size b. The smaller the b, the less
the number of flops. This trade-off between achieving high performance for the reduction
step and diminishing the number of flops of the TD&C symmetric eigensolver then has to be
addressed.

matrix without task grouping technique with task grouping technique
size 4000 8000 12000 16000 20000 4000 8000 12000 16000 20000

b = 200 2.6 13 40 90 169 2.6 13 40 90 170
b = 100 2.5 13 42 96 210 2.6 13 40 91 170
b = 50 8 62 214 524 >1000 2.6 15 44 102 194
b = 25 70 480 >1000 >1500 >2500 3.0 18 57 135 258
b = 20 112 765 >2000 >2500 >2500 3.0 20 65 144 277

TABLE 5.1
Timing comparison in seconds of the reduction phase, with and without the task grouping technique.

To overcome those three limitations, we have implemented a task grouping technique,
which assembles small computational tasks and their data together, and feeds the runtime
system environment QUARK with the new aggregated task instead. In Figure 5.1, we repre-
sent a schematic view of the task grouping technique between steps of the reduction phase.
The different colored blocks of tiles correspond to different task groups. However, accumu-
lating tasks may decrease the level of parallelism. Therefore, it is important to parametrize
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the size of the tile block in order to sustain a sufficient number of concurrent tasks. This is
also achieved by providing hints to the scheduler with task priority levels to ensure the pur-
suit of the critical path is not delayed and to release lots of concurrent aggregated tasks as
soon as their dependencies are satisfied. The third column of Table 5.1 and Table 5.2 presents
the results once the task grouping is enabled. The elapsed time is reduced by one order of
magnitude and the number of tasks is decreased by two orders of magnitude compared to the
original version. The task grouping technique permits to substantially improve the reduction
phase while keeping a small bandwidth b and thus, allows the removal of all three constraints
defined above.

     step k          step k+1      step k+2 

FIG. 5.1. A schematic description of the task grouping technique.

Finally, we illustrate in Figure 5.2 the snapshots of an execution trace of the reduction
of a dense matrix with size n = 4000 to a band form of bandwidth b = 20, running on 8
threads using the standard TD&C algorithm (Top) without the task grouping technique or the
modified TD&C algorithm with task grouping technique (Bottom). The Top figure shows the
overhead of scheduling small tiles with lots of gaps between tasks. The Bottom figure depicts
a tightly packed scheduling which corresponds to the effect of the task grouping technique.

5.2.3. Removing Synchronization Points. Last but not least, the standard D&C paral-
lel implementation mainly requires two synchronization points located: (1) inside the fork/join
paradigm and (2) between the different phases of the algorithm. Tile algorithms alleviate (1)
by bringing the parallelism to the fore and relying on sequential high performance kernels
with a smaller granularity. Since the execution flow of the TD&C symmetric eigensolver
through QUARK is solely driven by the data dependencies, a task immediately proceeds after
the dependencies coming from its parent are satisfied. This could potentially engender an
out-of-order task execution where different phases of the algorithm could overlap, as long

matrix without task grouping technique with task grouping technique
size 4000 8000 12000 16000 20000 4000 8000 12000 16000 20000

b = 200 3 21 72 170 333 3 21 72 170 333
b = 100 21 170 575 1,365 2,666 6 45 151 354 686
b = 50 170 1,365 4,607 10,922 21,332 14 98 317 735 1,414
b = 25 1,365 10,922 36,863 87,380 170,665 28 197 635 1,470 2,829
b = 20 2,666 21,332 71,999 170,665 333,332 35 246 794 1,837 3,536

TABLE 5.2
Comparison of the number of tasks during the reduction phase with and without the task grouping technique.

Note that the value in the table are in thousands of tasks order.
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FIG. 5.2. Execution trace of the reduction phase of a dense matrix of size n = 4000 with b = 25 on 8 threads.
Top: TD&C algorithm without task grouping technique – Bottom: TD&C algorithm using task grouping technique.

as the dependencies are not violated. Therefore, the unnecessary synchronization points be-
tween the different phases of the algorithm (2) are completely removed. Figure 5.3 shows a
portion of the execution trace of the entire algorithm. Tasks from the reduction and the band
D&C phases are completely overlapped. The band D&C phase starts before the dense matrix
has completely achieved the band form.

!"#$%&'()*+,-") ) ) ) )!"#%$&'().)#/0/#"),(#)$'(1%"! ) )#/0/#"),(#)$'(1%"!)

