
Energy Footprint of Advanced Dense Numerical Linear Algebra
using Tile Algorithms on Multicore Architecture

Jack Dongarra∗†‡¶, Hatem Ltaief§, Piotr Luszczek∗, and Vincent M. Weaver∗

∗Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA
†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

‡School of Mathematics & School of Computer Science, University of Manchester
¶Research reported here was partially supported by the National Science Foundation and Microsoft Research.

Email: dongarra,luszczek,vweaver1@eecs.utk.edu

§KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia
Email: Hatem.Ltaief@kaust.edu.sa

Abstract—We propose to study the impact on the energy
footprint of two advanced algorithmic strategies in the context
of high performance dense linear algebra libraries: (1) mixed
precision algorithms with iterative refinement allow to run
at the peak performance of single precision floating-point
arithmetic while achieving double precision accuracy and
(2) tree reduction technique exposes more parallelism when
factorizing tall and skinny matrices for solving overdetermined
systems of linear equations or calculating the singular value
decomposition. Integrated within the PLASMA library using
tile algorithms, which will eventually supersede the block
algorithms from LAPACK, both strategies further excel in
performance in the presence of a dynamic task scheduler
while targeting multicore architecture. Energy consumption
measurements are reported along with parallel performance
numbers on a dual-socket quad-core Intel Xeon as well as a
quad-socket quad-core Intel Sandy Bridge chip, both providing
component-based energy monitoring at all levels of the system,
through the PowerPack framework and the Running Average
Power Limit model, respectively.

Keywords-Power Consumption, Dense Linear Algebra,
Mixed Precision Algorithms, Tree Reduction, Tile Algorithms,
Dynamic Scheduling, PowerPack, RAPL

INTRODUCTION

The K computer achieves more than 10 Pflop/s with over
half a million of cores and most importantly, consumes over
12 MW. The roadmap to exascale [1] lays out the future
exascale system by the end of this decade, achieving 1018

floating point operations per second with a 20 MegaWatt
power consumption. This is a formidable challenge: gain-
ing three order of magnitude in performance compared to
today’s systems while doubling the power consumption by
a factor of two. This challenge arises from the fact that
incremental evolution in today’s computer systems will not
allow to reach exascale systems within a reasonable power
budget envelope. Even with technology scaling and the
emergence of next generation low frequency cores (GPUs,
ARM, BlueGene/Q, etc.), further shrinking the observed

power gap appears to be a major obstacle to achieve an
exascale system at reasonable power requirements. While
hardware architecture components are attaining the limit of
the physics, the burden has turned back to the software
community to help in designing new power-aware high
performance numerical methods. These new algorithms need
essentially to shorten the time-to-solution metric of an
application as much as possible.

This is in this context that the dense linear algebra
community started couple years ago to revisit the stan-
dard block algorithms as implemented in LAPACK [2], a
widely-accepted numerical library which provides solvers
for systems of linear equations, eigenvalue problems and
singular value decompositions. Two main numerical libraries
were created PLASMA [3] and FLAME [4] to undergo
this major redesign. The core ideas are threefold: increasing
fine-grained parallelism using tile algorithms, reducing data
motion and driving the execution using a dynamic runtime
system. The ultimate goal is to eliminate the LAPACK
overheads engendered by the artifactual synchronization
points, located between the different computational stages.In
a previous work from some of the authors [5], the power
efficiency study of the standard factorizations and reductions
has been performed and has permitted to highlight the
impact on energy consumption of the various algorithmic
stages in the corresponding functions from LAPACK as well
as PLASMA. In this paper, we propose to extend the energy
footprint of this class of algorithms to a more advanced
category based on tree reduction techniques first introduced
in [6] and mixed precision solvers with iterative refinement
mechanism, described first in [7]. Both techniques have been
integrated in the PLASMA library using tile algorithms.
While the tree reduction strategy increases the degree of
parallelism, exposing more fine-grained tasks to the dy-
namic scheduler, the mixed precision solvers with iterative
refinement run at the rate of single precision arithmetic

while getting the solution accuracy at double precision
arithmetic. To monitor and collect the power data, we used
PowerPack [8], a home-brewed framework from Virginia
Tech on a dual-socket quad-core Intel Xeon, and the RAPL
(Running Average Power Limit) model [9] associated with
PAPI [10], [11] on a dual-socket eight-core Intel Sandy
Bridge chip.

