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Abstract. The objective of this paper is to enhance the parallelism of the tile
bidiagonal transformation using tree reduction on multicore architectures. First
introduced by Ltaief et. al [LAPACK Working Note #247, 2011], the bidiagonal
transformation using tile algorithms with a two-stage approach has shown very
promising results on square matrices. However, for tall and skinny matrices, the
inherent problem of processing the panel in a domino-like fashion generates un-
necessary sequential tasks. By using tree reduction, the panel is horizontally split,
which creates another dimension of parallelism and engenders many concurrent
tasks to be dynamically scheduled on the available cores. The results reported in
this paper are very encouraging. The new tile bidiagonal transformation, targeting
tall and skinny matrices, outperforms the state-of-the-art numerical linear alge-
bra libraries LAPACK V3.2 and Intel MKL ver. 10.3 by up to 29-fold speedup
and the standard two-stage PLASMA BRD by up to 20-fold speedup, on an eight
socket hexa-core AMD Opteron multicore shared-memory system.
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1 Introduction

This paper extends our prior work with one-sided factorizations and in particular, the
tridiagonal reduction (TRD) [18] to the bidiagonal reduction (BRD) case, which presents
more challenges due to its increased algorithmic complexity. BRD is an important first
step when calculating the singular value decomposition (SVD). Two-stage reduction al-
gorithms for two-sided factorizations are not new approaches but have recently enjoyed
rekindled interest in the community. For instance, it has been used by Bischof et al. [6]
for TRD (SBR toolbox) and Kågström et al. [16] in the context of Hessenberg and
Triangular reductions for the generalized eigenvalue problem for dense matrices. The
tile bidiagonal reduction for square matrices that was obtained in this way considerably
outperforms the state-of-the-art open-source and commercial numerical libraries [17].

BRD for any rectangular dense matrix [11, 9, 22] is: A =UΣV T with A,Σ ∈RM×N ,
U ∈RM×M , and V ∈RN×N . Following the decompositional approach to matrix compu-
tation [21], we transform the dense matrix A to an upper bidiagonal form B by applying
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successive distinct orthogonal transformations [15] from the left (X) as well as from
the right (Y ): B = XT AY B,X ,A,Y ∈ RN×N . This reduction step actually repre-
sents the most time consuming phase when computing the singular values. Our primary
focus is the BRD portion of the computation which can easily consume over 99% of
the time needed to obtain the singular values and roughly 75% if singular vectors are
calculated [17].

The necessity of calculating SVDs emerges from various computational science ar-
eas, e.g., in statistics where it is directly related to the principal component analysis
method [13, 14], in signal processing and pattern recognition as an essential filtering
tool and in analysis control systems [19]. However, majority of the applications and es-
pecially data collected from large sensor systems involve rectangular matrices with the
number of rows by far exceeding the number of columns [4, 10]. We refer to such ma-
trices as tall and skinny. For such matrices, the bulge chasing procedure (see Section 3)
is no longer the bottleneck as it is the case for square matrices [17]. It is the reduction
to the band form that poses a challenge which we address in this paper.

The remainder of this document is organized as follows: Sections 2 and 3 recalls
the block BRD algorithm as implemented in LAPACK [1] as well as the two-stage
BRD algorithm available in PLASMA [23] and explains their main deficiencies, espe-
cially in the context of tall and skinny matrices. Sections 4 gives a detailed overview
of previous projects in this area and outlines the main contributions of the paper. Sec-
tion 5 describes the implementation of the parallel two-stage tile BRD algorithm using
a tree reduction for tall and skinny matrices. Section 6 presents the performance results.
Finally, Section 7 summarizes the results of this paper and presents the ongoing work.

2 LAPACK Bidiagonal Transformation

LAPACK [1] implements a so called block variant of singular value decomposition
algorithms. Block algorithms are characterized by two successive phases: a panel fac-
torization and an update of the trailing submatrix. During the panel factorization, the
orthogonal/unitary transformations are applied only within the panel one column at a
time. As a result, the panel factorization is very rich in Level 2 BLAS operations. Once
accumulated within the panel, the transformations are applied to the rest of the matrix
(commonly called the trailing submatrix) in a blocking manner, which leads to an abun-
dance of calls to Level 3 BLAS. While the update of the trailing submatrix is compute-
bound and very efficient, the panel factorization is memory-bound and has mostly been
a bottleneck for the majority of numerical linear algebra algorithms. Lastly, the paral-
lelism within LAPACK occurs only at the level of the BLAS routines, which results in
an expensive fork-join scheme of execution with synchronization around each call.

