
Virtual Systolic Array for QR Decomposition

Jakub Kurzak, Piotr Luszczek,
Mark Gates, Ichitaro Yamazaki

University of Tennessee
Knoxville, TN 37996, USA

{kurzak, luszczek, mgates3, iyamazak}@eecs.utk.edu

Jack Dongarra
University of Tennessee, Knoxville, TN 37996, USA

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
University of Manchester, Manchester, M13 9PL, UK

dongarra@eecs.utk.edu

Abstract—Systolic arrays offer a very attractive, data-
centric, execution model as an alternative to the von Neumann
architecture. Hardware implementations of systolic arrays
turned out not to be viable solutions in the past. This article
shows how the systolic design principles can be applied to
a software solution to deliver an algorithm with unprece-
dented strong scaling capabilities. Systolic array for the QR
decomposition is developed and a virtualization layer is used
for mapping of the algorithm to a large distributed memory
system. Strong scaling properties are discovered, superior to
existing solutions.

Keywords-systolic array; QR decomposition; multi-core;
message passing; dataflow programming; roofline model;

I. INTRODUCTION

Systolic architectures targeting hardware implementations
were haunted by an array of problems. They were con-
structed for a specific problem size, which in linear algebra
meant the size of a dense matrix or the bandwidth of a band
matrix. This put the feasibility of manufacturing them in
silicon in question. They operated at the granularity of a
single floating-point number, i.e., a single matrix element,
which prevented them from achieving high efficiency. Fi-
nally, in many cases, they could offer high throughput, but
suffered from high latency, e.g., they could maintain high
utilization for a series of dense matrix factorizations, but
were affected by high load imbalance for a single one. A
software implementation of a systolic algorithm allows for
solving virtually all of these problems.

In dense linear algebra the level of granularity can easily
be brought up by replacing operations on individual matrix
elements with operations on matrix tiles, i.e., square sub-
matrices of relatively small size compared to the size of
the matrix. This mitigates the communication overhead by
leveraging the surface to volume effect, i.e., the fact that a
tile operation involves O(n3) floating point operations on
O(n2) data.

Two simple mechanisms allow for resolving the problem
of load imbalance. A virtualization layer can be used for
flexible mapping of multiple systolic processing units to each
physical hardware core. A data bypass mechanism can be
used to speed up propagation of read-only data along one
of the systolic array dimensions.

Following sections start with the motivation for seeking
an algorithm with strong scaling properties, and move on to
general background on systolic arrays and the QR decom-
position. Then the systolic array for the QR decomposition
is presented and its software implementation is described.
Performance results are provided, along with comparisons
against state-of-the-art software and followed with the dis-
cussion.

II. MOTIVATION FOR STRONG SCALING

Dense linear algebra software has traditionally been fo-
cused on asymptotic scaling or weak scaling. Asymptotic
scaling describes how the solution time varies with the
problem size for a fixed number of cores. Weak scaling
describes how the solution time varies with the number
of cores for a fixed problem size per core. Delivering
good asymptotic scaling or weak scaling has been the main
objective of legacy software packages, such as LAPACK [1]
and ScaLAPACK [2]. Meeting this objective relies on the
capability of growing the total problem size.

Current developments in microprocessor technology are
marked by the continuation of Moore’s law [3] and the
demise of Dennard’s scaling laws [4]. While the numbers
of transistors are still increasing, the clock rates have been
stagnant for almost a decade now. The result is an explosive
growth in the level of on-chip parallelism, manifested both
in the number of cores, i.e., Thread Level Parallelism (TLP),
and the number of floating point units per core, i.e., Instruc-
tion Level Parallelism (ILP).

Recent reports from the Defense Advanced Research
Projects Agency (DARPA) [5], [6] and the International
Exascale Software Project (IESP) [7] paint the landscape
of the future High Performance Computing (HPC) systems.
Floating point capabilities are expected to rise rapidly with
increasing numbers of cores and floating point units. At
the same time, memory capacity is expected to grow at
a much slower pace, eventually falling behind arithmetic
performance by an order of magnitude. Exascale systems
are projected to have on order of magnitude lower ratio of
memory capacity to floating point performance.