The remainder of this paper is organized as follows. Sec-
tion I gives a detailed overview of previous research works
in this area. Section II describes the fundamental principles
of mixed precision solvers with iterative refinement and
tree reduction techniques. Section III recalls the concepts of
block and tile algorithms within LAPACK and PLASMA,
respectively. Section IV highlights the experimental envi-
ronment in terms of hardware and software settings and
performance numbers are reported in Section V. Section VI
demonstrates the impact of both numerical techniques on
power consumption. Section VII outlines the result inter-
pretations and correlates parallel performance with energy
efficiency. Finally, Section VIII summarizes the results of
this paper and presents some future work.

I. RELATED WORK

As mentioned in the introduction, our previous work pro-
vided a similar analysis of energy efficiency of various im-
plementations of commonly used linear algebra solvers [5].
Here, we extend this study to include less commonly used
numerical algorithms and also add power profiles based
on Intel’s RAPL technology that allows to measure energy
seamlessly by using hardware counter technology available
on Intel Sand Bridge line of multicore processors.

Dense linear algebra solvers were first to benefit from the
mixed-precision iterative refinement algorithm [12]. Mixed
precisions techniques are also used for further approximating
contributions from farther particles in the context of fast
multipole methods as well as LQCD computation [13],
resulting in speeding up the computation while reducing
memory traffic. Moreover, tree reduction techniques were
naturally identified as a way to increase concurrency while
reducing data motion on multicore architecture [14]–[16]. In
this work, we present detailed power analysis of these mixed
precision and tree reduction codes.

Furthermore, the use of mixed precision iterative refine-
ment for sparse matrix problems [17] has lead to interesting
conclusions in terms of energy efficiency and power con-
sumption [18], [19]. We dive into these issues in this paper
by studying in detail dense linear algebra solvers that feature
mixed precision iterative refinement technique [12], [20].

A number of energy metrics have been proposed [21] and
we believe that this study will be helpful in comparing these
metrics in an accurate way based on the optimized numerical
techniques aforementioned.

Last but not least, a comparative study of energy con-
sumption by commodity hardware benchmarks and con-

sumer games [9] complements our study presented here. We
refer the reader to the vendor analysis [9] for a more detailed
description of Running Average Power Level (RAPL) from
Intel and, instead, we mainly turn our focus on various dense
linear algebra solvers.

II. BACKGROUND

This Section recalls the fundamental principles of mixed
precision solvers with iterative refinement and tree reduction
based algorithms. The goal of both algorithmic optimizations
is to eventually speed up the numerical solver.

Mixed Precision Solvers with Iterative Refinement.
Mixed precision solvers are ubiquitous numerical algorithms
for solving systems of linear equations. Let us say we want
to solve the system Ax = b, where A is the matrix, b the
right hand side and x the corresponding vector solution.
There are two steps to calculate the final solution. The matrix
A is first reduced using the LU factorization (A = LU),
respectively (L and U are triangular matrices). This step is
performed in single precision arithmetic. Once factorized,
two triangular solves are applied (i.e., forward and backward
substitution) again in single precision arithmetic. Secondly,
the corresponding residual is computed in double precision
arithmetic and the iterative refinement procedure can initiate
until the appropriate accuracy has been reached. While
the first step is compute intensive (O(n3)) and represents
the bulk of the computation, the second step is memory
bound (depending on the size of the right side b) and
counts for (O(n2)). Depending on the conditioning of the
original matrix, the iterative refinement may not converge
to the desired solution accuracy. Further details on the error
analysis and the error bounds are available in [7], [22].

