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Abstract—The future of high performance computing, as
being currently foretold, will gravitate toward hundreds of
thousands to million node machines, harnessing the computing
power of billions of cores. While the hardware part is well
covered, the software infrastructure at that scale is vague.
However, no matter what the infrastructure will be, efficiently
running parallel applications on such large machines will
require optimized runtime environments that are scalable and
resilient. More particularly, considering a future where Mes-
sage Passing Interface (MPI) remains a major programming
paradigm, the MPI implementations will have to seamlessly
adapt to launching and managing large scale applications on
resources several levels of magnitude larger than today.

In this paper, we present a modified version of the Open
MPI runtime that has been adapted towards a scalability goal.
We evaluate the performance and compare it with two widely
used runtime systems: the default version of Open MPI and
MPICH2; using various underlying launching systems. The
performance evaluation demonstrates a significant improve-
ment over the state of the art. We also discuss the basic
requirements for an exascale-ready parallel runtime.

I. INTRODUCTION AND MOTIVATION

MPI implementations usually feature two separate com-
ponents: the library, which implements the MPI standard,
and an implementation-specific runtime. MPI users are
most familiar with the runtime through its main command:
mpirun. The major roles of the runtime are:

launch Launch the MPI application’s processes. This role is
shared between the implementation runtime and the parallel
machine scheduling / launching mechanism.

connect Help the MPI library establish the necessary connec-
tions between the processes. Depending on the network used,
hardware or configuration specific issues, the connection
information (also known as the business card, or the URI of
a process) may not be known before the MPI processes are
launched. It is then necessary to distribute this information
through an out-of-band messaging system. In most MPI
implementations, this role is dedicated to the runtime.

control Control the MPI processes: ensure that in case of a
crash the entire environment is gracefully cleaned; depend-
ing on the operating system and implementation, forward

signals to the MPI processes; ensure that completion codes
are returned to the user command: mpirun.

io Forward the standard input/output: users usually ex-
pect that the information printed on the standard output
should appear on the standard output of the command they
launched. Because the command they launched does not
necessarily run on the same machine as where the print is
issued in an MPI application, it is necessary to ensure the
transmission of this information.

While each of these points introduces an overhead on the
runtime system, they do not apply it in the same context. The
roles launch and connect happen only during the startup step
of the parallel application, while role control is a finalization
or error correction step and role io is usually stretched out
over the entire lifetime of the application. In this work, we
will focus on roles launch and connect.

For a long time, simple strategies provided enough perfor-
mance at the runtime level, to allow library implementors to
focus their improvement efforts on the MPI library itself.
Unfortunately, with the growth of the parallel machines,
start-up and finalization times have become significantly
more expensive. A direct consequence is a notable reduc-
tion in scientific outcome and an increase on the energy
consumption per scientific result, directly proportional with
the scale of the parallel run.

The general evolution of these supercomputers, as wit-
nessed by the Top5001, denotes a huge progression of the
number of cores, simultaneously with the number of com-
puting nodes. Vanilla versions of the two major open source
MPI implementations (Open MPI [1], and MPICH [2]),
although very versatile and adaptable to a large range of
computing environments, can take minutes to launch a large
scale run on the largest supercomputers.

In this paper, we present an adaptation of the Open MPI
Runtime Environment (ORTE [3]) towards large scale sys-
tems. In this context, we implemented the Scalable Launch /
Resource Reducing algorithm presented in Section III, and in
Section V we evaluate it on a thousand nodes. Comparisons

1http://www.top500.org/



with vanilla runtimes of Open MPI and MPICH2 with dif-
ferent underlying launching mechanisms show a significant
improvement in the startup performance. In Section VI, we
discuss how this performance improvement can be projected
on larger scale machines, and the key features that will be
necessary from the launching systems to enable generic large
scale runtime implementations.

II. RELATED WORK

The scalability and performance of the parallel process
startup have been studied extensively. Several projects have
successfully decreased the launching time of the parallel
application, addressing the role launch in Section I. Un-
fortunately, launching parallel applications involves multiple
steps, including the role connect.

This role includes exchanging information with other
peers. Peers must know each other, through contact informa-
tion, which can only be obtained once a process is started.
In this respect, the processes launched by the role launch are
isolated, knowing only one process, the mpirun. Therefore,
initial information exchanges are centralized, with limited
chances to scale.

