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3.1 Introduction

Since the introduction of multicore architectures, hardware designs are
going through a renaissance due to the need for new approaches to manage
the exponentially increasing:

1. Appetite for power, and

2. Gap between compute and communication speeds.

Hybrid graphics processing unit ( GPU)-based multicore platforms, composed
of both homogeneous multicores and GPUs, stand out among a confluence
of current hardware trends as they provide an effective solution to these two
challenges. Indeed, as power consumption is typically proportional to the cube
of the frequency, GPUs have a clear advantage against current homogeneous
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multicores, as GPUs’ compute power is derived from many cores that are of low
frequency. Furthermore, initial GPU experiences across academia, industry,
and national research laboratories have provided a long list of success stories
for specific applications and algorithms, often reporting speedups of order 10
to 100× compared to current x86-based homogeneous multicore systems [2].

3.1.1 Linear Algebra (LA)—Enabling New Architectures

Despite the current success stories involving hybrid GPU-based systems,
the large-scale enabling of those architectures for computational science would
still depend on the successful development of fundamental numerical libraries
for them. Major issues in terms of developing new algorithms, programmabil-
ity, reliability, and user productivity must be addressed. This chapter describes
some of the current efforts toward the development of these fundamental li-
braries, and in particular, libraries in the area of dense linear algebra (DLA).

Historically, linear algebra has been in the vanguard of efforts to enable
new architectures for computational science for good strategic reasons. First,
a very wide range of science and engineering applications depend on linear
algebra; these applications will not perform well unless linear algebra libraries
perform well. Second, linear algebra has a rich and well understood structure
for software developers to exploit algorithmically, so these libraries represent
an advantageous starting point for the effort to bridge the yawning software
gap that has opened up within the HPC community today.

3.1.2 MAGMA—LA Libraries for Hybrid Architectures

The Matrix Algebra on GPU and Multicore Architectures (MAGMA)
project, and the MAGMA and MAGMA BLAS libraries [3] stemming from
it, are used to demonstrate the techniques and their effect on performance.
Designed to be similar to LAPACK in functionality, data storage, and in-
terface, the MAGMA libraries will allow scientists to effortlessly port their
LAPACK-relying software components and to take advantage of the new hy-
brid architectures. Current work targets GPU-based systems, and the efforts
are supported by both government and industry, including NVIDIA, who re-
cently recognized the University of Tennessee, Knoxville’s (UTKs) Innovative
Computing Laboratory (ICL) as a CUDA Center of Excellence. This is to
further promote, expand, and support ICL’s commitment toward developing
LA Libraries for Hybrid Architectures.

Against this background, the main focus of this chapter will be to pro-
vide some high-level insight on how to code/develop DLA for GPUs.
The approach described here is based on the idea that, in order to deal with
the complex challenges stemming from the heterogeneity of the current GPU-
based systems, optimal software solutions will themselves have to hybridize,
combining the strengths of the system’s hybrid components. That is, hybrid
algorithms that match algorithmic requirements to the architectural strengths
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of the system’s hybrid components must be developed. It has been shown that
properly designed hybrid algorithms for GPU-based multicore platforms work
for the core DLA routines, namely the one- and two-sided matrix factoriza-
tions.

3.2 Hybrid DLA Algorithms

The development of high-performance DLA for homogeneous multicores
has been successful in some cases, like the one-sided factorizations, and diffi-
cult for others, like the two-sided factorizations. The situation is similar for
GPUs—some algorithms map well, others do not. Developing algorithms for
a combination of these two architectures (to use both multicore and GPUs)
though can be beneficial and should be exploited, especially since in many
situations, the computational bottlenecks for one of the components (of this
hybrid system) may not be for the other. Thus, developing hybrid algo-
rithms that properly split and schedule the computation over different hard-
ware components may lead to very efficient algorithms. The goal is to develop
these new, hybrid algorithms for the area of DLA, and moreover, show that
the new developments:

• Leverage prior DLA developments, and

• Achieve what has not been possible so far, e.g., using just homogeneous
multicores.