Tree Reduction Algorithms. Tree reduction is a numeri-
cal mechanism used to break a sequence of successive tasks
in order to expose more parallelism. This may require the
implementation of new kernels. The list of successive tasks
can now be expressed through a bottom-up tree reduction,
where at each level of the tree, the contributions from
each leaf are merged until the final result is obtained at
the top of the tree. This turns out to be critical when
solving overdetermined systems of equations using the QR
factorization, in which the matrix describing the numerical
problem is tall-and-skinny [6], [14]–[16]. The matrix is
split into sub-blocks, in which a local QR factorization is
performed. Then, the tree reduction algorithm computes the
final factors after successive merging steps. Therefore, due
to the matrix shape, introducing a tree reduction strategy
allows to substantially increase the level of concurrency.

III. FROM BLOCK TO TILE ALGORITHMS

This section recalls the essence of block and tile algo-
rithms and describes how the block algorithmic versions of
mixed precision solvers and tree reduction based factoriza-
tions (as implemented in LAPACK) had to be reformulated

into tile algorithms (as implemented in PLASMA) to effec-
tively exploit parallelism from multicore architectures.

Fundamental Principles of Block Algorithms. The
block algorithms implemented in LAPACK leverage the idea
of blocking to limit the amount of bus traffic in favor of a
high reuse of the data that is present in the higher level
memories which are also the fastest ones. Block algorithms
are characterized by two successive phases: panel factoriza-
tion and update of the trailing submatrix. During the panel
factorization, the transformations are only applied within the
panel. The panel factorization is very rich in Level 2 BLAS
operations because the transformations are singly applied.
Once accumulated within the panel, those transformations
are applied to the rest of the matrix (the trailing submatrix)
in a blocking manner leading to Level 3 BLAS operations.
The idea of blocking revolves around an important property
of Level-3 BLAS operations, the so called surface-to-volume
property, that states that O(n3) floating point operations are
performed on O(n2) data. Because of this property, Level-3
BLAS operations can be implemented in such a way that
data movement is limited and reuse of data in the cache is
maximized. Blocking algorithms consists in recasting linear
algebra algorithms in a way that only a negligible part of
computations is done in Level-2 BLAS operations (where no
data reuse possible) while the most part is done in Level-3
BLAS. Last but not least, the parallelism within LAPACK
occurs only at the level of the BLAS routines, which follows
the expensive fork-join model. Basically, all processing units
need to synchronize before and after each call to BLAS
kernels.

Fundamental Principles of Tile Algorithms. The core
idea of tile algorithms is to transform the original matrix
stored in column-major data layout to tile data layout (TDL)
where each data tile is contiguous in memory.This may
demand a complete reshaping of the standard numerical
algorithm. The panel factorization as well as the update of
the trailing submatrix are then decomposed into several fine-
grained tasks, which better fit the memory of the small core
caches. The parallelism is then no longer hidden inside the
BLAS routines but rather is brought to the fore. The whole
computation can then be represented with a directed acyclic
graph (DAG), where nodes are computational tasks and
edges represent the data dependencies among them. Next, it
becomes critical to efficiently schedule the sequential fine-
grained tasks across the processing units. The dynamic run-
time environment system QUARK [23] is used to distribute
the tasks as soon as the data dependencies are satisfied.

Mixed Precision Solvers and Tree Reduction Tech-
niques using Tile Algorithms. Once the necessary kernels
developed, expressing both numerical techniques using tile
algorithms was a trivial task, thanks to the high produc-
tivity provided by the dynamic runtime system [15], [16],
[24]. Moreover, QUARK was able to exploit the lookahead
opportunities popping up during the single precision LU

factorization of the mixed precision solvers. It also initiates
the computation of the next tree level while the previous
one is still under processing. The original synchronization
points seen in the LAPACK library between the panel and
update phases of the factorization become now obsolete and
are safely removed, leaving the execution dataflow proceeds
smoothly.

The next Section describes the experimental environment
used to perform the parallel performance as well as the
power profiling of mixed precision solvers with iterative
refinement and tree reduction algorithms using block and
tile algorithms.