To spawn and manage parallel jobs, the MPICH2
project [2] provides several different internal process man-
agers such as Hydra [4], [5], MPD [6], SMPD, Gforker
and Remshell. Until the 1.2.x series of MPICH2, MPD was
the default process manager. MPD is a ring of daemons on
the machines, available to run MPI applications. However,
this approach has proved to be non-scalable, and starting
with the MPICH2 1.3.x series, Hydra becomes the default
process manager. Designed as a response to the limitations
(applied to modern HPC systems) of the first generic process
management interface (PMI-1) [5], that is implemented in
MPD, Hydra includes solutions related to the scalability
for a large number of cores on a single node and efficient
interaction with hybrid programming models that combine
MPI and threads.

Another approach to handle the process management
for parallel programming on large-scale systems involves
external process managers that are usually coupled with a
reservation system. This is the case of SLURM [7], LSF2,
Torque3 or PBS4.

They usually consist in a set of persistent daemons run-
ning on the machines and a centralized manager that allows
to make reservations and monitors the resources/jobs. The
demons, that are executed on the machines, are generally
launched at boot time, and are connected to the centralized
manager and to their peers based on a predefined topology
using well-known ports, building the internal communication
infrastructure. This infrastructure is used to forward com-
mands for jobs initialization, to report system status, and to

2http://www.platform.com/
3http://www.clusterresources.com/products/torque-resource-manager.php
4http://www.pbsgridworks.com/

get information about jobs and job steps that are running or
have completed.

While these external tools significantly improve the pro-
cess management on large-scale systems, our work differs
in that our implementation provides the necessary services
to initialize MPI processes (role connect). By doing so, it
may use the launching services of the aforementioned tools.

On large scale machines, like BlueGene/L [8] for exam-
ple, the computing nodes can not run multiple processes si-
multaneously. Therefore, a specific execution environment is
implemented for the machine and a control and I/O daemon
(ciod) is executed on I/O nodes. The ciod implements
system management services and supports file I/O operations
by the compute nodes. All compute and I/O nodes of Blue-
Gene/L are interconnected by a tree network that supports
fast point-to-point, broadcast, and reduction operations on
packets. The partitioning of the system into compute, I/O,
and service nodes leads to a hierarchical system management
software that provides a scalable application launch in the
specific environment of the BlueGene/L.

The distributed approach of building a k−ary tree to
implement the launch role of the runtime system has been
extensively studied in systems, like taktuk [9], MRNet [10],
and in the context of MPI, ScELA [11]. Tree-based parallel
launching of a user command is also used, hidden from the
caller, in most of the other large-scale runtime systems cited
above. In this work, we advocate that the runtime cannot
simply rely on an efficient launching system, but must ensure
a better integration, to help the other roles, especially the
connect role. In the case of ScELA, the k−ary tree is used
as the single possible communication infrastructure for the
runtime to support this role and the others. In this work,
we use the underlying launching tree to exchange contact
information at the runtime level, and let the runtime system
build for itself an arbitrary communication infrastructure
to support these roles. We demonstrate in the evaluation
that building this infrastructure enables a higher flexibility
(e.g. establishing redudant links to support fault-tolerance),
and also helps provide better performance than the previous
approaches.

III. SCALABLE LAUNCH AND REDUCED RESOURCE
CONSUMPTION

Consider a distributed system where all computing nodes
provide a remote execution service. Given a list of nodes,
that is a subset of the nodes of the system, a message routing
topology, and an application, the goal is twofold:

- Spawn the application processes on the list of nodes,
- establish a communication infrastructure that follows

the routing topology.
We aim at attaining this in a scalable way, by minimizing
both the launching time and the resource consumption.
Scalability means that the time to deploy the set of processes
should be logarithmic with the number of nodes in the



Algorithm 1: Spawning Along a Tree (Phase 1)
Inputs:
α: Identifier of the parent
ρ: rank of this process
Nodes: set of nodes (Only on the first process)

Variables:
τ : local Identifier
Children: set of couples (node, rank)
Desc: set of couples (node, rank)
η: integer (number of connected children)

Functions:
direct(S, p) : subset of S with the direct children of p
offsprings(S, p) : subset of S with all descendants of p