FIG. 5.3. The trace of the execution of the whole algorithm

6. Performance Results and Accuracy Analysis. This section summarizes our main
performance results of the tile DC (TD&C) symmetric eigensolver algorithm.

6.1. Machine Description. All of our experiments have been run on a shared-memory
multicore architecture composed by a quad-socket quad-core Intel Xeon EMT64 E7340 pro-
cessor operating at 2.39 GHz. The theoretical peak is equal to 9.6 Gflop/s/ per core or 153.2
Gflop/s for the whole node, composed of 16 cores. The practical peak achieved with DGEMM
on a single core is equal to 8.5 Gflop/s or 136 Gflop/s for the 16 cores. The level-1 cache,
local to the core, is divided into 32 kB of instruction cache and 32 kB of data cache. Each
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quad-core processor is actually composed of two dual-core Core2 architectures and the level-
2 cache has 2× 4 MB per socket (each dual-core shares 4 MB). The machine is a NUMA
architecture and it provides Intel Compilers 11.0 together with the Intel MKL V10.2 vendor
library.

0 10 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

240

semi−Bandwidth size (b)

T
im

e
 (

s
e

c
)

matrix size=8000

 

 

Band reduction

Band Divide and Conquer

TD&C Eigensolver

0 10 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

semi−Bandwidth size (b)

T
im

e
 (

s
e

c
)

matrix size =16000

 

 

Band reduction

Band Divide and Conquer

TD&C Eigensolver

FIG. 6.1. Effect of the tile/band size.

6.2. Tuning the Tile/Band Size b. From Sections 4 and 5, it is clear that the tile/band
size is the paramount parameter. Figure 6.1 highlights the effect of this parameter on the
reduction phase (blue curve), on the band D&C phase (green curve) and on the overall TD&C
eigensolver (red curve). For a very large b, the band D&C phase is the dominant part of the
general algorithm and reciprocally, for a very small b, the reduction phase governs the whole
application. From these experiments, a tile size b = 20 looks to be the best compromise for a
matrix of order less than 20000, while 30 < b < 40 appears to be the best choice for matrix
of larger order.
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6.3. Performance Comparisons with other Symmetric D&C Implementations. This
section shows the performance results of our TD&C symmetric eigensolver and compares
them against the similar routine (DSTEDC) available in the state-of-the-art open source and
vendor numerical libraries i.e., multi-threaded reference LAPACK V3.2 with optimized In-
tel MKL BLAS and Intel MKL V10.2, respectively. Since DSTEDC operates on a tridiag-
onal matrix, the dense symmetric matrix first needs to be reduced to tridiagonal form. Intel
MKL actually provides two interfaces to reduce the symmetric dense matrix to tridiagonal
form. The first corresponds to the optimized version of DSYTRD from LAPACK (MKL-
LAPACK) and the second one integrates the optimized version of the corresponding routine
named DSYRDD form the Successive Band Reduction toolbox (SBR) [7] (MKL-SBR). Fig-
ure 6.2 summarizes the experiments in Gflop/s. The number of flops used as a reference is
4/3n3, which is roughly the total number of flops for the tridiagonal reduction, since the D&C
eigensolver of a tridiagonal matrix is of order n2. All experiments have been performed on
16 cores with random matrices in double precision arithmetic. The performance results show
that the proposed TD&C symmetric eigensolver achieves up to 14X speed up compared to
the reference LAPACK implementation and up to 3X speed up as compared to the vendor
Intel MKL library.

The next sections describe a collection of different matrix types and compare our TD&C
symmetric eigensolver against D&C (DSTEDC) as well as other methods to compute the
eigenvalues of a symmetric dense matrix e.g., the bisection BI (DSTEVX), QR (DSTEV)
and MR (DSTEMR). For simplicity, we compare in the experiments shown in the next sec-
tions, our implementation with those four routines from the Intel MKL library, and skip the
comparison with the reference LAPACK library.

6.4. Description of the Matrix Collections. In this section, we present the different
matrix collections used during the extensive testing to get performance results (Section 6.5)
as well as the numerical accuracy analysis (Section 6.6). There are three matrix collections:

• The matrices from the first set represented in Table 6.1, are “synthetic testing ma-
trices” chosen to have extreme distributions of eigenvalues as well as other specific
properties that exhibit the strengths and weaknesses of a particular algorithm.

• The second set of matrices are “matrices with interesting properties”, which are
represented in Table 6.2. Those matrices will only be used for the accuracy analysis
in Section 6.6 since they are already in tridiagonal form.