3.2.1 How to Code DLA for GPUs?

The question of how to code for any architecture, including GPUs, is
complex, e.g., involving issues in terms of choosing a language, programming
model, developing new (GPU specific) algorithms, programmability, reliabil-
ity, and user productivity. Nevertheless, it is possible to give some major
considerations and directions that have already shown promissing results:

Use CUDA / OpenCL CUDA is currently the language of choice for pro-
gramming GPUs. It facilitates a data-based parallel programming model
that has turned out to be a remarkable fit for many applications. More-
over, current results show its programming model allows applications to
scale on many cores. DLA is no exception as performance relies on the
performance of Level 2/3 BLAS—essentially a data parallel set of sub-
routines that are scaling on current many-core GPUs (see also Chapter
4). The approach described here also shows how the BLAS scalability
is in fact translated into scalability on higher level routines (LAPACK).
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Similarly to CUDA, OpenCL also has its roots in the data-based par-
allelism (now both moving to support task-based parallelism). OpenCL
is still yet to be established but the fact that it is based on a program-
ming model with already established potential and the idea of providing
portability—across heterogeneous platforms consisting of CPUs, GPUs,
and other processors—makes it an excellent candidate for coding hybrid
algorithms.

Use GPU BLAS Performance of DLA critically depends on the availability
of fast BLAS, especially on the Level 3 BLAS matrix-matrix multiplica-
tion. Older generation GPUs did not have memory hierarchy and their
performance exclusively relied on high bandwidth. Therefore, although
there has been some work in the field, the use of older GPUs has not led
to significantly accelerated DLA. For example, Fatahalian et al. stud-
ied SGEMM and their conclusion was that CPU implementations out-
perform most GPU implementations. Similar results were produced by
Galoppo et al. on LU factorization. The introduction of memory hier-
archy in current GPUs though has drastically changed the situation. In-
deed, by having memory hierarchy, GPUs can be programmed for mem-
ory reuse and hence not rely exclusively on their high bandwidth. An
illustration of this fact is given in Figure 3.1, showing the performance of
correspondingly a compute-bound (matrix-matrix multiplication on the
left) and a memory-bound routine (matrix-vector multiplication on the
right). Having fast BLAS is significant because algorithms for GPUs can
now leverage prior DLA developments, which have traditionally relied
on fast BLAS. Of course there are GPU-specific optimizations, as will
be shown, like performing extra-operations, BLAS fusion, etc, but the
important fact is, high-performance algorithms can be coded at a high
level, just using BLAS, often abstracting the developer from the need of
low-level GPU-specific coding.
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FIGURE 3.1: BLAS on GPU (GTX 280) vs CPU (8× Intel Xeon 2.33GHz).

Use Hybrid Algorithms Current GPUs feature massive parallelism but se-
rial kernel execution. For example NVIDIA’s GTX280 has 30 multipro-
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cessors, each multiprocessor having eight SIMD functional units, each
unit capable of executing up to three (single floating point) operations
per cycle. At the same time, kernels are executed serially; only one kernel
is allowed to run at a time using the entire GPU. This means that only
large, highly parallelizable kernels can run efficiently on GPUs. The idea
of using hybrid algorithms presents an opportunity to remedy this situa-
tion and therefore enable the efficient use of GPUs well beyond the case
of data-parallel applications. Namely, the solution and advice to devel-
opers is to use a hybrid coding approach, where small, non-parallelizable
kernels would be executed on the CPU, and only large, parallelizable ker-
nels on the GPU. Although GPUs move towards supporting task-based
parallelism as well (e.g., advertised for the next generation NVIDIA
GPUs, code named “Fermi” [4]), small tasks that arise in DLA would
still make sense to be done on the CPU for various reasons, e.g., to use
the x-86 software infrastructure. Moreover, efficient execution would still
require parallelism and small tasks still may be difficult or impossible to
parallelize.

3.2.2 The Approach—Hybridization of DLA Algorithms

The above considerations are incorporated in the following Hybridization
of DLA Algorithms approach:

• Represent DLA algorithms as a collection of BLAS-based tasks and de-
pendencies among them (see Figure 3.2):

– Use parametrized task granularity to facilitate auto-tuning;

– Use performance models to facilitate the task splitting/mapping.

• Schedule the execution of the BLAS-based tasks over the multicore and
the GPU:

– Schedule small, non-parallelizable tasks on the CPU and large, par-
allelizable on the GPU;

– Define the algorithm’s critical path and prioritize its execu-
tion/scheduling.

The splitting of the algorithms into tasks is in general easy, as it is based
on the splitting of large BLAS into smaller ones. More challenging is choosing
the granularity and shape of the splitting and the subsequent scheduling of the
sub-tasks. There are two main guiding directions on how to design the split-
ting and scheduling of tasks. First, the splitting and scheduling should allow
for asynchronous execution and load balance among the hybrid components.
Second, it should harness the strengths of the components of a hybrid architec-
ture by properly matching them to algorithmic/task requirements. Examples
demonstrating these general directions are given in the next two sections.
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FIGURE 3.2: Algorithms as a collection of BLAS-based tasks and depen-
dencies among them (DAGs) for hybrid GPU-based computing.