IV. EXPERIMENTAL SETTING

This Section describes the experimental environment com-
posed of computer systems, software libraries and tools for
power data collection.
Machine Descriptions. We have conducted our performance
and power measurements on two shared-memory platforms.
The first machine is a dual-socket quad-core Intel Xeon
system from Virginia Tech, clocked at 2.8GHz with 8GB of
memory. The second system is an Intel Sandy Bridge pro-
cessor with 8 cores, model Xeon R© E5-2690 with nominal
frequency 2.90 GHz and Turbo Boost 2.0 technology. The
motherboard featured two sockets for a total of 16 cores.
Software Environment. On the tested systems, we used
Intel compilers and Intel MKL (Math Kernel Library) BLAS
version dated 2011.3.174. The LAPACK V3.2 and PLASMA
V2.4 libraries have been tuned and compiled against MKL
BLAS. The testing matrices are all randomly generated. In
the dense mixed precision solver tests, the system matrix
size is of 20000 and only a single right-hand side is used
for all experiments. The code performs two iterations in
the iterative refinement stage of the algorithm. In the tree
reduction experimentations, the tall-and-skinny matrices are
of size 1152000 by 288 in order to provide significant
insight.
Power Collection Infrastructures. We measured the power
consumption of our numerical algorithms using two frame-
works: PowerPack and RAPL associated with PAPI.

PowerPack. PowerPack [8] provides power profiling in-
formation for advanced execution systems. The PowerPack
frameworkis a collection of software components, includ-
ing libraries and APIs. Together, they enable system and
component-level power profiling correlated to application
functions. The correlation of various measurements that
happen at different sampling rates (average of 100 ms) are
performed out-of-band on a dedicated computer. PowerPack
obtains measurements from power meters attached to the
hardware of the system by intercepting all available con-
nections from the power supply to the system units on the
motherboard. As multicore systems evolve, the framework
can be used to indicate the application parameters and the
system components that affect the power consumption on

the multicore unit. PowerPack allows the user to obtain di-
rect measurements of the major system components’ power
consumption, including the CPU, memory, hard disk, and
motherboard. This fine-grain measurement allows power
consumption to be measured on a per-component basis.

PAPI RAPL. On the other hand, the PAPI RAPL counter
monitor [25] should be considered as an in-band measure-
ment tool with an adjustable sampling rate that we set to
100 ms to match PowerPack as closely as possible. Because
PowerPack requires physical modification of the monitored
hardware,it was too complicated for us to install it inside
a single system that features RAPL. Instead, we rely on
the comparison performed by Intel that testify to the close
match between physical power measurements and RAPL on
a wide range of benchmarks [9]. We add to this set of tested
codes our own tuned implementations of dense linear algebra
solvers.

The next Section highlights the power profiling of block
and tile algorithms.

V. PERFORMANCE RESULTS

We refrain from publishing a comprehensive set of per-
formance charts for the LU factorizations as we have done
elsewhere [26]. Figure 1 shows the achieved performance

Cores Library Performance

8 LAPACK SP 110.8 DP 89.4 MIX 92.9
PLASMA SP 143.2 DP 73.61 MIX 126.4

16 LAPACK SP 393.4 DP 214.9 MIX 305.9
PLASMA SP 613.5 DP 302.8 MIX 537.4

Figure 1. Asymptotic performance in Gflop/s of mixed precision solvers.

of mixed precision solvers with iterative refinement on both
systems for non-symmetric matrices (LU). The mixed pre-
cision solvers from PLASMA is more more than 30% faster
for LU-based compared to LAPACK on the dual-socket
quad-core system. On the Intel Sandy Bridge machine, the
mixed precision solvers from PLASMA is more than 1.75X
faster for LU-based compared to LAPACK using the total of
16 cores. The next Section focusses on a detailed study of
temporal energy and power characteristics. To the best of our
knowledge, it is the first such comprehensive study in the
context of these advanced dense linear algebra algorithms
reported using PowerPack and RAPL.

VI. POWER PROFILING AND RESULT INTERPRETATIONS

This Section presents the power profiles of tree reduc-
tion based QR factorization and LU-based mixed precision
solvers with iterative refinement.