The use of tall-and-skinny matrices compounds the aforementioned inefficiencies.
On one hand, the memory-bound panel factorization is now disproportionately expen-
sive compared with the trailing matrix update. On the other hand, the fork-join paral-
lelism does not benefit at all the execution of the panel factorization because only Level
2 BLAS may be used – memory-bound operations that only marginally benefit from
parallelization. Clearly, the parallelism needs to be migrated from the BLAS level up to
the factorization algorithm itself.
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3 PLASMA Bidiagonal Transformation using Two-Stage
Approach

(a) First column anni-

hilation

(b) Bulge creation (c) Chasing the bulge

with the left and right

transformations

(d) Chasing the bulge

further down

(e) Chasing in the

bottom right corner

Fig. 1. Execution breakdown of the bulge chasing procedure for a band bidiagonal matrix of size
N=16 with NB=4.

In our last implementation described in [17], we fully utilize a two-stage approach
– a technique that has recently proven its value as a viable solution for achieving high
performance in the context of two-sided reductions [6, 16, 18]. The first stage consists
of reducing the original matrix to a band form. The overhead of the Level 2 BLAS op-
erations dramatically decreases and most of the computation is performed by the Level
3 BLAS, which makes this stage run closer to the theoretical peak of the machine.
In fact, this stage has even enough computational load to benefit from offloading the
work to GPU accelerators [5]. The second stage further reduces the band matrix to the
corresponding compact form. A bulge chasing procedure, that uses orthogonal transfor-
mations annihilates the off-diagonal elements column-wise and eliminates the resulting
fill-in elements that occur towards to the bottom right corner of the matrix. Figure 1
depicts the execution breakdown of chasing the first column (black elements) on a band
bidiagonal matrix of size M=N= 16 and NB= 4.

The next section explains why this current implementation of the tile BRD using a
two-stage approach is not appropriate for the case of tall and skinny matrices.

4 Related Work and Relevant Contributions

Numerical schemes based on tree reductions have been developed first for dense one-
sided factorization algorithms [8]. It was done in the context of minimizing communi-
cation amount between the levels of the memory hierarchy as well as between remote
parallel processors. Given the fact that such reduction schemes are numerically stable
under a set of practical assumptions, we are able to apply similar schemes for the two-
sided reductions.

Practical applications of these numerical reduction schemes on multicore architec-
tures may indeed achieve very competitive results in terms of performance [12]. And
the same apply equally to GPU-accelerated implementations [2] as well as the codes
designed specifically for distributed memory clusters of multicore nodes [20].
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To broaden the scope, Bouwmeester et al. [7] provide a taxonomy of QR variants
based on, among others, the reduction algorithm for achieving unitary annihilation
across the full matrix height. Accordingly, our implementation may be considered as
the version named TT by the authors. And this includes both the left (QR) and the right
(LQ) application of the Householder reflectors [15]. A more exhaustive study of various
combinations of reduction algorithms is beyond the scope of this paper.

The communication optimality for eigenvalue and singular value decompositions
(as well as other related decompositions) has been studied for the entire process of
reduction to a condensed form [3]. Here, however, we only concern ourselves with the
reduction to the bidiagonal form and focus primarily on the implementation aspects of
a particular two-sided factorization algorithm.

Enhancing parallelism using tree reduction has already been performed in the con-
text of one-sided factorizations for tall and skinny matrices, as mentioned earlier. How-
ever, we propose here the very first practical implementation that uses a tree reduction
for BRD. We contribute the idea of splitting the sequential panel factorization step into
independent subdomains, that can simultaneously be operated upon. Each subdomain
computation proceeds locally in parallel. Once the local computation finishes, the re-
duction step is triggered using a binary tree, in which the contributions of neighbor pair-
wise subdomains are merged. With tile algorithms, the whole computation can be mod-
eled as a directed acyclic graph (DAG), where nodes represent fine-grained tasks and
edges correspond to data dependencies. Thanks to the dynamic scheduling framework
QUARK [24], the different fine-grained tasks are processed as soon as their data de-
pendencies are satisfied. Therefore, unnecessary synchronization points are completely
removed between the steps of the local computations within each subdomain. The cores
that are no longer active in the merging step do not have to wait until the end of the merg-
ing step before proceeding with the next panel. The whole computation then proceeds
seamlessly by following a producer-consumer model.