Next, choosing the task granularity can be done by parametrizing the tasks’
sizes in the implementations and tuning them empirically [7]. The process can
be automated [13], often refered to as auto-tuning. Auto-tuning is crucial
for the performance and the maintenance of modern numerical libraries, espe-
cially for hybrid architectures and algorithms for them. Figuratively speeking,
it can be regarded as both the Beauty and the Beast behind hybrid DLA li-
braries (e.g., MAGMA) as it is an elegant and very practical solution for easy
maintenance and performance portability, while often being a brute force, em-
pirically based exhaustive search that would find and set automatically the
best performing algorithms/kernels for a specific hardware configuration. The
“exhaustive” search is often relaxed by applying various performance models.

Finally, the problem of scheduling is of crucial importance for the efficient
execution of an algorithm. In general, the execution of the critical path of
an algorithm should be scheduled as soon as possible. This often remedies
the problem of synchronizations introduced by small, non-parallelizable tasks
(often on the critical path; scheduled on the CPU) by overlapping their ex-
ecution with the execution of larger more parallelizable ones (often Level 3
BLAS; scheduled on the GPU).

These principles are general enough to be applied in areas well beyond
DLA. Usually they come with specifics, induced by the architecture and the al-
gorithms considered. The following two sections present some of these specifics
for, correspondingly, the classes of one-sided and two-sided dense matrix fac-
torizations.
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3.2.3 One-Sided Factorizations

This section describes the hybridization of LAPACK’s one-sided
factorizations—LU, QR, and Cholesky—on dense matrices. These factoriza-
tions are important because they are the first of two steps in solving dense
linear systems of equations. The factorization represents the bulk of the
computation—O(N3) floating point operations in the first step vs O(N2) in
the second step—and therefore has to be highly optimized. LAPACK uses
block-partitioned algorithms, and the corresponding hybrid algorithms are
based on them.

The opportunity for acceleration using hybrid approaches (CPU and GPU)
has been noticed before in the context of one-sided factorizations. In particu-
lar, while developing algorithms for GPUs, several groups observed that panel
factorizations are often faster on the CPU than on the GPU, which led to
the development of highly efficient, one-sided hybrid factorizations for a sin-
gle CPU core and a GPU [6,7,9], multiple GPUs [6,10], and multicore+GPU
systems [11]. M. Fatica [12] developed hybrid DGEMM and DTRSM for GPU-
enhanced clusters and used them to accelerate the Linpack benchmark. This
approach, mostly based on BLAS level parallelism, results only in minor or
no modifications to the original source code.

MAGMA provides two interfaces to the hybrid factorizations. These are
the CPU interface, where the input matrix is given in the CPU memory and
the result is expected also in the CPU memory, and the GPU interface, where
the input and the output are on the GPU memory. In both cases the bulk
of the computation is done on the GPU and along the computation; the sub-
matrices that remain to be factored always reside on the GPU memory. Panels
are copied to the CPU memory, processed on the CPU using LAPACK, and
copied back to the GPU memory (see Figure 3.3). Matrix updates are done on
the GPU. Thus, for any panel transfer of size n × nb elements, a sub-matrix
of size n × (n − nb) is updated on the GPU (e.g., this is the case for the
right-looking versions of LU and QR; for the left-looking Cholesky the ratios
are nb × nb elements transfered vs n × nb elements updated), where nb is a
blocking size and n is the size of the sub-matrix that remains to be factored.
These ratios of communications vs computations allow for mostly overlapping
the panel factorizations on the CPU with updates on the GPU (see below
the specifics). Figure 3.3 illustrates this typical pattern (as just described) of
hybridization for the one-sided factorizations in the GPU interface.

The CPU interface can reuse the GPU interface implementation by wrap-
ping it around two matrix copies—one at the beginning copying the input
matrix from the CPU to the GPU memory, and one at the end copying the
final result from the GPU back to the CPU memory. This overhead can be
partially avoided, though. The input matrix can be copied to the GPU by
starting an asynchronous copy of the entire matrix except the first panel and
overlapping this copy with the factorization of the first panel on the CPU.
The GPU-to-CPU copy at the end of the factorizations can be replaced by a
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1

FIGURE 3.3: A typical hybrid pattern of computation and communication
for the one-sided matrix factorizations in MAGMA’s GPU interface.

continuous accumulation of the output directly on the CPU. One way to do it
is by sending the entire block of columns containing the current panel (vs just
the panel) and keeping copies of the factored panels on the CPU. This way,
as the computation progresses, the final result is accumulated on the CPU as
a byproduct of the computation, avoiding the overhead of an entire matrix
copy.