Power Profiling of Communication-Reducing Algo-
rithms. Figure 2 shows four graphs drawing the power rate
of the standard QR factorization on a tall-and-skinny matrix
size of 1152000 by 288 using the dual-socket quad-core
Intel Xeon system from Virginia Tech. Figure 2(a) shows

the LAPACK version. The pics and dips are representative
of the panels and updates computational stages. Lots of
pressure is put on the memory bus due to the high number of
level 2 BLAS operations happening for such matrix shape.
Moreover, the degree of parallelism is hindered by the block
algorithms, in which parallelism happens only at the BLAS
call level. Figure 2(b) pictures the vendor version of the
QR factorization on the same matrix. The power rate curves
are smoothed, probably by a better memory usage, which
reduces data movement. The elapsed time is reduced roughly
by 50% compared to the LAPACK version. Figure 2(c)
introduces the PLASMA implementation of the QR fac-
torization using tile algorithms. The tile data layout allows
for a better cache usage. The initialization of the matrix is
performed in parallel which explains the high power rate
in the beginning of the CPU curve. Although the degree of
parallelism is still limited by the successive tasks, the elapsed
time is yet reduced by more than 50% compared to the
vendor version. Figure 2(d) shows the impact on the power
rate when the tree reduction technique is integrated. This
generates a tremendous amount of parallel tasks, especially
during the merging steps of the tree reduction. In fact, the
CPU curve reaches the highest power rate when compared
with the previous implementations. The elapsed time is again
reduced by 50%, compared to the tile QR factorization from
PLASMA. Similar power rate curves can be generated using
RAPL procedure on the Intel Sandy Bridge machine.

Power Profiling of Mixed Precision Solvers with It-
erative Refinement. In this Section, we study the mixed
precisions solvers with iterative refinement using LU factor-
izations (non-symmetric matrix). Figures 3 and 4 highlight
the power profile generated through PowerPack using the
LAPACK and PLASMA implementations, respectively. The
CPU and memory power rate variations are removed in
the corresponding PLASMA power profiles due to a better
memory reuse. In fact, the PLASMA CPU power curve is
higher than the LAPACK one because the dynamic runtime
QUARK tries to utilize as much as possible the available
cores. The single precision power curves in Figures 3(a) 4(a)
are about half those of double precisions in Figures 3(b) 4(b).
Similar remarks can be done for the power profiles gen-
erated through RAPL on the Intel Sandy Bridge system
with regards to single and double precision arithmetics (see
Figures 5 and 6). Figures 3(c), 4(c), 5(c), 6(c) show the
profiles of the mixed-precision algorithms [12], [17], [20],
[27], [28]. Each of them contains the stage of a standard
dense factorization stage followed by an iterative refinement
stage that brings the desired accuracy to the solution. This
is clearly visible as the power consumption pattern at the
end of the graphs from these figures. The power draw by
the CPU drops appreciatively while the energy consumption
related to the main memory increases. Even if we only look
at the memory controller as is the limitation for the RAPL
measurements.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(a) Single precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(b) Double precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(c) Mixed precision solver.

Figure 3. Power Profiling of LAPACK LU Factorization with PowerPack.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(a) Single precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(b) Double precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(c) Mixed precision solver.

Figure 4. Power Profiling of PLASMA LU Factorization with PowerPack.

VII. POWERPACK/RAPL QUALITATIVE COMPARISONS

Our intention is to obtain a comparative perspective on the
results between the system with the PowerPack installation
and an Intel Sandy Bridge system capable of RAPL diag-
nostics. For our experiments, we have created a software
monitoring tool [25] that matches closely the available
sampling rate of the standard PowerPack installation that we
used for our PowerPack experiments. Internally, the average
sampling rate is higher for RAPL [9] but purposefully limit
it to match the average rate of PowerPack and achieve as
close as possible correspondence between the tested system.
The limiting factor for RAPL’s sampling rate is delay of
transitions between power states, thermal inertia of sensing
infrastructure, and the need for synchronization between
internal hardware counters that are used for measuring
energy consumption of a chip. PowerPack on the other
hand, has to correlate in time multiple sources of power
readings that have varying sampling rates. In our multiple
experiments, the average sampling rate of PowerPack was
about 100 ms which was subsequently chosen for our RAPL
monitoring tool. As can be seen in the power consumption
figures, this sampling rate was sufficient to show important