• The third set are “practical matrices” which are based on a variety of practical ap-
plications, and thus are relevant to a large group of users. Some of these matrices
are described in Table 6.3.

More detailed information about these matrix collections can be found in [12, 13, 31].

6.5. Performance Comparisons with other Symmetric Eigensolver Implementations.

6.5.1. Understanding the Various Graphs. All experiments have been performed on
16 cores with matrix types from Table 6.1 and Table 6.3. The matrix sizes vary from 1000 up
to 24000 and the computation is done in double precision arithmetic. Our TD&C symmetric
eigensolver is compared against the bisection BI (DSTEVX), QR (DSTEV), MRRR or MR
(DSTEMR) as well as the D&C (DSTEDC) symmetric eigensolvers. Similarly to DSTEDC,
the other eigensolver implementations necessitate the matrix being reduced into tridiagonal
form using either the MKL LAPACK-implementation routine DSYTRD or the MKL SBR-
implementation routine DSYRDD.

There are two types of graphs: (1) speed up graphs obtained by computing the ratio
between the elapsed time of these four methods over the TD&C total execution time – in
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Type Description

Type 1 λ1 = 1, λi = 1
k , i = 2,3, · · ·n

Type 2 λi = 1, i = 2,3, · · ·n−1, λn = 1
k

Type 3 λi = k−( i−1
n−1 ), i = 2,3, · · ·n

Type 4 λi = 1− ( i−1
n−1 )(1− 1

k ), i = 2,3, · · ·n
Type 5 n random numbers in the range ( 1

k ,k), their logarithms are uniformly distributed
Type 6 n random numbers from a specified distribution
Type 7 λi = ul p× i, i = 2,3, · · ·n−1, λn = 1
Type 8 λi = ul p, λi = 1+ i×

√
ul p, i = 2,3, · · ·n−1, λn = 2

Type 9 λ1 = 1, λi = λi−1 +100×ul p, i = 2,3, · · ·n
TABLE 6.1

Synthetic testing matrices from LAPACK testing (Type 1-6) and from [13] (Type 7-9). Note that for distri-
butions of Type 1-5, the parameter k has been chosen to be equal to the machine precision ul p in double precision
arithmetic. We use the LAPACK routines DLATMS or DLAGSY to generate A = QDQT . Given the eigenvalues
λ , the dense matrix A is generated by multiplying D = diag(λ ) by an orthogonal matrix Q generated from random
entries.

Type Description
Type 10 (1,2,1) tridiagonal matrix
Type 11 Wilkinson-type tridiagonal matrix
Type 12 Clement-type tridiagonal matrix
Type 13 Legendre-type tridiagonal matrix
Type 14 Laguerre-type tridiagonal matrix
Type 15 Hermite-type tridiagonal matrix

TABLE 6.2
Matrices with interesting properties.

Type Description
Type 15 Matrices from application on quantum chemistry and electronic structure
Type 16 The bcsstruc1 set in Harwell-Boeing collection
Type 18 Matrices from Alemdar, NASA, and cannizzo, ... etc. sets in the University of Florida

TABLE 6.3
Matrices from real life applications.

other words, a “value t above 1” means that our TD&C is “tx faster” than the corresponding
algorithm and a “value t below 1” means that our TD&C is “tx slower” than the correspond-
ing algorithm and (2) performance graphs in Gflop/s, which show how much of the peak
performance the different symmetric eigensolvers are able to reach. Also, we note that the
number of flops used as a reference is 4/3n3. The color and symbol codes used for all plots
are as follows: BI curves are green, using “x”, QR curves are blue, using “*”, MR curves are
magenta using “�”, D&C curves are black, using “o”, and TD&C curves are red and are ei-
ther considered as a reference (speed up graphs) or use “o” to mark data points (performance
graphs).

6.5.2. Synthetic testing matrices (Table 6.1). Figure 6.3 and Figure 6.4 show respec-
tively the speed up and the performance in Gflop/s obtained by the TD&C symmetric eigen-
solver as compared to BI, QR, MR and D&C when the MKL LAPACK-implementation rou-
tine DSYTRD is used to reduce the first stage.
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FIG. 6.3. TD&C Speed up as compared to BI, QR, MR, and D&C for all synthetic testing matrices from
Table 6.1. For BI, QR, MR, and D&C, the MKL LAPACK-implementation routine DSYTRD is used to transform the
dense symmetric matrix A to tridiagonal.
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FIG. 6.4. TD&C Performance comparison in Gflop/s for all synthetic testing matrices from Table 6.1. For BI,
QR, MR, and D&C, the MKL LAPACK-implementation routine DSYTRD is used to transform the dense symmetric
matrix A to tridiagonal.
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Figure 6.5 and Figure 6.6 show respectively the speed up and the performance in Gflop/s
obtained by the TD&C symmetric eigensolver as compared to BI, QR, MR and D&C when
the MKL SBR-implementation routine DSYRDD is used to reduce the first stage.