1 - sub spawn(C)
if C = ∅ then Phase 1 completed else

foreach (n, r) ∈ C, do
use the launch service of node n to spawn
the runtime process on n with parameters
τ, r

Start Algorithm 2 (phase 2)
2 - At Start

η = 0
τ = new Identifier
if α 6=⊥ then Connect to α

else
Children = direct(Nodes, ρ)
spawn(Children)

3 - Recv NodeList from α
Desc = NodeList
Children = direct(Desc, ρ)
spawn(Children)

4 - Accept connection from Id
Let d = offsprings(Desc, ρ)
Send d to Id
η = η + 1
if η = |Children| then Phase 1 completed

subset, and reduced resource consumption means that the
overhead in the amount of resources (number of established
connections) should also be logarithmic in the number of
nodes. To achieve this, we divide the goal in three overlap-
ping phases:

1) Spawn the runtime daemons following a predefined
spawning tree topology,

2) Exchange contact information between daemons, and
establish connections to enable the routing topology,

3) Launch the application processes locally.
The first phase relies on the distributed launch service.

This algorithm, presented in Algorithm 1, follows a simple
strategy of deployment along a spanning tree. Supported
trees include δ−ary tree (independent of the routing topol-
ogy), or the spanning tree of the routing topology. The first
process is launched by the user, initializes its α variable to

⊥, and gets the list of nodes from the user parameters. It
then extracts the list of its direct children from this list, and
spawns the corresponding runtime processes.

Every runtime process when launched, first connects to its
parent in the spawning tree, based on the contact information
of its parent provided as a launching argument. When
connected with the parent, it identifies itself using its newly
allocated contact information. The parent then extracts the
subset of nodes located under this child process in the
spawning tree, and provides it with this list.

When receiving the list of nodes, the child divides it into
two sets: it’s direct descendants, and the other nodes. Direct
descendants are spawned by contacting the remote launch
service of the appropriate node, and providing as the parent
argument its newly created contact information. The list of
other nodes will be transmitted recursively when the children
contact this process. Once all children have contacted this
process, the phase one is locally completed, and although
all processes in the system have not yet been launched, it
enters the second phase.

Algorithm 2: Sharing Contact Information (Phase 2)
Inputs:
All inputs of Algorithm 1 (α, ρ,Nodes)
and the following variables of Algorithm 1:
Children: set of (node, rank) for each children
τ : local Identifier

Variables:
OldChildren: set of identifier
KnownURI: set of (identifier, rank)
ChildrenURI: set of (identifier, rank)

1 - At Start – from Algorithm 1
OldChildren = ∅
KnownURI = {(ρ, τ)}
ChildrenURI = ∅
if |Children| = 0 ∧ α 6=⊥ then

Send KnownURI to α
2 - Recv URIList from p

foreach o ∈ OldChildren do
Send URIList to o

if p 6= α then
Send ChildrenURI to p
OldChildren = OldChildren

⋃
{p}

ChildrenURI = ChildrenURI
⋃
URIList

if |OldChildren| = |Children| then
Send ChildrenURI to α

else
KnownURI = KnownURI

⋃
URIList

The second phase consists of exchanging the contact
information to build a global knowledge of all contact
information in the system. This knowledge will enable an
arbitrary routing topology to establish all needed connections
for the remainder of the run. The algorithm, presented



formally in Figure 2, works as follows: each process keeps
a list of children that have already entered the phase 2
algorithm. At the beginning, this list is empty, and the only
known identifier is it’s own. This identifier is sent to the
parent if the process is a leaf. Non-leaf processes accumulate
this contact information in the KnownURI variable. Each
time they learn a new one, they forward it to all the older
children. When all of them are known, the accumulated
buffer is sent to the parent. When such a contact information
buffer is received by any other process (parent or child),
and all children are connected, it is forwarded to all the
children. Thus, the algorithm is an all-gather algorithm based
on flooding. However, to avoid sending too many small
messages, like the classical flooding algorithm would do, it
accumulates child information into a single message to the
parent, thus favoring a smaller number of larger messages
(there are multiple identifiers in the messages that are simply
forwarded). When the algorithm completes, ChildrenURI
contains the identifiers of all the processes.