Below are given some of the specifics in the development of the hybrid
Cholesky, QR, and LU factorizations, respectively:

Cholesky Factorization MAGMA uses the left-looking version of the block
Cholesky factorization. Figure 3.4 shows an iteration of the standard
block Cholesky algorithm coded in correspondingly MATLAB and LA-
PACK style, and how these standard implementations can easily be
translated into a hybrid implementation. Note the simplicity and the
similarity of the hybrid code with the LAPACK code. The only differ-
ence is the two CUDA calls needed to offload data back and forth from
the CPU to the GPU. Also, note that steps (2) and (3) are independent
and can be overlapped—step (2), a Cholesky factorization task on a
small diagonal block, is scheduled on the CPU using a call to LAPACK
and step (3), a large matrix-matrix multiplication, on the GPU. This is
yet another illustration of the general guidelines mentioned in the previ-
ous two sections. The performance of this algorithm is given in Section
3.3.

QR Factorization Currently, MAGMA uses static scheduling and a right-
looking version of the block QR factorization. The panel factorizations
are scheduled on the CPU using calls to LAPACK, and the Level 3
BLAS updates on the trailing sub-matrices are scheduled on the GPU.
The trailing matrix updates are split into 2 parts—one that updates just
the next panel and a second one updating the rest, i.e., correspondingly
sub-matrices T1 and T2 as given in Figure 3.3. The next panel update
(i.e., T1) is done first, sent to the CPU, and the panel factorization
on the CPU is overlapped with the second part of the trailing matrix
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(1) B = B – A*A'  

(2) B = chol(B, 'lower')
(3) D = D – C*A'                                             
                                                                                                                                               

(4) D = D\B

MATLAB code                  

ssyrk_(“L”, “N”, &nb, &j, &mone, hA(j,0),  ...  )

spotrf_(“L”,  &nb,  hA(j, j),  lda,  info) 
sgemm_(“N”,  “T”,  &j, ... )

strsm_(“R”, “L”, “T”, “N”,  &j, ... )

LAPACK code          

cublasSsyrk('L', 'N', nb, j. mone, dA(j,0), ... )

cublasGetMatrix(nb, nb, 4, dA(j, j), *lda, hwork, nb)
cublasSgemm('N', 'T', j, ... )
spotrf_(“L”, &nb, hwork, &nb, info)
cublasSetMatrix(nb, nb, 4, hwork, nb, dA(j, j), *lda)

cublasStrsm('R', 'L', 'T', 'N', j, ... )

Hybrid code          

A

C D

B

FIGURE 3.4: Pseudo-code implementation of the hybrid Cholesky. hA and
dA are pointers to the matrix to be factored correspondingly on the host (CPU)
and the device (GPU).

(i.e., T2). This technique is known as look-ahead, e.g., used before in
the Linpack benchmark [13]. Its use enables the overlap of CPU and
GPU work (and some communications). Figure 3.5 illustrates this by
quantifying the CPU-GPU overlap for the case of QR in single precision
arithmetic. Note that, in this case for matrices of size above 6, 000, the
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CPU work on the panels is entirely overlapped by work on the GPU.
It is important to note that block factorizations (both one and two sided)
inherently lead to multiplications with triangular matrices. To execute
them in data-parallel fashion on GPUs, it is often more efficient to put
zeroes in the unused triangular parts and perform the multiplication
as having general dense matrices. To give an example, the block QR
algorithm accumulates orthogonal Level 2 BLAS transformations during
the panel factorization. The accumulated transformation has the form

Qi = I − ViTiV Ti
where Vi is of size k×nb, k ≥ nb and Ti is nb×nb. This transformation
is than applied as a Level 3 BLAS to the trailing sub-matrix. The LA-
PACK implementation splits the multiplication with Vi into two Level 3
BLAS calls, as the top nb×nb sub-matrix of Vi is triangular. A GPU im-
plementation is more efficient if the multiplication with Vi is performed
as one BLAS call, and therefore is enabled, e.g., by providing an efficient
mechanism to put zeroes in the unused triangular part of Vi (before the
multiplication) and restoring the original (after the multiplication).
This is just one example of a GPU-specific optimization technique where
to get higher performance extra flops must be done or separate kernels
must be fused into one.