It is clear then that emphasis has to be shifted from
asymptotic scaling and weak scaling to strong scaling, which

describes how the solution time varies with the number of
cores for a fixed total problem size. Simply put, algorithms
with no strong scaling properties are bound to run out
of memory before reaching good performance levels on
future large-scale systems. The solution presented in this
article shows unprecedented strong scaling properties, i.e.,
the capability of utilizing very high numbers of cores to
solve very small problems by today’s dense linear algebra
standards.

III. BACKGROUND

A. Systolic Arrays

Systolic arrays are descendants of array-like architectures
such as iterative arrays, cellular automata and processor
arrays. A systolic array is a network of processors that
rhythmically compute and pass data through the system. The
seminal paper by Kung and Leiserson [8] defines systolic
arrays as devices with “simple and regular geometries and
data paths” with “pipelining as general methods of using
these structures.”

The systolic array paradigm is the counterpart of the
von Neuman paradigm. While the von Neuman architecture
is instruction-stream-driven by an instruction counter, the
systolic array architecture is data-stream-driven by data
counters. A systolic array is composed of matrix-like rows
of processing units, each one connected to a small number
of nearest neighbors in a mesh-like topology. The operation
is transport-triggered, i.e., triggered by the arrival of a data
object.

The term “systolic array” was coined in the paper by
Kung and Leiserson [8], where they introduced basic systolic
topologies and applied them to problems in dense linear
algebra. Applications in signal processing were pointed out:
convolution, Finite Impulse Response (FIR) filter, and the
Discrete Fourier Transform (DFT). General discussion and
motivation for systolic arrays is given in another publication
by Kung [9] and also Fortes and Wah [10]. Systematic
treatment of the topic is provided in books by Robert [11],
[12] and Evans [13].

B. Tile QR Decomposition

The essence of the tile QR algorithm is the idea of apply-
ing Householder reflectors incrementally. Unlike the block
algorithm of LAPACK and ScaLAPACK, which eliminate a
full panel of the matrix at a time, the tile algorithm descends
down the panel tile by tile, eliminating only one tile at a
time. Such operation is much more cache friendly and much
more suitable for pipelining, since elimination of each panel
tile can be immediately followed by application of updates
to the right.

The algorithm is derived from methods of modifying the
factors of a matrix, following an update of a small rank.
Gill et al. describe algorithms for modifying Cholesky and
QR factors following a rank-one update, in their article from

1974 [14], [15]. In 1994, Berry et al. combined Householder
reflectors and Givens rotations to produce an algorithm
which can be considered a precursor of the tile algo-
rithms [16]. It combines Householder reflectors and Givens
rotations to reduce the matrix to the block-Hessenberg form.

This approach was rediscovered a few years ago by Buttari
et al. [17], [18] and was subsequently used to produce high
performance codes for multicore processors [17], [18], the
Cell processor [19] and systems with GPU accelerators [20].
The idea of incrementally applying Householder reflectors
goes beyond the QR decomposition, though. It has also
been successfully applied to block-bidiagonal reduction and
block-tridiagonal reduction, leading to very fast singular
value solvers and symmetric eigenvalue solvers.

for k = 0 to N − 1 do
dgeqrt(inoutAkk)
for n = k + 1 to N do

dormqr(inAkk, inoutAkn)
end for
for m = k + 1 to N do

dtsqrt(inoutAkk, inoutAmk)
for n = k + 1 to N do

dtsmqr(inAmk, inoutAkn, inoutAmn)
end for

end for
end for

Figure 1. Tile QR serial definition.

Figure 1 shows the serial definition of the tile QR al-
gorithm. Parameters are matrix tiles, prefix indicates the
direction, postfix indicates the position in the matrix. Fig-
ure 2 shows the tiles affected by each kernel in a 3 × 3
factorization. The kernels perform the following operations:

dgeqrt
Performs QR factorization of a diagonal tile. Places
the R factor in the upper triangle and Householder
reflectors in the lower triangle.

dormqr
Applies Householder reflectors computed by the
dgeqrt kernel to one tile of the trailing submatrix.

dtsqrt
Performs incremental QR factorization of a subdi-
agonal tile. Updates the R factor in the diagonal
tile and places Householder reflector coefficients
in the subdiagonal tile.

dtsmqr
Applies Householder reflectors computed by the
dtsqrt kernel to two tiles of the trailing submatrix.