Phase 3 executes simultaneously with phase 2: when all
remote processes have been spawned during phase 1, it
spawns the local application, and contributes to a simple
non blocking broadcast algorithm to signal the start of the
target application. This broadcast algorithm follows the user-
defined routing topology. If the routing decides to commu-
nicate directly with one of the runtime processes whose
identifier is not yet known, the communication is delayed
until phase 2 algorithm discovers the missing identifier.
Thus, the broadcast will proceed at worst when all identifiers
have been collected by the phase 2 algorithm.

A. Analysis of the algorithms

We present here the cost analysis of the proposed algo-
rithms, considering n as being the number of nodes, and a
δ−ary tree as the spawning topology.

Number of connections: To evaluate the Reduced Re-
source Consumption requirement of the algorithm, we esti-
mate how many connections are created during the three
phases. In our system, all messages of phase 3 or later
are routed by the user-defined topology. So, we consider
only messages of phase 1 and 2, and evaluate how many
additional connections our algorithm initiates.

Both phase 1 and 2 algorithms introduce only communi-
cations between a node and its parent (α) or its children. The
number of children a node has is |direct(Nodes, ρ)| which
is bounded by δ. Thus, this algorithm expects any runtime
process to handle at most δ+1+ k connections, where k is
the number of connections required by the chosen topology.

Completion time: To evaluate the completion time, we
consider a synchronous system, where each communication
takes a single time step. Section V presents a more practical
evaluation of the implementation. The phase 1 converges
in O(logδ n) time, since its behavior is similar to a simple
broadcast along the spawning tree. This is identical for the

phase 3. During the phase 2, one can distinguish two kinds
of messages: some messages go up on the spawning tree,
accumulated by the nodes, others flow down on the tree.
The duration of the algorithm is evaluated by considering
the highest leaf f in the tree: let h be the height of f ,
it takes max(h, δ − 1) emissions to send the messages and
accumulate them at the root of the tree. Then, it takes at most
h phases to let this information flow down if there is a branch
of depth h that does not hold the leaf f . Thus, the time of
phase 2, and the whole algorithm is O(max(logδ n, δ)).

Communications: We now consider the amount of
information that is exchanged during the three phases of
the algorithm, and the number of messages. There are
different kinds of data transmitted: nodes names, identifiers,
and rank lists. Additionally, phase 1 will undergo n spawn
commands, which will transmit a constant-size information
(the command to launch, the rank and the identifier of the
parent node, as well as the node on which to launch the
command). Each node that is not a leaf will execute at most
δ spawn operations.

Phase 3 depends on the user-command to launch, and on
the routing topology chosen by the user. So, we consider the
messages transmitted during phases 1 and 2 only. In phase
1, when a process connects to its parent, the parent sends the
list of pairs (node, rank) belonging to offsprings(Desc, ρ).
Each node that is not a leaf will thus send O(δ) messages
of size at most O(n/δ). During phase 2, each node that
is not a leaf nor the root will send one message to its
parent, O(

∑δ−1
k=1 k) = O(δ2) messages to its children, and

any message received from it’s parent to its children. These
messages consists of aggregated contact information from
each process at distance 1 from one of its ancestors, but not
its parent. Information coming from processes at distance
more than one has been accumulated. Let h be the height
of the process, there are O(h× (δ − 1)) such messages.

In total, in the worst case, this consists of O(δ2+logδ n×
(δ−1)) messages. These messages hold the contact informa-
tion of the processes; each message contains information that
is complemental to the other messages that passed through
this process, and at the end of phase 3, all processes have all
the information, thus the accumulated size of the information
sent by a process that is not a leaf during this phase is O(n).

IV. BACKGROUND: ORTE AND OPEN MPI
In this section, we briefly present how the runtime of

Open MPI, ORTE, coordinates the deployment, control and
monitoring of an application. We discuss the role of each
software component that is significant for this work, and
how they interact with each other. Then, we will present the
implementation of the Scalable Launch / Resource Reducing
Algorithm in the next section.

A. Process Architecture
One can distinguish three kinds of processes that interact

together to implement the runtime environment of Open
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MPI. Figure 1 gives a representation of these processes and
their software stack.

HNP The Head Node Process consists solely of runtime
environment: it is usually aliased to the mpirun command,
and its main role is to deploy and coordinate orte daemons
(orted) on the parallel machine. This process is usually
launched by the user or the batch scheduler on the front-
end machine with a list of computing machines to serve as
support for the parallel application.

orted ORTE Daemons are runtime environment processes:
they are the link between the HNP and the application
processes. One of such orted is launched per computing node
that belongs to the run.