LU Factorization Similarly to QR, MAGMA uses a right-looking version
of the LU factorization. The scheduling is static using the look-ahead
technique. Interchanging rows of a matrix stored in column major for-
mat, needed in the pivoting process, cannot be done efficiently on current
GPUs. We use the LU factorization algorithm by V. Volkov and J. Dem-
mel [6] that removes the above mentioned bottleneck. The idea behind
it is to transpose the matrix in the GPU memory. This is done once at
the beginning of the factorization so that row elements are contiguous
in memory, i.e., equivalent to changing the storage format to row major.
Row interchanges now can be done efficiently using coalescent memory
accesses on the GPU (vs strided memory accesses for a matrix in column
major format). The panels are being transposed before being sent to the
CPU for factorization, i.e., moved back to the standard for LAPACK
column major format. Compared to the non-transposed version, this al-
gorithm runs approximately 50% faster on current NVIDIA GPUs, e.g.,
GTX 280.

3.2.4 Two-Sided Factorizations

If the importance of the one-sided factorizations stems from their role in
solving linear systems of equations, the importance of the two-sided factoriza-
tions stems from their role in solving eigenvalue problems. The two-sided fac-
torizations are an important first step in solving eigenvalue problems. Similarly
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to the one-sided, the two-sided factorizations are compute intensive (O(N3)
flops) and therefore also have to be highly optimized.

The two-sided factorizations can be organized as block-partitioned algo-
rithms. This is used in LAPACK to develop efficient signle CPU/core algo-
rithms and can be used as the basis for developing hybrid algorithms. The
development follows the main approach already described. This section will
describe the specifics involved and will actually demonstrate much higher
speedups of accelerating two-sided factorizations vs the speedups in accel-
erating the one-sided factorizations.

The hybridization of the two-sided factorizations can be best explained
with the reduction to upper Hessenberg form, denoted further by HR, which
is stressed in this section. The operation count for the reduction of an N ×N
matrix is approximately 10

3 N
3, which, in addition to not running efficiently

on current architectures, makes the reduction a very desirable target for ac-
celeration.
The bottleneck: The problem of accelerating the two-sided factorization al-
gorithms stems from the fact that these algorithms are rich in Level 2 BLAS
operations, which do not scale on multicore architectures and actually run
only at a fraction of the machine’s peak performance. This is shown in Figure
3.1, right. There are dense linear algebra (DLA) techniques that can replace
Level 2 BLAS operations with Level 3 BLAS. These are the block algorithms,
already mentioned several times, where the application of consecutive Level
2 BLAS operations that occur in the algorithms can be delayed and accumu-
lated so that at a later moment the accumulated transformation is applied at
once as a Level 3 BLAS (see LAPACK [14] and the specifics related to QR
above). This approach totally removes Level 2 BLAS flops from Cholesky and
reduces its amount to O(n2) flops in LU and QR thus making it asymptoti-
cally insignificant compared to the total O(n3) amount of operations for these
factorizations. The same technique can be applied to HR [15], but in contrast
to the one-sided factorizations, it still leaves about 20% of the total number
of operations as Level 2 BLAS. Note that 20% of Level 2 BLAS is significant
because, in practice, using a single core of a multicore machine, this 20% can
take about 70% of the total execution time, thus leaving the grim perspec-
tive that multicore use—no matter how many cores would be available—can
ideally reduce only the 30% of the execution time that is spent on Level 3
BLAS.
Bottleneck identification: For large applications, tools like TAU [16] can
help in locating performance bottlenecks. TAU can generate execution profiles
and traces that can be analyzed with other tools like ParaProf [17], Jumpshot
[18], and Kojak [19]. Profiles of the execution time (or of PAPI [20] hardware
counters) on runs using various numbers of cores of a multicore processor can
be compared using ParaProf to easily see which functions scale, what is the
performance for various parts of the code, what percentage of the execution
time is spent in the various functions, etc. In the case of HR, using a dual
socket quad-core Intel Xeon at 2.33GHz, this analysis easily identifies a call
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to a single matrix-vector product that runs at about 70% of the total time,
does not scale with multicore use, and has only 20% of the total amount of
flops. Algorithmically speaking, this matrix-vector product is part of the panel
factorization, where the entire trailing matrix (denoted by Aj in Figure 3.6)
has to multiply a currently computed Householder reflector vector vj (see [10]
for further datail on the algorithm). These findings are also illustrated in
Figure 3.6.