Same as the canonical QR, the tile QR is numerically
stable, because of the use of orthogonal transformations. The

dgeqrt dormqr dormqr

dtsqrt dtsmqr dtsmqr

dtsqrt dtsmqr dtsmqr

Figure 2. Kernel invocations in a 3× 3 tile QR.

elements of the R factor are the same in absolute values, but
different Householder reflectors are produced and a different
procedure is required for their application to the right-hand
side when solving a system of equations.

IV. SOLUTION

The solution is built in three steps. First a systolic array
for the tile QR algorithm is developed and an extension of
the systolic processing model is presented, referred to as
data bypass. Then virtualization is applied, i.e., mapping
of systolic array elements to physical cores. Finally, an
abstraction layer is introduced for handling communication
among cores through either intra-node (shared memory) or
inter-node (message passing) mechanisms.

A. Systolic QR Algorithm

Canonical dense matrix factorizations, such as Gaussian
elimination, Cholesky decomposition or QR decomposition
can be described with a set of nested loops with three levels
of nesting, which is synonymous with O(n3) computational
complexity. At the same time, systolic arrays traditionally
target planar layouts, suitable for integrated circuits. There-
fore, systolic arrays are built by applying a projection to
the execution space of the algorithm. Usually, the projection
is done along one of the dimensions, resulting in a square
or triangular shape of the array. Projection can also be
applied at an angle, producing a hexagonal array. The former
approach is popular for dense matrices, the latter is popular
for band matrices.

Here, projection along the m dimension (Figure 1) is
applied, producing a traditionally shaped triangular systolic
array (Figure 3). Each row of the array is responsible for one
step of the factorization. Each diagonal processing unit is
responsible for factoring one panel, by applying one dgeqrt
operation and a sequence of dtsqrt operations. At each step a
diagonal unit consumes one tile of the matrix and produces

one tile of Householder coefficients, while retaining the
R factor and updating it accordingly. The transformations
are forwarded to the right, to the off-diagonal units. Each
off-diagonal unit applies the transformations by invoking
one dormqr operation and a sequence of dtsmqr operations.
Householder reflections are received from the left and for-
warded to the right. Matrix tiles are received from above
and updated tiles are forwarded down. The matrix enters
the array from the top, and the Householder reflections
coefficients exit at the bottom. At the time of completion,
the systolic units contain the final R factor.

A31

A21

A11

A32

A22

A12

A33

A23

A13

A34

A24

A14

V31

V21

V11

V32

V22

V12

V33

V23

V13

V34

V24

V14

Figure 3. Systolic array for tile QR.

B. Data Bypass Extension

Traditionally, the systolic unit follows the cycle: receive
data, perform computation, send data. As a result, the matrix
enters the array at an angle, and propagates one step at a time
in both the vertical and horizontal direction. This leads to
high load imbalance, as many units are idle before the data
reaches them. The slow propagation can easily be improved
by introducing a simple data bypass mechanism, which
allows for overlapping of communication and computation.

The data traveling in the vertical dimension is modified
at every step, and processing has to follow the receive, com-
pute, send cycle. At the same time, the data traveling in the
horizontal dimension is only read at each step, and therefore
the original receive, use, send cycle can be replaced with

a receive, forward, compute cycle. That is, upon reception
from the left, the data is immediately forwarded to the right
(Figure 4). This allows for overlapping communication and
computation in the horizontal dimension and accelerating the
feeding of the matrix into the array. It is natural to introduce
such an extension if the target system is a distributed
memory machine with dedicated communication hardware.

 ...

A21

A11

 ...

A22

A12

 ...

A23

A13

 ...

A24

A14

Figure 4. Data bypass in QR systolic array.

C. Virtualization Layer

The size of the systolic array is problem specific, i.e.,
the number of systolic units in the top row of the array
equals the number of tiles in a row of the matrix. On top
of that, the array has a triangular shape. Therefore, a one-
to-one mapping of systolic units to physical cores would
result in a rather odd number of cores being used. Plus,
with the number of cores equal to the number of units, the
load imbalance would be very high, due to the time required
for the data to propagate to the units at the bottom of the
array. In the general case, a much more flexible solution is
desired.