App MPI Applications are processes that are linked with the
Open MPI library (which implements the MPI standard),
and the ORTE library. For MPI messages, they directly
communicate with each other. For the out-of-band messages,
they relay information through the ORTE layer with the local
orted process (e.g. forwarding a standard output message to
the mpirun command, or getting the port on which a direct
MPI connection can be established). There are as many
mpiapp processes as necessary on each node, to fulfill the
users requirements. All mpiapp processes on a node that
belong to the same MPI application are connected to the
same orted process.

B. Code Architecture

The Open MPI RunTime Environment (ORTE), as well as
the Open MPI library, are designed in a modular way using
the framework of the Modular Component Architecture
(MCA). Modules developed in the MCA framework follow
an object-oriented approach, with well defined public inter-
faces, and potentially multiple alternative implementations
of the interface. Which module is used for a specific setup is
decided at runtime, based on a selection process that involves
the hardware capabilities and user preferences.

ORTE includes 14 different components, which together
define its general behavior. Examples of such components
are errmgr to handle errors, iof to handle Input/Output
forwarding, etc... A detailed presentation of ORTE is outside
the scope of this paper. At the implementation level, most
of the modifications have been encapsulated in a new
Process Launching Module (PLM), prsh, presented below.
In addition, the Scalable Launch / Resource Reducing algo-
rithms rely on a routing topology, defined in the context of
ORTE by a routed module. The routing module implements
different strategies to route messages between daemons, and
between daemons and the Head Node Process.

C. PLM prsh

As described previously in Algorithms 1 and 2, the algo-
rithms internally rely on two topologies: one for spawning
the daemons and one for exchanging the messages during
phase 3 and after. The message routing topology is defined
by the choice of the routed MCA module.

The spawning topology is defined by the PLM prsh
optional argument, prsh_spawning_degree, which de-
termines the value of the δ parameter in the algorithms of
Section III. It uses a global ORTE parameter to define its
underlying launching mechanism, and assumes that any node
is capable of issuing commands given by this parameter to
launch an orted process. In the special case of δ being null,
the spawning tree used is identical to the message routing
tree defined by the selected routing topology (argument of
the routed MCA parameter).

D. Vanilla version of ORTE

To help understand the performance of the prsh PLM, we
describe here the vanilla version of ORTE based on the rsh
PLM and the slurm PLM. In the vanilla version of ORTE,
all orted are launched by a PLM with the same identifier: the
HNP identifier. As a consequence, all orted will first connect
to the HNP (in a star network), and when this is done, will
receive from the HNP the full system map (which includes
the identifiers of all nodes that are registered to the HNP).
Once this map is known, the selected routing topology can
be activated, since all orted know how to connect to any
other orted or HNP. From this point on, all messages are
routed following the selected routing topology. Then, the
application is started by broadcasting the launch command
on the routing tree, as described above.

We compare with two PLMs: slurm, and rsh. The first
uses the Simple Linux Utility for Resource Management [7].
Through an interactive SLURM allocation (the salloc
command), HNP obtains the list of hosts and the number
of processes to be launched. Then, in a forked process from
the HNP, it makes a call to the srun command that launches
all orted on the set of all machines. Such an approach relies
on the capabilities of the SLURM environment to launch the
runtime in a efficient and scalable manner.



The second, rsh, implements a simple loop of rsh com-
mands, forking new rsh processes, in the main loop of the
PLM. A user-level parameter defines how many of these
children co-exists simultaneously, as a way to control the
rate of connections, and the amount of processes on the head
node. A producer / consumer algorithm continue to fork new
rsh processes, until all of them have been launched. Then,
the PLM waits until all orted have connected to the HNP,
and proceeds with exchanging the node map.

V. PERFORMANCE MEASUREMENTS

In this section we present the performance measurements
of the Scalable Launch / Resource Reducing implementa-
tion, and compare it with other MPI runtime environments.
All the experiments were conducted on Grid’5000.

A. Experimental setup

Grid’5000 [12] is a French national testbed, dedicated
to large scale distributed system experiments. The platform
features 13 clusters distributed over 9 sites in France, each
with 90 to 340 PCs. The platform gathers approximately
7,000 cores featuring two architectures (Xeon and Opteron).