Level 3 BLAS update

Level 2 BLAS update
[20% flops; ~70% of the run time]

[80% flops; ~30% of the run time]

jy  = A  vj j

0   j    nb

jAvj

FIGURE 3.6: HR computational bottleneck: Level 2 BLAS yj = Ajvj .

Since fast Level 2 BLAS are available for GPUs (Figure 3.1, right), it is
clear that the operation has to be scheduled for execution on the GPU. In
other words, having fast implementations for all kernels, the development of
the hybrid HR algorithms is now just a matter of splitting the computation
into tasks and properly scheduling the tasks’ execution on the available hybrid
hardware components. Below are the details of the main steps in this process
of hybridization of the HR algorithm:

Task Spliting Studying the execution and data flow of an algorithm is im-
portant in order to properly split the computation into tasks and depen-
dencies. It is important to study the memory footprint of the routines,
e.g., what data are accessed and what data are modified. Moreover, it
is important to identify the algorithm’s critical path and to decouple
from it as much work as possible, as the tasks outside the critical path
in general would be the ones trivial to parallelize. Applied to HR, this
analysis identifies that the computation must be split into three main
tasks, further denoted by Pi, Mi, and Gi, where i is iteration index for
the block HR and is described as follows. The splitting is motivated by
and associated with operations updating three corresponding matrices,
for convenience denoted by the name of the task updating them. The
splitting is illustrated in Figure 3.7, left, and described as follows:

• The panel factorization task Pi (20% of the flops) updates the cur-
rent panel and accumulates matrices Vi, Ti, and Yi needed for the
trailing matrix update;
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• Task Gi (60% of the flops) updates the trailing sub-matrix

Gi = (I − Vi Ti V Ti ) Gi (I − Vi Ti Vi(nb+ 1 : , : )T )

• Task Mi (20% of the flops) updates the sub-matrix, determined to
fall outside of the critical path of the algorithm

Mi = Mi (I − Vi Ti V Ti ).

.
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FIGURE 3.7: Main tasks and their scheduling.

We note that this splitting is motivated by the memory footprint anal-
ysis. Using this particular splitting, one can see that task Mi gets in-
dependent of Gi and falls outside of the critical path of the algorithm
(illustrated in Figure 3.7, right). This is important for scheduling the
tasks’ execution over the components of the hybrid system. Note that
the critical path is still 80% of the total amount of flops.

Task Scheduling The scheduling is given also in Figure 3.7, right. The tasks
on the critical path must be scheduled as fast as possible—and the
scheduling must be hybrid, using both the Multicore and the GPU.
The memory footprint of task Pi, with ‘P ’ standing for panel, is both Pi
and Gi, but Gi is accessed only for the time consuming computation of
yj = Ajvj (see Figure 3.6). Therefore, the part of Pi that is constrained
to the panel (not rich in parallelism, with flow control statements) is
scheduled on the multicore using LAPACK, and the time consuming
yj = Ajvj (highly parallel but requiring high bandwidth) is scheduled
on the GPU. Gi, with ‘G’ standing for GPU, is scheduled on the GPU.
This is a Level 3 BLAS update and can be done very efficiently on the
GPU. Moreover, note that Gi−1 contains the matrix Aj needed for task
Pi, so for the computation of Ajvj we have to only send vj to the GPU
and the resulting yj back from the GPU to the multicore. The schedul-
ing so far heavily uses the GPU, so in order to simultaneously make the
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critical path execution faster and to make a better use of the multicore,
task Mi, with ‘M ’ standing for multicore, is scheduled on the multicore.

Hybrid HR Figure 3.8 illustrates the communications between the multicore
and GPU for ith iteration (outer) of the hybrid block HR algorithm.
Shown is the jth inner iteration. Note that, as in the case of the one-sided
factorizations, the matrix to be factored resides originally on the GPU
memory, and as the computation progresses the result is continuously
accumulated on the CPU. At the end, the factored matrix is available
on the CPU memory in a format identical to LAPACK’s. The tasks
scheduling is as given above.

1. Copy dP to CPU

2. Copy v to GPUj

Work dWork

dYY dV

0
U  P  GU  P  C

i

3. Copy y to CPU
j

4. Copy     to CPU Aj

FIGURE 3.8: CPU/GPU communications for inner/outer iteration j/i.