To address this problem, a virtualization layer is intro-
duced that allows for mapping of multiple systolic units to
each physical core in the system. One simple assignment
is a zigzag pattern, where consecutive cores are assigned
along the rows of the array and “spill over” from row to
row (Figure 5). If N is the dimension of the array, r is the
row number, c is the column number, and P is the number
of cores, then the unit in row r and column c belongs to the
core (Nr + c− r(r + 1)/2) mod P .

Because the data shifts through the array from top to
bottom and from left to right, such a mapping allows for
quick propagation of work to cores. Many assignment are
possible, e.g., block-cyclic or assignments relying on space
filling curves, such as Morton and Hilbert curves. Different
assignments will expose different tradeoffs between the load

balance, the locality and the volume of communication.
These alternative mappings are not investigated here.

0 1 2 30 1 2 3 0 1

1 2 32 3 0 1

0 1 2 30 1 2 3 0 10 1 2 30 1 2 3 0 1

33 0 1

33 0 1

0
1 2 32 3

0

2

2

Figure 5. Mapping of systolic units to cores.

D. Communication Layer

In principle, communication proceeds through channels
between pairs of systolic units. However, multiple units
can be mapped to each core, and multiple cores reside
in each node of the distributed memory system. Therefore
two levels of indirection are involved. Each core handles
communication requests for its systolic units, and each node
handles communication requests for all its cores.

The implementation relies on launching one software
thread per hardware core in the system, and dedicating one
thread (one core) to serve as a communication proxy to
handle all inter-node (message passing) communication. The
actual system of choice, the Kraken supercomputer at the
National Institute for Computational Science, has 12 cores
per node (two six-core sockets).

From the standpoint of a core, the communication model
is flat (core to core). However, all communication requests
are “hijacked” by the communication proxy. (A rudimentary
protocol connects the worker cores to the proxy core). The
proxy core uses shared memory mechanisms to handle local,
intra-node communication, and message passing to handle
non-local, inter-node communication. Intra-node communi-
cation is handled through memory aliasing and involves no
copies.

E. Data Distribution

Unlike in traditional systolic arrays, here data has an
initial and final location within the system. It is important
to mention that the matrix is laid out in the memory of each
node by tiles, where each tile is stored in a continuous mem-
ory region, which is beneficial both for kernel performance
and the performance of communication.

At the beginning, the tiles of the matrix are assigned to
the entry points of the systolic array, i.e., the cores where the
top row of the array is placed. This means that initially the
matrix follows a 1D block-cyclic distribution. If the number
of cores is smaller than the number of units in the top
row, then the matrix is spread across all cores. Otherwise
it is spread across a subset of cores. Core placement is
synonymous with node placement, i.e., there is only one
copy of a given tile in a node.

When processing is finished, the R factor is distributed
across all the cores, and the Householder reflectors coeffi-
cients are distributed across the cores where the diagonal of
the array resides. If desired, the final distribution can easily
be reshuffled to the initial distribution. The cost would be
negligible, considering the overall volume of communication
in the course of the factorization. The reshuffling is not done
here.

V. EXPERIMENTAL SETUP

A. Target Hardware

All runs were done on the Kraken supercomputer at the
National Institute for Computational Science. The Kraken
machine is a Cray system operated by the University of
Tennessee and located in Oak Ridge, Tennessee. The entire
system consists of 9408 computed nodes. The experiments
presented here used up to 1984 nodes, which is about one
fifth of the machine. Each node contains two 2.6 GHz six-
core AMD Opteron (Istanbul) processors, 16 GB of memory
and the Cray SeaStar2+ connection.

B. Software Stack

The code was compiled with the default compiler on the
Kraken system, which is The Portland Group, Inc. (PGI)
compiler. The core blas kernels from the PLASMA pack-
age [21] were used as the serial building blocks. The
code was linked against the Basic Linear Algebra Sub-
programs (BLAS) provided by Cray (LibSci) and Cray’s
Message Passing Interface (MPI).