Within each cluster, the nodes communicate through Gi-
gabit Ethernet links and the communications between the
clusters are made through 10GB dedicated dark fibers of
the Renater French Education and Research Network.

One of the major features of the Grid’5000 testbed is the
ability for the user to boot all reserved nodes with his own
environment (including the operating system, distribution,
libraries...). We used this feature to run all our measurements
in a homogeneous environment. All the nodes were booted
under Linux 2.6.26, all the MPI implementations were
installed in the same environment, and all the tests were run
in a dedicated mode; process and network wise, no other
users were running any experiments on the same machines,
or on the same networks during the evaluation.

We compare our implementation, that we call ORTE PLM
prsh, with four other setups: the vanilla implementation of
ORTE from the Open MPI trunk, checkout 24321, using the
PLMs rsh and slurm, MPICH2 version 1.3.2p1 using Hydra
with rsh and SLURM launchers, and MVAPICH version
TODO:1.2?, using the ScELA launcher. All versions are
compiled in optimized mode. For the experiments using
SLURM, we used SLURM version 1.3.6, as distributed by
Debian version 5.0.8 Lenny. Experiments based on rsh were
using ssh as a remote shell system.

B. Methodology for performance measurements

To highlight each feature of an execution environment
we defined two testbeds. The first one, using /bin/true
application, underscores the time of deployment of the run-
time environment. We launch, in parallel, one /bin/true
process per node, for a varying number of nodes, using
the MPI runtime. Both MPI runtimes that we use (Open

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  100  200  300  400  500  600  700  800  900

T
im

e 
(s

)

Number of nodes

 0
 0.2
 0.4
 0.6
 0.8

 1

 10  20  30  40  50  60

T
im

e 
(s

)

Number of nodes

δ = 2
δ = 4
δ = 8

δ = 16
δ = 32
δ = 64

Figure 2. Execution time of /bin/true with the PLM prsh at various
δ parameters (routed δ−ary tree)

MPI and MPICH2) are able to launch non-MPI commands.
The main interest of this testbed is to evaluate solely the
operating costs due to the runtime: the MPI initialization
and finalization overheads are absent from this picture.

The second one, using an empty MPI application, high-
lights the initialization and finalization time of an MPI
application. During this initialization, through the MPI rou-
tine MPI_Init, the exchange of contact information takes
place, enabling communication between MPI processes.
After the MPI_Init follows immediately the MPI routine
MPI_Finalize which finalizes the MPI application and
tears down existing connections. This testbed evaluates the
overheads due to runtime in a parallel machine: everything
between the MPI_Init and the MPI_Finalize calls can
be considered as useful work for the user.

C. Evaluation

Launching overhead: The first experiment
aims at evaluating the impact of the value of the
prsh_spawning_degree parameter on the performance
of the PLM prsh. As described previously, this parameter
sets the degree of the spawning tree, δ. We measure the
overall time of mpirun /bin/true on a varying number
of nodes (one process per node), for different values of δ,
and present the measures in Figure 2. Light color points
represent the different measures, and darker lines represent
the mean values for these measures. As expected when
the number of processes to launch is smaller than δ, the
execution time progresses linearly.

The slope changes when the δ first processes take charge
of a significant part of the launch, exhibiting a nearly log-
arithmic progression. However, communications induced by
the phase 2 algorithm, to enable arbitrary routing, introduce
a measurable linear component on the performance. After
220 nodes, the execution time increases by approximately
half a second for all δ values. This is mainly due to the
experimental platform configuration: nodes are allocated
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on remote clusters, with variable response times for the
rsh/ssh service.

With δ = 64, the overall execution time is consistently
higher than with δ = 32. It is thus more efficient to
distribute the launching load on more processes than to
execute the loop 64 times. This threshold depends mostly
on the underlying remote service mechanism: for a service
faster than rsh/ssh, a larger δ might be more efficient.
Experiments with smaller values of δ at smaller scale (see
zoomed-in part of the figure) demonstrate that distributing
the load on too many nodes (using small δ values) introduces
a larger overhead, due to the latency of the ssh operation.