The results show that the TD&C symmetric eigensolver algorithm performs better than
all other represented algorithms and for all synthetic testing matrices for n≥ 3000. The results
also indicate that the TD&C speed up ranges from 2x faster for matrices of size 3000 ≤ n ≤
10000 (27 Gflop/s) to 4x faster for matrices of size n ≥ 10000 (35 Gflop/s). For small matrix
sizes with n ≤ 3000, TD&C runs slower than the other eigensolvers. It is clear, from the
algorithmic complexity study in Section 4.5, that our TD&C algorithm requires 4/3n3 +
6b2n2 flops, which for example, for a b = 20 and n = 3000 means 4/3n3 + 2400n2 u 2n3

flops, while the other algorithms roughly perform 4/3n3 flops.
On the other hand, BI seems to be the slowest algorithm for computing eigenvalues

although its efficiency mostly depends on the distribution of the eigenvalues. Indeed, for
matrices with strongly clustered eigenvalues (e.g., type 2), BI performance is comparable
with the other symmetric eigensolver methods.

Furthermore, the TD&C symmetric eigensolver is able to take full advantage of a situa-
tion where a significant amount of deflations occurs for special matrices of type 1 and type 2.
By avoiding unnecessary calculations especially in the amalgamation phase thanks to defla-
tions, the TD&C runs even at higher performance. This is also emphasized in Table 6.4 and
Table 6.5. These tables report the detailed execution time to compute all eigenvalues with BI,
QR, MR, D&C and TD&C using matrices of type 2 and type 6, respectively. While a type 6
matrix represents the worst case scenario for the TD&C symmetric eigensolver in which less
than 2% of deflations happen, a type 2 matrix corresponds to a matrix where a considerable
amount of deflation occurs.

Matrix MKL SBR tridiag DSYRDD + MKL LAPACK tridiag DSYTRD + TD&C
size BI QR MR D&C BI QR MR D&C
2000 1.6 1.7 1.8 1.6 0.8 0.8 0.9 0.7 1.7
3000 5.0 5.2 5.4 5.0 4.0 4.0 4.3 3.9 3.3
4000 11 11 12 11 10 10 10 10 6.6
5000 20 20 21 20 19 19 20 19 9.5
6000 33 33 34 33 34 34 35 33 14
7000 50 50 52 50 51 51 53 50 20
8000 71 72 74 71 77 77 79 76 28
9000 95 96 99 95 105 105 107 103 37

10000 127 129 132 127 144 144 147 142 49
12000 209 211 215 209 244 244 249 242 80
14000 315 318 324 315 386 386 392 383 121
16000 446 449 458 446 570 570 578 566 175
18000 616 620 631 616 798 798 809 794 237
20000 820 825 838 820 1068 1068 1080 1062 324
22000 1054 1062 1074 1054 1417 1417 1430 1410 421
24000 1339 1345 1362 1337 1878 1878 1896 1870 553

TABLE 6.4
Elapsed time in seconds for computing all eigenvalues of matrices with strongly clustered eigenvalues (type 2),

when varying the size from 2000 to 24000.

The band D&C considerably performs less flops in the latter case and thus, it runs more
than twice as fast as when no deflations take place. For example, for a matrix of size n =
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FIG. 6.5. TD&C Speed up as compared to BI, QR, MR, and D&C for all synthetic testing matrices from
Table 6.1. For BI, QR, MR, and D&C, the MKL SBR-implementation routine DSYRDD is used to transform the
dense symmetric matrix A to tridiagonal.
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FIG. 6.6. TD&C Performance comparison in Gflop/s for all synthetic testing matrices from Table 6.1. For BI,
QR, MR, and D&C, the MKL SBR-implementation routine DSYRDD is used to transform the dense symmetric matrix
A to tridiagonal.
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16000, the reduction to band form requires 145 seconds. The band D&C phase with lots of
deflations requires 30 seconds instead of 74 seconds when no deflations occur, giving a total
execution time of 175 seconds (see Table 6.4) and 219 seconds (see Table 6.5), respectively
(1.3X overall speed up).