VI. PERFORMANCE RESULTS

A. Systolic QR

Three fixed problem sizes of approximately 10K, 20K,
and 40K (exactly N = 10, 368, N = 20, 736, and
N = 41, 472) were tested for varying number of cores,
as shown in Figures 6, 7, and 8. For each test, two tile
sizes of nb = 192 and nb = 256 were tested. The smaller
nb = 192 tile size achieved higher peak performance, and
is shown here. For the largest problem size, N = 40K,
the larger nb = 256 block size had better performance
for small number of cores, less than 7500 cores, but for
larger number of cores achieved a peak performance of 18.2
Gflop/s, compared to 22.9 Gflop/s peak for nb = 192. In all
three instances, the performance initially increases as more
cores are used, and then eventually plateaus as the maximum

G
F

L
O

P
S

CORES

0 400 800 1200 1600 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000
systolic QR

LibSci QR

HPL 4/3 N3

HPL 2/3 N3

Figure 6. Systolic QR performance for a problem of size 10K × 10K.

G
F

L
O

P
S

CORES

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

systolic QR

LibSci QR

HPL 4/3 N3

HPL 2/3 N3

Figure 7. Systolic QR performance for a problem of size 20K × 20K.

amount of parallelism, determined by the critical path, is
exploited. For all three problem sizes, systolic QR achieved
a significantly higher peak performance than the Cray LibSci
QR and HPL tests.

Figure 9 shows an execution trace for a problem of size
10K × 10K running on 240 cores. The critical path of the
algorithm is clearly visible at the end of the factorization
but is well hidden throughout the earlier stages of execution
by the updates performed by the dtsmqr function.

B. Cray Scientific Libraries (LibSci) package

The Cray LibSci package includes an implementation of
the QR factorization from ScaLAPACK. LibSci distributes
the matrix in a 2D block-cyclic fashion, with a p × q
processor grid. The performance is sensitive to the ratio of
p to q, and to the block size nb. For LibSci, we found that

Figure 9. Execution trace for systolic QR tile factorization for a problem of size 10K × 10K on 240 cores.

0 8000 16000 24000 32000

0

4000

8000

12000

16000

20000

24000

G
F

L
O

P
S

CORES

systolic QR

LibSci QR

HPL 4/3 N3

HPL 2/3 N3

Figure 8. Systolic QR performance for a problem of size 40K × 40K.

on a large number of cores, a wide processor grid with a
small block size is preferred. We ran LibSci with the block
sizes of nb = 8, 16, 32, 64, 128, 256 on the processor grids
with p = 2, 3, 4, 6, . . . for p < q. Figures 6, 7, and 8 show

the best performance of LibSci from test runs on different
numbers of cores.

C. High Performance Linpack (HPL)

The LU factorization using the High Performance Linpack
(HPL) benchmark is also compared. LU is a different
algorithm, with O(23N

3) flops compared to the O(43N
3)

flops for QR. Results here plot both the raw performance
result, based on 2

3N
3 flops, and for better comparison with

QR, a virtual Gflop/s rate using 4
3N

3 flops. This provides
a more meaningful comparison of problems per second
or time-to-solution. That is, which algorithm can solve a
system of linear equations fastest, regardless of theoretical
operation count. Similar size problems over the same range
of cores were tested, with the problem size set to be a
multiple of the block sizes. HPL also uses a 2D block-
cyclic distribution, with performance sensitive to the ratio
of p to q, and to the block size nb. For each number of
cores, several different processor grids were tried. Nearly
square processor grids, with p ≈ q, performed poorly. Wide
processor grids, with p ≤ 1

2q, achieved good performance.
The best performing grid size tested for each number of
cores is shown in Figures 6, 7, and 8. Different block sizes
were also tested for each grid size. Generally a moderate

block size of nb = 120 achieved the best performance. A
larger block size of nb = 220 achieved best performance
for larger numbers of cores, over 2500 cores for n = 21120
and over 9900 cores for n = 42240. Smaller block sizes of
nb = 20 and nb = 40 were tested on some grids and found
to have worse performance.

VII. DISCUSSION

A. Analysis of Scalability Bounds with Amdahl’s Law

for k = 0 to N − 1 do
dgeqrt(inoutAkk)
dormqr(inAkk, inoutAk,k+1)
dtsqrt(inoutAkk, inoutAk+1,k)
dtsmqr(inAk+1,k, inoutAk,k+1, inoutAk+1,k+1)

end for

Figure 10. Operations on critical path of the tile QR.

The attention is next shifted to application of Amdahl’s
Law [22] because it allows analysis of strong scaling prop-
erties of the systolic QR factorization.