Launching overhead comparison: We compare the
PLM prsh with state of the art runtime systems in Figure 3.
The experimental setup is identical to the preceding experi-
ment. We used δ = 32 for the PLM prsh, as it was providing
the most consistently performant results. Both other rsh-
based runtimes (MPICH2 Hydra and vanilla Open MPI)
present an execution time significantly higher than prsh. This
remains true independently of the message routing topology
used (binomial tree and δ = 32−ary tree). The shape of both
vanilla ORTE and MPICH2 curves are similar: it is close to
a linear progression, with gaps at 128 and 390-400 nodes.
In ORTE, we were able to trace the cause of these gaps:
they are due to a connection storm happening at the HNP
level (all the launched processes are calling back to the HNP
as it is their only point of contact). When the connection
queue in the kernel becomes overloaded, connection packets
are dropped by the operating system hosting the HNP, and
the TCP protocol reemits the packets after a delay of three
seconds. Based on the nearly identical observations of the
vanilla ORTE and MPICH2 Hydra with rsh launcher, we
suspect Hydra is afflicted by the same behavior.

Using a launcher dedicated to clusters management,
SLURM, both vanilla ORTE and MPICH2 Hydra achieve
a notably higher performance: not being responsible to
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Figure 4. Execution time of an empty MPI application with the PLM prsh
at various δ parameters (routed δ−ary tree)

launch each and every rsh command, they remain in the
main loop to accept incoming connections, and avoid the
connection re-emission penalty. However, because the only
contact information that can be passed to the launcher
is the contact information of the only existing process at
the time of the launch (mpirun), the approach remains
centralized. Therefore, every daemon has to connect to
mpirun to bootstrap the contact information exchange. At
larger scales (above 500 nodes), the overhead of handling
an increasing number of connections becomes significant,
and the distributed approach of the PLM prsh is able to
outperform even a scalable launcher.

One can also see by comparing both prsh measurements
that the message routing topology, has no measurable effect
on the performance of a non-MPI application. When launch-
ing such an application, the only impact of this topology is
on the phase 3 of the launch process: different broadcast
trees are used. However, both broadcast trees (binomial tree
and δ−ary tree) appear to provide similar performance.

MPI overhead: Figure 4 is similar to Figure 2: it
presents the evaluation of the impact of the δ parameter,
on an empty MPI application. The behavior is significantly
different in this case: all versions keep a consistent behavior,
and the progression of the execution time becomes linear.

The Open MPI library, when it enters its MPI_Init
routine, starts by exchanging a significant amount of infor-
mation above the out-of-band messaging system of ORTE,
during an operation called the modex. This operation con-
sists of an all-gather of the contact information of the MPI
processes themselves (including low level communication
device connection information). This modex operation domi-
nates the launching time, and introduces a linear progression.
To tackle this overhead, it will be necessary to adapt the
modex operation, which is left for future work.

MPI overhead comparaison: As illustrated by Fig-
ures 5 and 6, when compared to the state of the art run-
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time environments, the PLM prsh still provides significant
reductions of the Init / Finalize overhead. Based on the data
in Figure 5, at 900 nodes the PLM prsh provides a factor
5 speedup when compared to other rsh-based launchers.
In the case of SLURM-based launcher, even if this factor
is reduced, it remains apparent starting from 500 nodes
and going up to about 2 at 900. All runtimes, including
the SLURM-based launchers, exhibit linear behaviors when
launching MPI applications. However, the slope of the
PLM prsh is the smallest one, potentially offering the most
scalable approach.

When comparing the two PLM prsh curves, one using the
δ−ary tree the other a binomial tree as the underling routing
topology, one can see small variations in the execution time.
The modex operation is done using a all-gather above the
routing tree. Using different trees to complete this operation
does not introduce a significant performance difference;
however another implementation for the all-gather could
take advantage of the routing information to improve the

dissemination of information.
ScELA is capable to launch any kind of application, but

in our experiments using the /bin/true benchmark, it
was failing to establish a connection with the application
processes. This does not prevent the run of the benchmark,
but the exceptions raised to manage the absence of connec-
tion seem to introduce a significant overhead, making the
overall runtime of the /bin/true benchmark significantly
higher than the MPI benchmark. As a consequence, we
focus our comparison with the MPI benchmark. Among
the MPI applications, ScELA is also dedicated to launch
MVAPICH applications, as ORTE is dedicated to launch
Open MPI applications, and Hydra, MPICH applications.
Since MVAPICH is designed to work on Infiniband clusters,
we limit our comparison to the largest cluster featuring
infiniband system at our disposal: the 140-nodes Graphene
cluster hosted at the Nancy site of Grid’5000.