transitions undergone by the dense linear solvers that we
have tested. In fact, both measuring techniques offer similar
level of detail as proven by the general shape of power
curves in the presented Figures. In its core, Intel RAPL is an
energy model implemented in hardware with high degree of
accuracy [9]. One practical consequence of this is fairly large
variability around the power-draw’s steady state as well as
downward shift of average power reported by the counters.
This can be seen as multiple horizontal ledges in Figure 6(b)
which are not present in the corresponding measurement
performed with PowerPack and shown in Figure 4(b). It
may be explained by the way that RAPL the model adapts
to the internal measurements with the Exponential Weighted
Moving Average algorithm [9], which makes it more sensi-
tive to power fluctuations. One obvious drawback of Intel’s
RAPL is lack of power measurements for the main memory
DIMMs. In Figures 5 and 6, the curves labelled “DRAM”
report only the power drawn by the memory controller inside
the processor chip – the actual power fed into the main
memory DIMMs is not included in the measurement. Need-
less to say, this is an issue because power consumption for
the main memory DIMMs is quickly becoming a substantial
portion of the energy budget of a modern and future HPC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(a) Single precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(b) Double precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(c) Mixed precision solver.

Figure 5. Power Profiling of LAPACK LU Factorization with RAPL.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(a) Single precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(b) Double precision solver.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

All of Socket 0
All of Socket 1

Cores in Socket 0
Cores in Socket 1
Uncore Socket 0
Uncore Socket 1
DRAM Socket 0
DRAM Socket 1

(c) SP-DP.

Figure 6. Power Profiling of PLASMA LU Factorization with RAPL.

systems [29]. And this large energy consumption may easily
be seen by the area below main memory curves from the
PowerPack installation as indicated in Figures 3 and 4.
Just as PAPI have become an indispensable performance
evaluation tool, RAPL could be regarded as yet another
aide performance monitoring tools. By showing a compound
reading of multiple counters at once, RAPL avoids the
limitation of having only few counters available and the
associated problems of counter multiplexing. If a given
algorithm and its implementation are believed to be optimal,
then saving energy consumption requires minimizing the
execution time. Under such assumptions and with maximum
possible power-draw, RAPL indication of consumed energy
may be viewed as a gauge of sufficient performance level. If
not enough energy is consumed, it could be easily deduced
that the performance level measured, say, in Tflop/s, is not
satisfactory. This argument is easily obtained by following
the internal implementation of the RAPL algorithm and the
energy model it is based on [9]. In years to come, this might
not be the case as the users received more comprehensive
tools to gauge energy consumption of the chip. In the future,
RAPL might offer even finer resolution and the performance
monitoring tools will adapt to include first class support

for it. This will allow a more energy cognizant application
tuning and monitoring. We believe that understanding appli-
cation energy needs and its overall power profile will enrich
the understanding of critical portions of scientific codes
and give complementing perspective on performance and
time to solution of computationally intensive applications.
In the end, we hope it will have offered a helping hand in
addressing software challenges at ExaScale [30].

VIII. SUMMARY AND FUTURE DIRECTIONS

We have presented comparison of measurement tech-
niques for detailed energy consumption and power profiles.
We have used some more advanced and less commonly used
routines for efficiently solving systems of linear equations.
Our finding indicates that RAPL offers a viable alternative
to physical power meters for the tested algorithms. The only
drawback we observe is lack of interfaces that would allow
measuring the energy consumption of the main memory
as RAPL only offers counters related to the operation
of the main memory controller. We would like also to
experiment Dynamic Voltage Frequency Scaling (DVFS)
and assess its impact on the overall application perfor-
mance. A very promising future direction is to use NVIDIA

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(a) LAPACK with multithreaded BLAS.

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(b) MKL with multithreaded BLAS.

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(c) PLASMA with sequential BLAS.

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

CPU
Memory

Disk
Motherboard

(d) PLASMA Tree Reduction with sequential BLAS.

Figure 2. Power Profiling of QR Factorization with PowerPack on a tall-
and-skinny matrix using eight cores.