This approach can be applied to the rest of the two-sided matrix factoriza-
tions. The key component—having fast GPU implementations of the various
Level 2 BLAS matrix-vector products that may be needed in the different
algorithms—is now available through the MAGMA BLAS library (see Chap-
ter 4). Having the kernels needed, as stated above, it is now simply a matter
of organizing the computation in a hybrid fashion over the available hardware
components.

3.3 Performance Results

The performance results provided in this section use NVIDIA’s GeForce
GTX 280 GPU and its multicore host, a dual socket quad-core Intel Xeon run-
ning at 2.33GHz. Kernels executed on the multicore use LAPACK and BLAS
from MKL 10.1, and BLAS kernels executed on the GPU use a combination
of CUBLAS 2.1 and MAGMA BLAS 0.2, unless otherwise noted.

The performance of the hybrid Cholesky factorization is given in Figure
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3.9. It runs asymptotically at 300 Gflop/s in single and at almost 70 Gflop/s
in double precision arithmetic.
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FIGURE 3.9: Performance of MAGMA’s hybrid Cholesky in single (left) and
double precision (right) arithmetic on GTX 280 vs MKL 10.1 and LAPACK
(with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz.

The performance of the hybrid QR factorization is given in Figure 3.10. It
runs asymptotically almost at 290 Gflop/s in single and at almost 68 Gflop/s
in double precision arithmetic.
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FIGURE 3.10: Performance of MAGMA’s hybrid QR in single (left) and
double precision (right) arithmetic on GTX 280 vs MKL 10.1 and LAPACK
(with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz.

The performance of the hybrid LU factorization is given in Figure 3.11. It
runs asymptotically almost at 320 Gflop/s in single and at almost 70 Gflop/s
in double precision arithmetic.

Figure 3.12 shows the performance of two versions of the hybrid HR algo-
rithms in double precision arithmetic. The performance is also compared to
the block HR on single core and multicore. The basic hybrid HR is for one
core accelerated with one GPU. The “Multicore+GPU” hybrid algorithm is
the one described in this chapter where tasks Mi are executed on the available
CPU cores. The result shows an enormous speedup of 16× when compared to
the current block HR running on just homogeneous multicore. The techniques



52 Scientific Computing with Multicore and Accelerators

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144 7680 9216

G
Fl

op
/s

Matrix size

MAGMA
LAPACK

MKL-10.1

0

10

20

30

40

50

60

70

80

0 1536 3072 4608 6144 7680 9216

G
F

lo
p/

s

Matrix size

MAGMA
LAPACK

MKL-10.1

FIGURE 3.11: Performance of MAGMA’s hybrid LU in single (left) and
double precision (right) arithmetic on GTX 280 vs MKL 10.1 and LAPACK
(with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz.
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FIGURE 3.12: Performance of the hybrid HR in double precision (bottom)
arithmetic on GTX 280 vs MKL 10.1 on Intel Xeon dual socket quad-core
2.33GHz.

in the basic implementation account for most of the acceleration, which is due
to the use of hybrid architectures and the proper algorithmic design—splitting
the computation into tasks and their scheduling so that we match algorithmic
requirements to architectural strengths of the hybrid components.

This performance gets to be asymptotically within 90% of the “upper
bound” performance, as shown in Figure 3.12. Here upper bound denotes the
performance of just the critical path of the algorithm when no synchronizations
and data transfer times are taken into account, i.e., this is the performance of
tasks Pi and Gi (without counting Mi) just based on the performance of the
BLAS used.
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3.4 Summary

This work is on the development of numerical linear algebra libraries and
is motivated by hardware changes that have rendered legacy numerical li-
braries inadequate for the new architectures. GPUs, homogeneous multicore
architectures, and hybrid systems based on them adequately address the main
requirements of new architectures—to keep power consumption and the gap
between compute and communication speeds low. There is every reason to
believe that future systems will continue the general trend taken by GPUs
and hybrid combinations of GPUs with homogeneous multicores—freeze the
frequency and keep escalating the number of cores; stress on data-parallelism
to provide high bandwidth to the escalating number of cores—and thus render
this work relevant for future system designs.