The serial portion of the QR factorization is the computa-
tion performed on the diagonal of the matrix because the off-
diagonal updates may be performed in a parallel and scalable
fashion [23], [24], [2]. In fact, the diagonal computation
constitutes the critical section of the algorithm. Figure 10
shows the four essential operations that are performed on
the critical path but the dormqr and dtsqrt may proceed
in parallel with each other. Based on this observation, the
sequential computation time may be formulated as follows:

tcomp = 3
N
B

4
3B

3

α
= 3N B2/α (1)

where B is the tile size and α is the average Gflop/s
rate of the four tile operations from Figure 10. Trivially,
N/B yields the number of tiles in a single column or row,
while 4

3B
3 is the total number of floating point operations

performed for the standard QR algorithm. tcomp has been
obtained experimentally by performing a sequential run and
measuring time spent in execution of the critical path. Based
on this experiment, the execution rate α was determined
to be 3.2 Gflop/s and 3.3 Gflop/s for tile sizes B of 192
and 256, respectively. Not surprisingly, this is much lower
than the measured execution rate of dtsmqr which was
barely below 7.5 Gflop/s. In addition to computation, there
is a need to account for communication time that has data
transmission and latency components. The transmission of
data occurs by utilizing bandwith β for 4N/B tiles (overlap
of dormqr and dtsqrt is not possible because there is only
a single network interface shared between all cores) of B2

elements total after λ latency delay, and the communication

happens only for every Cth tile because there are C cores
per node:

tcomm = 4

(
N

B
B2 1

β
+
N

B
λ

)
1

C
(2)

Parameters β and λ (bandwidth and latency) are usually
provided by a vendor and are often measured with micro-
benchmarks [25]. Just as it was the case with computation
time, the experimental method of measuring these parame-
ters was chosen.

0 200 400 600 800 1000 1200 1400 1600

0

500

1000

1500

2000

2500

G
F
L
O
P
S

CORES

Figure 11. Systolic QR performance for a problem of size 10K × 10K
for tile size 192 and its theoretical performance bounds.

0 1000 2000 3000 4000 5000 6000 7000

0

2000

4000

6000

8000

10000

G
F
L
O
P
S

CORES

Figure 12. Systolic QR performance for a problem of size 20K × 20K
for tile size 192 and its theoretical performance bounds.

The constructed model may be used to estimate how
close the presented implementation reaches the theoretical
scalability limits. In Figures 11, 12 , 13, 14, 15 , 16 a
solid line indicates model based on computation only and
dashed line represents model based on computation and

0 5000 10000 15000 20000 25000

0

5000

10000

15000

20000

25000

30000

35000

40000

G
F
L
O
P
S

CORES

Figure 13. Systolic QR performance for a problem of size 40K × 40K
for tile size 192 and its theoretical performance bounds.

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

G
F
L
O
P
S

CORES

Figure 14. Systolic QR performance for a problem of size 10K × 10K
for tile size 256 and its theoretical performance bounds.

communication. On average, the latter model is within 13%
of the theoretical limit for B = 192 and 5% for B = 256.

The model can also be used to obtain the sensitivity of
scalability with respect to computational speed, bandwidth,
and latency. Table I shows this sensitivity as improvement
factors one can obtain by using both computation and
communication times in our model. Using computation-only
time for the critical path reduces accuracy of the model
by mostly a single digit factor. Only for N = 10K and
B = 256 we see 33× improvement but for this configuration
the modeling error is already low: below 1%. On the other
hand, using communication-only time is very inaccurate, or-
ders of magnitude in fact, and hence should be avoided. It is
then possible to conclude that the presented implementation
is still computation-bound and improving performance of a
single core would benefit the scalability the most.

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

G
F
L
O
P
S

CORES

Figure 15. Systolic QR performance for a problem of size 20K × 20K
for tile size 256 and its theoretical performance bounds.

0 5000 10000 15000 20000 25000

0

5000

10000

15000

20000

25000

G
F
L
O
P
S

CORES

Figure 16. Systolic QR performance for a problem of size 40K × 40K
for tile size 256 and its theoretical performance bounds.

B. Further Observations

The systolic approach allowed for testing the scalability of
the algorithms under extreme conditions, meaning extremely
large number of cores for relatively small matrix sizes.
Notably, the performance charts include a run where 1,488
cores were used to factor a matrix consisting of 1,600 tiles
(number of cores approaching the number of tiles in the
matrix). They also include a run where 23,808 cores were
used to factor a matrix of size 41,472 (number of cores
approaching the size of the matrix).