Figure 6 thus compares the performance of the empty
MPI benchmark, with the prsh and ScELA, from 1 to
140 nodes, using the two available strategies for ScELA:
dynamic selection of the degree, and fixed degree. For
the fixed degree strategy, we tuned for each number of
nodes the best value for the degree, and represent only
the measurements of the best value. One can see that the
prsh implementation of the δ−ary tree approach outperforms
the ScELA implementation of the same idea at small scale
(below 64 nodes). At 80 nodes and above, the fixed degree
strategy performs better than the dynamic degree for ScELA,
but the fixed degree implementation of the prsh continue to
provide better performance. At this scale, the exchange of
all contact information, that is done in prsh to enable an
arbitrary communication infrastructure, but not in ScELA,
that uses the spawning tree to provide all communications,
does not impact negatively the performance.

VI. DISCUSSION

A linear regression of the empty MPI applications launch-
ing times for both rsh-based frameworks, and for the PLM
prsh, estimates that the PLM prsh has a progression slope
an order of magnitude smaller than the others rsh-based
launchers. The estimation forecasts that up to 20,000 com-
puting nodes can be launched in less than a minute. It is
thus reasonable to consider it for current supercomputers.
Improvement in the MPI library and the routing systems will
need to be considered to prepare for larger scales. From the
experience harnessed while developing the PLM prsh, we
isolate two major features that we think crucial to obtain a
reasonable launching / managing overhead:

1) Parallel Launching: Parallel launching remains a
key component to reach a lower launching time, one cannot
afford to iterate over a set of launching commands. Using
a more efficient approach is required, such as a recursive
launching process as we did with the PLM prsh, or such



as a dedicated launching system, more integrated with the
machine scheduler, like SLURM.

2) Distributed Management: This is a key point to keep
a low overhead at larger scale, as illustrated by Figures 5
and 3. Requesting all processes of the runtime to connect
back to a single process creates an obvious bottleneck at
scale. This bottleneck remains even if an efficient routing
strategy is applied after the initial storm.

However, simultaneously achieving points 1 and 2 is often
made difficult by the launching systems available on parallel
machines: on most parallel launchers, only a single node
can issue launch commands. In other words, even the most
scalable launcher only provides a single point of contact,
and thus annihilates the benefit of the parallel launching. To
avoid the single point of contact, it is imperative that as pro-
cesses are launched, they publish their contact information,
and that other processes, launched afterwards, use this new
contact information to connect to the runtime infrastructure.
To the best of our knowledge, most of the popular launching
systems don’t allow for this kind of interaction between the
MPI runtime and the underlying launching system. As a
result, they are able to launch in a very short time large
number of processes, but they have to pay the expensive cost
of building a communication infrastructure, on their own,
from scratch. It seems beneficial to build this runtime com-
munication infrastructure in cooperation with the launching
system, directly during the launch progress.

VII. CONCLUSION

In this paper, we presented a Scalable Launch / Resource
Reducing algorithm to enable the launch of large scale MPI
applications. The algorithm comes in three phases: first a
deployment phase along a δ−ary tree; second a contact
information exchange phase, which implements an all-gather
operation; and last an application launch phase that runs on
top of the runtime-specific routing. We analyzed the phases
of this algorithm, and highlighted their scalable properties:
logarithmic launch time and number of messages per nodes.
The algorithm has been implemented in the PLM prsh, a
module for the Open MPI Runtime Environment (ORTE).
We evaluated the performance of this implementation on
a thousand node platform, demonstrating a significant im-
provement over the state of the art runtime environments for
MPI: Open MPI, MPICH2, and MVAPICH.

While the PLM prsh presents a certain factor of improve-
ment for applications compared with others runtimes, the
most significant feature is the slope of it’s linear behavior
which is the smallest of all launchers we compare with
(including SLURM based), up to an order of magnitude
smaller than all other rsh-based launchers.

We contend that even higher factor of improvement can be
achieved for parallel applications with a tighter interaction
between the launching system and the parallel runtime.
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