From a global point of view, the elapsed time and the performance results of the other
methods (BI, QR, MR and D&C) are very similar to one another. In addition to that, in
the presence of deflation, D&C has only improved relatively compared to TD&C. Therefore,
once again, it is important to mention that when only eigenvalues are computed, BI, QR,
MR and D&C count only for O(n2) on the overall algorithm complexity and the leading
term corresponding to the tridiagonal reduction phase is about 4/3n3. The time spent in this
reduction phase can be as high as 90% of the total execution time when only eigenvalues are
needed but more than 50% when eigenvectors are to be computed. Thus, no matter how D&C
or the other methods get improved, the impact on the overall algorithm performance is rather
negligible for large matrix sizes.

6.5.3. Practical matrices (Table 6.3). The most important testing matrices are perhaps
those, which come from real applications. Figure 6.7 and Figure 6.8 draw respectively the
speed up and the performance in Gflop/s obtained by the TD&C symmetric eigensolver as
compared to BI, QR, MR and D&C for a set of more than 100 matrices arising in different
scientific and engineering areas. Similarly to synthetic testing matrices, the TD&C symmetric
eigensolver algorithm out-performs all the other symmetric eigensolvers, between two to
three times faster, and achieves up to 36 Gflop/s.

6.6. Accuracy Analysis. This section is dedicated to the analysis of the TD&C sym-
metric eigensolver accuracy as compared to the other four symmetric eigensolvers: QR, BI,
MR and D&C.

Matrix MKL SBR tridiag DSYRDD + MKL LAPACK tridiag DSYTRD + TD&C
size BI QR MR D&C BI QR MR D&C
2000 3.9 1.8 1.9 2.1 3.0 0.9 1.0 1.2 2.1
3000 10 5.3 5.6 6.1 9.0 4.2 4.5 4.9 4.3
4000 20 11 12 13 19 10 11 11 7.8
5000 34 21 22 23 33 20 21 22 13
6000 53 34 35 37 53 34 36 37 19
7000 77 51 53 55 77 52 54 56 27
8000 106 73 75 78 111 79 81 84 38
9000 139 98 100 104 148 106 109 113 49

10000 181 131 134 138 196 146 149 153 66
12000 287 214 218 224 320 247 252 258 104
14000 420 322 328 337 493 395 401 410 154
16000 583 454 462 474 701 573 581 593 219
18000 786 626 636 651 965 804 814 829 297
20000 1031 833 845 863 1272 1074 1086 1104 394
22000 1307 1070 1084 1105 1663 1425 1440 1461 507
24000 1639 1355 1372 1397 2172 1888 1906 1930 648

TABLE 6.5
Elapsed time in seconds for computing all eigenvalues of matrices with uniform eigenvalue distributions

(type 6), when varying the size from 2000 to 24000.
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FIG. 6.7. Timings comparison for practical matrices. The tridiagonalisation has been done either by the
MKL-SBR (left) or by the MKL-LAPACK (right).
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FIG. 6.8. Performance comparison for practical matrices. The tridiagonalisation has been done either by the
MKL-SBR (left) or by the MKL-LAPACK (right).

6.6.1. Metric Definitions. For a given symmetric matrix B, computed eigenvectors
Q = [q1,q2, · · · ,qn] and their corresponding eigenvalues Λ = diag(λ1,λ2, · · · ,λn) we use the
following accuracy tests by using the LAPACK testing routines (DLANSY, DSTT21 for
tridiagonal and DSYT21 for dense symmetric):

‖I−QQT‖
n×ul p

(6.1)

which measures the orthogonality of the computed eigenvectors, and

‖B−QΛQT‖
‖B‖n×ul p

(6.2)

which measures the accuracy of the computed eigenpairs, and

‖λi−δi‖
‖λi‖×ul p

(6.3)

which measures the accuracy of the computed eigenvalues compared to the reference eigen-
value δ which are the exact eigenvalues (analytically known) or the ones computed by the
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QR iteration routine using LAPACK (DSTEV). The value ul p represents the machine preci-
sion computed by the LAPACK subroutine DLAMCH. Its value on the Intel Xeon where the
accuracy experiments were conducted is equal to 2.220446049259313E-16.