Management Library: Recent NVIDIA GPUs can report
power usage via the NVIDIA Management Library (NVML)
[31]. The nvmlDeviceGetPowerUsage() routine ex-
ports the current power; on Fermi C2075 GPUs it has milli-
watt resolution within ±5W and is updated at its sampling
rate is roughly 60Hz. The power reported is that for the
entire board, including the GPU and memory. We would also
like to extend our work to distributed memory environment
whereby a comprehensive view of energy efficiency may be
obtained for large scale clusters. This, combined with energy
information from the interconnect, will be the subject of our
future investigation of the distributed memory versions of the
solvers we tested in this current paper. Finally, RAPL has
been designed not just for monitoring instantaneous energy

consumption but also for capping the total energy and power
at the software level. In this regard it is somewhat similar to
Dynamic Frequency and Voltage Scaling (DFVS) – initially
only available on mobile versions of processors and now
a main stay on the server editions of multicore chips. We
would like to look into comparing effects of DVFS with that
of RAPL on the platforms that features these technologies
side by side.

REFERENCES

[1] J. Dongarra and P. e. a. Beckman, “The international exascale
software project roadmap,” University of Tennessee EECS
Technical Report, Tech. Rep. UT-CS-10-654, May 30 2010.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
3rd ed. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1999.

[3] PLASMA Users’ Guide, Parallel Linear Algebra Software
for Multicore Architectures, Version 2.4.5, University of Ten-
nessee Knoxville, University of Tennessee Knoxville, Novem-
ber 2011.

[4] F. G. V. Zee, E. Chan, and R. A. van de Geijn, “libflame,”
in Encyclopedia of Parallel Computing, D. A. Padua,
Ed. Springer, 2011, pp. 1010–1014. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-09766-4

[5] H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling High
Performance Dense Linear Algebra Algorithms on Multicore
Architectures for Power and Energy Efficiency,” in EnA-HPC
2011: Second International Conference on Energy-Aware
High Performance Computing, Hamburg, Germany, Sept 7-
9 2011.

[6] A. Pothen and P. Raghavan, “Distributed orthogonal factoriza-
tion: Givens and Householder algorithms,” SIAM Journal on
Scientific and Statistical Computing, vol. 10, pp. 1113–1134,
1989.

[7] C. B. Moler, “Iterative refinement in floating point,” J. ACM,
vol. 14, no. 2, pp. 316–321, Apr. 1967. [Online]. Available:
http://doi.acm.org/10.1145/321386.321394

[8] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W.
Cameron, “PowerPack: Energy profiling and analysis of high-
performance systems and applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. PDS-21, no. 5, pp.
658–671, May 2010.

[9] E. Rotem, A. Naveh, D. Rajwan, A. Anathakrishnan, and
E. Weissmann, “Power-management architecture of the Intel
microarchitecture code-named Sandy Bridge,” IEEE Micro,
vol. 32, no. 2, p. 2027, 2012.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation
on modern processors,” International Journal of High Per-
formance Computing Applications, vol. 14, no. 3, p. 189204,
2000.

[11] “Performance Application Programming Interface (PAPI).
Innovative Computing Laboratory, University of Tennessee.
Available at http://icl.cs.utk.edu/papi/.”

[12] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek,
and J. Kurzak, “Mixed precision iterative refinement
techniques for the solution of dense linear systems,”
IJHPCA, vol. 21, no. 4, pp. 457–466, 2007. [Online].
Available: http://dx.doi.org/10.1177/1094342007084026

[13] R. Babich, M. A. Clark, and B. Joó, “Parallelizing the
QUDA library for multi-GPU calculations in lattice quantum
chromodynamics,” in SC. IEEE, 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.40

[14] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and
LU factorizations,” SIAM J. Scientific Computing, vol. 34,
no. 1, 2012. [Online]. Available: http://dx.doi.org/10.1137/
080731992

[15] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Tile QR
factorization with parallel panel processing for multicore
architectures,” in IPDPS. IEEE, 2010, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2010.5470443

[16] H. Ltaief, P. Luszczek, A. Haidar, and J. Dongarra, “En-
hancing Parallelism of Tile Bidiagonal Transformation on
Multicore Architectures using Tree Reduction,” in Parallel
Processing and Applied Mathematics, Torun, Poland, 2011.