This chapter presented a concept on how to code/develop dense linear al-
gebra algorithms for GPUs. The approach is general enough to be applicable
to areas well beyond dense linear algebra and is implemented on a high-enough
level to guarantee easy portability and relevance for future hybrid systems. In
particular, the approach uses CUDA to develop low-level kernels when needed,
but mostly relies on high-level libraries like LAPACK for CPUs and BLAS
for CPUs and GPUs. Moreover, the approach is based on the development
of hybrid algorithms, where in general small, non-parallelizable tasks are ex-
ecuted on the CPU, reusing the existing software infrastructure for standard
architectures, and large, data-parallel tasks are executed on the GPU.

It was shown that using this approach in the area of dense linear alge-
bra, one can leverage prior DLA developments and achieve what has not been
possible so far, e.g., using just homogeneous multicore architectures. In par-
ticular, the approach uses LAPACK to execute small, non-parallelizable tasks
on the CPU. Tasks that are bottlenecks for the CPU, like Level 2 BLAS, are
properly designed in the new algorithms and scheduled for execution on the
GPU.

Specific examples were given on fundamental dense linear algebra algo-
rithms. Namely, it was demonstrated how to develop hybrid one-sided and
two-sided matrix factorizations. Although the one-sided factorizations can be
represented as Level 3 BLAS and ran efficiently on current multicore architec-
tures, GPUs still can accelerate them significantly, depending on the hardware
configuration, e.g., O(1)× for the systems used in the numerical experiments
presented. In the case of two-sided factorizations, the speedups are even higher,
e.g., O(10)×, as implementations using homogeneous multicores, no matter
how many cores are available, currently run them at the speed of a single core.

The implementations are now freely available through the MAGMA library
site http://icl.eecs.utk.edu/magma/.



54 Scientific Computing with Multicore and Accelerators

Bibliography

[1] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide. http://developer.download.nvidia.com, 2007.

[2] General-purpose computation using graphics hardware.
http://www.gpgpu.org.

[3] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 Users’
Guide. http://icl.cs.utk.edu/magma, November 2009.

[4] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/object/fermi architecture.html, 2009.

[5] Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM
for GPUs. In ICCS ’09: Proceedings of the 9th International Confer-
ence on Computational Science, pages 884–892, Berlin, Heidelberg, 2009.
Springer-Verlag.

[6] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Opti-
mizations of Software and the ATLAS Project. Parallel Computing 27(1-
2):2001, 3–35.

[7] J. Dongarra, S. Moore, G. Peterson, S. Tomov, J. Allred, V. Natoli, and
D. Richie. Exploring new architectures in accelerating CFD for Air Force
applications. In Proceedings of HPCMP Users Group Conference 2008,
July 14-17 2008, http://www.cs.utk.edu/˜tomov/ugc2008 final.pdf.

[8] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pages 1–11, Piscataway, NJ, 2008. IEEE Press.

[9] M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear al-
gebra for multicore and special purpose architectures. LAPACK Working
Note 200, May 2008.

[10] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra. A scalable high
performant cholesky factorization for Multicore with GPU Accelerators.
LAPACK Working Note 223, November 2009.

[11] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. LAPACK Working Note
210, October 2008.

[12] M. Fatica Accelerating Linpack with CUDA on heterogenous clusters.
GPGPU-2, pages 46–51, Washington, DC, 2009.



Dense Linear Algebra for Hybrid GPU-Based Systems 55

[13] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
Past, present, and future. Concurrency and Computation: Practice and
Experience, 15:820, 2003, pp. 1–18.

[14] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. http://www.netlib.org/lapack/lug/.

[15] S. Hammarling, D. Sorensen, and J. Dongarra. Block reduction of ma-
trices to condensed forms for eigenvalue computations. J. Comput. Appl.
Math 27:1987, 215–227.

[16] S. Shende and A. Malony. The TAU parallel performance system. Int.
J. High Perform. Comput. Appl. 20(2):2006, 287–311.

[17] R. Bell, A. Malony, and S. Shende. ParaProf: A portable, extensible, and
scalable tool for parallel performance profile analysis Euro-Par, 2003,
pp. 17–26.

[18] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance
visualization with Jumpshot. HPC Applications 13(2):1999, 277–288.

[19] F. Wolf and B. Mohr. Kojak—A tool set for automatic performance anal-
ysis of parallel applications. Proceedings of Euro-Par 2003 Klagenfurt,
Austria, August 26–29, 2003, pp. 1301–1304.

[20] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface
to hardware performance counters. Proc. of DoD HPCMP u&c pp. 7–10.

[21] S. Tomov and J. Dongarra. Accelerating the reduction to upper Hessen-
berg form through hybrid GPU-based computing. Technical Report 219,
LAPACK Working Note 219, May 2009.