For most of the tests presented here, the original matrix is either generated from a mul-
tiplication of a given diagonal eigenvalue matrix by an orthogonal matrix or given directly
as a symmetric matrix. Then, for the standard algorithms (QR, BI, MR and D&C), the sym-
metric dense matrix is first reduced to tridiagonal form using the DSYTRD routine and then
solved using one of the algorithms cited above. While for our TD&C symmetric eigensolver,
the original matrix is reduced to band form, and then solved using the band D&C method
according to the approach described in this paper. Therefore, the matrix B considered in
the metrics (6.1), (6.2), (6.3), is either tridiagonal obtained from DSYTRD routine or band
tridiagonal obtained from our TD&C symmetric eigensolver.

Type Residual (6.1) orthogonality (6.2) eigenvalue (6.3)
QR BI MR D&C TD&C QR BI MR D&C TD&C QR BI MR D&C TD&C

Type 1 .001 .001 .001 .001 .001 .64 .01 20 .16 .10 6 4 9 5 9
Type 2 .48 .05 18.8 .275 .112 .42 .02 27 .16 .36 86 31 58 31 42
Type 3 .13 .02 1.35 .055 .083 .67 .27 157 .32 1.0 52 23 24 24 26
Type 4 .62 .28 7.62 .570 .571 .89 .36 47 .77 1.3 17 14 12 12 14
Type 5 .09 .02 5.52 .101 .129 .59 .36 87 .21 .96 20 20 19 18 22
Type 6 .60 .38 45.7 .528 1.02 .83 .33 132 .73 1.6 28 27 28 28 29
Type 7 .001 .38 .003 .001 .439 .93 .10 21 .15 .39 4 2 8 4 5
Type 8 .40 .15 10.5 .196 .723 .83 .34 23 .43 1.6 18 17 17 16 17
Type 9 .81 .34 44.7 .128 .955 .74 .33 45 .12 .94 40 37 37 37 39

TABLE 6.6
Summary of accuracy results observed on testing matrices from LAPACK and [13].
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FIG. 6.9. Summary of accuracy results observed on matrices from Table 6.2 and Table 6.3.

6.6.2. Accuracy Evaluations. Table 6.6 presents the results obtained using the accu-
racy metrics defined above, for all sets of the testing matrices described in the subsection 6.4.
Our TD&C symmetric eigensolver provides the three metrics with the same order of magni-
tude as compared to the other eigensolvers.

Figure 6.9 and Figure 6.10 depict the maximal residual norm (6.1) and the losses of
orthogonality (6.2) for practical and interesting matrix categories and synthetic testing matrix
type, respectively. These figures allow the study of the errors with respect to the matrix size
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n. The error of our TD&C symmetric eigensolver decreases when n increases, similarly to
QR and D&C eigensolvers. The observed accuracy is of order of O(

√
nε). However, it is

clear that MR and BI do not achieve the same level of accuracy as QR, D&C and TD&C.
Finally, after measuring the residual norms (Eq 6.1), the eigenvector orthogonality (Eq 6.2)
and the eigenvalue accuracy (Eq 6.3), our TD&C framework is one of the most accurate
symmetric eigensolver algorithms which gives us a certain confidence on the quality of the
overall TD&C symmetric eigensolver presented in this paper.
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FIG. 6.10. Summary of accuracy results observed on synthetic testing matrices from Table 6.1.

7. Summary and Future Work. The Tile Divide and Conquer symmetric eigensolver
(TD&C) presented in this paper shows very promising results in terms of performance on
multicore architecture as well as in terms of numerical accuracy. TD&C has been extensively
tested using different matrix types against other well-known symmetric eigensolvers such
as the QR iteration (QR), the bisection (BI), the standard divide and conquer (D&C), and
the multiple relatively robust representations (MRRR). The performance results obtained for
large matrix sizes and certain matrix types are very impressive. The proposed TD&C sym-
metric eigensolver reaches up to 14X speed up compared to the state-of-the-art numerical
open source library LAPACK V3.2 and up to 4X speed up against the commercial numer-
ical library Intel MKL V10.2. Our TD&C symmetric eigensolver also proves to be one of
the most accurate symmetric eigensolvers available. The authors plan to eventually integrate
this symmetric eigensolver within the PLASMA library [39]. The authors are also currently
looking at the eigenvector calculations. Although the TD&C symmetric eigensolver is not
really appropriate for that purpose, a possible hardware solution to overcome this bottleneck
would be the use of an accelerator such as a GPU, which could substantially improve the
overall performance in a case when the eigenvectors are required. A software solution would
potentially be the inverse iteration method in which the eigenvectors are computed from the
eigenvalues using an iterative algorithm.
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