[17] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov,
“Using mixed precision for sparse matrix computations to
enhance the performance while achieving 64-bit accuracy,”
vol. 34, no. 4, p. 17, Jul. 2008, article 17, 22 pages.

[18] H. Anzt, V. Heuveline, B. Rocker, M. Castillo, J. C.
Fernández, R. Mayo, and E. S. Quintana-Orti, “Power
consumption of mixed precision in the iterative solution
of sparse linear systems,” in Proceedings of the 2011
IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, ser. IPDPSW ’11.
Washington, DC, USA: IEEE Computer Society, 2011,
pp. 829–836. [Online]. Available: http://dx.doi.org/10.1109/
IPDPS.2011.226

[19] H. Anzt, B. Rocker, and V. Heuveline, “Energy efficiency of
mixed precision iterative refinement methods using hybrid
hardware platforms,” Computer Science - Research and
Development, vol. 25, pp. 141–148, 2010, 10.1007/s00450-
010-0124-2. [Online]. Available: http://dx.doi.org/10.1007/
s00450-010-0124-2

[20] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and
J. Dongarra, “Exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting iter-
ative refinement for linear systems),” in ACM/IEEE SC 2006
Conference (SC’06), Nov. 2006, p. 50.

[21] C. Bekas and A. Curioni, “A New Energy Aware
Performance Metric,” Computer Science - R&D, vol. 25,
no. 3-4, pp. 187–195, 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s00450-010-0119-z

[22] N. Higham, Accuracy and Stability of Numerical Algorithms,
Second Edition. SIAM, 2002.

[23] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’
Guide: QUeueing And Runtime for Kernels,” University of
Tennessee Innovative Computing Laboratory Technical Re-
port ICL-UT-11-02, 2011.

[24] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarrra, “Compara-
tive study of one-sided factorizations with multiple software
packages on multi-core hardware,” in SC ’09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis. New York, NY, USA: ACM, 2009,
pp. 1–12.

[25] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph,
P. Luszczek, D. Terpstra, and S. Moore, “Measuring energy
and power with PAPI,” in Power-Aware Systems and Archi-
tectures (PASA) PASA2012 in conjunction with the 41st An-
nual International Conference on Parallel Processing (ICPP
2012), Pittsburgh, USA., September 10-13 2012.

[26] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “Achiev-
ing numerical accuracy and high performance using recursive
tile lu factorization,” University of Tennessee Computer Sci-
ence Technical Report UT-CS-11-688 (also LAPACK Working
Note 259), Submitted to Journal of Concurrency and Compu-
tation: Practice and Experience.

[27] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou,
J. Langou, P. Luszczek, and S. Tomov, “Accelerating
scientific computations with mixed precision algorithms,”
Computer Physics Communications, vol. 180, no. 12,
pp. 2526 – 2533, 2009, 40 YEARS OF CPC: A
celebratory issue focused on quality software for high
performance, grid and novel computing architectures. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6TJ5-4TX7976-1/2/a85cf5566583a3c10996c05925efa9c9

[28] J. Kurzak and J. J. Dongarra, “Implementation of mixed
precision in solving systems of linear equations on the Cell
processor,” Concurrency Computat.: Pract. Exper., vol. 19,
no. 10, pp. 1371–1385, 2007.

[29] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill,
J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
and K. Yelick, “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” Department of Com-
puter Science and Engineering, University of Notre Dame,
Tech. Rep. TR-2008-13, September 28 2008.

[30] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien,
W. Dally, E. Elnohazy, M. Hall, R. Harrison, W. Harrod,
K. Hill, J. Hiller, S. Karp, C. Koelbel, D. Koester, P. Kogge,
J. Levesque, D. Reed, V. Sarkar, R. Schreiber, M. Richards,
A. Scarpelli, J. Shalf, A. Snavely, and T. Sterling, “Exas-
cale software study: Software challenges in extreme scale
systems,” Rice University, Tech. Rep., September 14 2009.

[31] NVML Reference Manual, 2012, nVIDIA.