Another interesting observation can be made. The largest
run involved a matrix of size 41,472, which occupies
41,4722×8 bytes < 13 GB of memory. The code main-
tained parallel efficiency of 57% when ran on 192 nodes.
Interestingly, this matrix can still fit entirely in the memory
of one node, which is 16 GB. In other words, nearly 200

N B Improvement Improvement
over over
comp.-only comm.-only

10K 192 2× 106×
20K 192 2× 87×
40K 192 1× 32×
10K 256 33× 14383×
20K 256 2× 439×
40K 256 1× 197×

Table I
IMPROVEMENT FACTORS FOR ESTIMATIMATING ACHIEVED
PERFORMANCE BASED ON THE COMPLETE MODEL VERSUS

COMPUTATION-ONLY MODEL AND COMMUNICATION-ONLY MODEL.

nodes were used efficiently to solve a problem which fits in
the memory of a single node.

VIII. CONCLUSION

This article showed how systolic design principles can
be applied to a software solution to deliver an algorithm
with strong scaling capabilities never seen before. In fact,
achieved the observed scaling approaches closely the limit
dictated by the Amdahl’s law. The achieved capabilities
outperform by a many-fold margin current state of the art
software packages and vendor-tuned libraries, neither of
which have been designed with systolic architecture in mind
but whose design blueprints aimed at high performance
levels and good scalability properties. It is posited that
virtual systolic architecture offers a simple, yet effective,
computational model which makes conceptualization of
large scale dense linear algebra algorithms possible and in
addition makes extreme cases of strong scaling feasible at
thousand core-count regimes.

ACKNOWLEDGMENT

This work is supported by grant #SHF-1117062: “Parallel
Unified Linear algebra with Systolic ARrays (PULSAR)”
from the National Science Foundation (NSF).

The authors would like to thank the National Institute
for Computational Sciences (NICS) for a generous time
allocation on the Kraken supercomputer.

The authors would also like to thank Yves Robert for
sharing his expertise on systolic arrays in many stimulating
conversations.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Dem-
mel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide.
Philadelphia, PA: SIAM, 1992, http://www.netlib.org/lapack/lug/.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLA-
PACK Users’ Guide. Philadelphia, PA: SIAM, 1997, http:
//www.netlib.org/scalapack/slug/.

[3] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics, vol. 38, no. 8, 1965.

[4] S. Borkar, “http://dx.doi.org/10.1109/40.782564 Design Challenges
of Technology Scaling,” IEEE Micro, vol. 19, no. 4, pp. 23–
29, 1999.

[5] P. Kogge (Editor & Study Lead), “Exascale computing
study: Technology challenges in achieving exascale sys-
tems,” DARPA Information Processing Techniques Office,
Tech. Rep. 278, 2008, http://www.er.doe.gov/ascr/Research/CS/
DARPAexascale-hardware(2008).pdf.

[6] V. Sarkar (Editor & Study Lead), “Exascale software
study: Software challenges in extreme scale systems,”
DARPA Information Processing Techniques Office,
Tech. Rep. 159, 2008, http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSSreport101909.pdf.

[7] J. Dongarra, P. Beckman et al., “The international exascale
software roadmap,” Int. J. High Perf. Comput. Applic., vol. 25,
no. 1, 2011, http://hpc.sagepub.com/ISSN: 1094-3420 (to ap-
pear).

[8] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),”
in Sparse Matrix Proceedings. Society for Industrial and
Applied Mathematics, 1978, pp. 256–282, http://books.google.
com/books?id=lYRNdo2m7ssC\&pg=PA256ISBN: 0898711606.

[9] H. T. Kung, “Why systolic architectures?” Computer,
vol. 15, no. 1, pp. 37–46, 1982, http://dx.doi.org/10.1109/MC.1982.
1653825DOI: 10.1109/MC.1982.1653825.

[10] J. A. B. Fortes and B. W. Wah, “Systolic arrays-
from concept to implementation,” Computer, vol. 20,
no. 7, pp. 12–17, 1987, http://dx.doi.org/10.1109/MC.1987.
1663616DOI: 10.1109/MC.1987.1663616.

[11] Y. Robert, Impact of Vector and Parallel Architec-
tures on the Gaussian Elimination Algorithm. Manch-
ester University Press, 1991, http://books.google.com/books?id=
6B4NAQAAIAAJISBN: 0470217030.

[12] P. Quinton and Y. Robert, Systolic Algorithms & Archi-
tectures. Prentice Hall, 1991, http://www.amazon.com/dp/
0138807906/ISBN: 0138807906.

[13] D. J. Evans, Systolic Algorithms (Topics in Computer
Mathematics). Routledge, 1991, http://www.amazon.com/dp/
2881248047/ISBN: 2881248047.

[14] P. E. Gill, G. H. Golub, W. A. Murray, and M. A. Saunders,
“Methods for modifying matrix factorizations.” Stanford, CA,
USA, Tech. Rep., 1972.

[15] P. E. Gill, G. H. Golub, W. A. Murray, and M. A. Saunders,
“Methods for modifying matrix factorizations,” Mathematics
of Computation, vol. 28, no. 126, pp. 505–535, 1974.

[16] M. W. Berry, J. J. Dongarra, and Y. Kim, “LAPACK working
note 68: A highly parallel algorithm for the reduction of a
nonsymmetric matrix to block upper-Hessenberg form,” Com-
puter Science Department, University of Tennessee, Tech.
Rep. UT-CS-94-221, 1994, http://www.netlib.org/lapack/lawnspdf/
lawn68.pdf.

[17] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra,
“Parallel tiled QR factorization for multicore architec-
tures,” Concurrency Computat.: Pract. Exper., vol. 20,
no. 13, pp. 1573–1590, 2008, http://dx.doi.org/10.1002/cpe.
1301DOI: 10.1002/cpe.1301.

[18] ——, “A class of parallel tiled linear algebra algorithms
for multicore architectures,” Parallel Comput. Syst. Appl.,
vol. 35, pp. 38–53, 2009, http://dx.doi.org/10.1016/j.parco.2008.10.
002DOI: 10.1016/j.parco.2008.10.002.

[19] J. Kurzak and J. J. Dongarra, “QR factorization for
the Cell Broadband Engine,” Scientific Programming,
vol. 17, no. 1-2, pp. 31–42, 2009, http://dx.doi.org/10.3233/
SPR-2009-0268DOI: 10.3233/SPR-2009-0268.

[20] J. Kurzak, R. Nath, P. Du, and J. J. Dongarra, “An
implementation of the tile QR factorization for a GPU
and multiple CPUs,” in Proceedings of the State of
the Art in Scientific and Parallel Computing Conference,
PARA’10. Reykjavı́k: Lecture Notes in Computer Science
7134, June 6-9 2010, pp. 248–257, http://dx.doi.org/10.1007/
978-3-642-28145-7DOI: 10.1007/978-3-642-28145-7.

[21] E. Agullo, A. Buttari, J. Dongarra, M. Faverge, B. Hadri,
A. Haidar, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
A. YarKhan, “PLASMA users’ guide,” Electrical Engineering
and Computer Science Department, University of Tennessee,
Tech. Rep., http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users guide.
pdf.

[22] G. M. Amdahl, “Validity of the single-processor approach
to achieving large scale computing capabilities,” in AFIPS
Conference Proceedings, vol. 30. Atlantic City, N.J.: AFIPS
Press, Reston, VA, APR 18-20 1967, pp. 483–485.

[23] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,
A. Petitet, K. Stanley, D. Walker, and R. Whaley, “ScaLA-
PACK: a portable linear algebra library for distributed mem-
ory computers–design issues and perform ance,” Computer
Physics Communications, vol. 97, no. 1-2, pp. 1–15, 1996.

[24] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. W.
Walker, and R. C. Whaley, “The design and implementation
of the ScaLAPACK LU, QR, and Cholesky factorization
routines,” Scientific Programming, vol. 5, pp. 173–184, 1996.

[25] P. Luszczek, J. Dongarra, and J. Kepner, “Design and
implementation of the HPC Challenge benchmark
suite,” CT Watch Quarterly, vol. 2, no. 4A,
2006, http://www.ctwatch.org/quarterly/articles/2006/11/
design-and-implementation-of-the-hpc-challenge-benchmark-suite/
index.html.