5 Tile Bidiagonal Transformation using Tree Reduction

5.1 Methodology
In the context of tall and skinny matrices, the first stage of the standard two-stage tile
BRD is not suitable anymore. Indeed, when the number of rows is substantially larger
than the number of columns, i.e. M�N, the first stage becomes now the bottleneck be-
cause of the panel being processed sequentially. The goal of the new implementation of
this two-stage BRD is to horizontally split the matrix into subdomains, allowing inde-
pendent computational tasks to concurrently execute. A similar algorithm has been used
to improve the QR factorization of tall and skinny matrices in [12]. The second stage,
which reduces the band matrix to the bidiagonal form, only operates on the top matrix
of size N×N and is negligible compared to the overall execution time. Therefore, the
authors will primarily focus on optimizing the first stage.

5.2 Description of the Computational Kernels
This section is only intended to make the paper self-contained as the description of
the computational kernels have already been done in previous author’s research pa-
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pers [12, 18, 17]. There are ten kernels overall, i.e. four kernels for the QR factoriza-
tions, four kernels for the LQ factorizations and two kernels in order to process the
merging step. CORE DGEQRT and CORE DGELQT perform the QR/LQ factoriza-
tion of a diagonal tile, respectively. It produces an upper (QR) or lower (LQ) trian-
gular matrix. The upper triangular matrix is called reference tile because it will be
eventually used to annihilate the subsequent tiles located below, on the same panel.
CORE DTSQRT and CORE DTSLQT compute the QR/LQ factorization of a matrix
built by coupling the upper/lower triangular matrices produced by CORE DGEQRT
(reference tile) and CORE DGELQT with a tile located below (QR) or to the right of the
diagonal (LQ), respectively. The transformations accumulated during the panel compu-
tation (characterized by the four kernels described above) are then applied to the trailing
submatrix with CORE DORMQR and CORE DORMLQ using the Householder reflec-
tors computed by CORE DGEQRT and CORE DGELQT and with CORE DTSMQR
and CORE DTSMLQ using the Householder reflectors computed by CORE DTSQRT
and CORE DTSLQT, respectively. The last two kernels, which perform the merging
steps for tall and skinny matrices are CORE DTTQRT and CORE DTTMQR.

5.3 DAG Analysis

The dynamic runtime system QUARK [24] has the capability to generate DAGs of
execution on the fly, which are critical in order to understand the performance numbers
reported in this paper. For the next three figures, the yellow and blue nodes correspond
to the tasks of the QR and LQ factorizations, respectively. The red nodes represent the
tasks involved during the tree reduction, i.e. the merging step. The matrix size is defined
to 10×2 in terms of number of row and column tiles. Figure 2 shows the DAG of the
standard two-stage PLASMA BRD (first stage only). The bottleneck of sequentially
computing the panel clearly appears. Here, the first stage would take 22 steps to achieve
the desired band form. Figure 3 highlights the DAG of the two-stage PLASMA BRD
using tree reduction with two subdomains. The two distinct entry points are identified,
which allows the panel to proceed in parallel. Once computed, the merging phase (red
nodes) can be initiated as soon as the data dependencies are satisfied. Here, the number
of steps to obtain the band form has been significantly reduced to 15 steps. Finally,
Figure 4 pictures the DAG of the two-stage PLASMA BRD using tree reduction with
eight subdomains. The eight distinct entry points are clearly distinguished. The DAG
is now more populated with red nodes due to the high number of merging steps. The
number of steps to obtain the band form has been further reduced to 13 steps, while the
number of concurrent tasks has drastically increased.

6 Experimental Results

6.1 Environment Setting

We have performed our tests on a shared memory machine with the largest number
of cores we could access. It is composed of eight AMD OpteronTM processors labelled
8439 SE. Each of the processors contains six processing cores each clocked at 2.8 GHz.
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Fig. 2. DAG of the standard two-stage PLASMA BRD (first stage only) on a matrix with MT= 8
and NT= 2 tiles.

The total number of cores is evenly spread among two physical boards. The theoretical
peak for this machine for double precision floating-point operations is 537.6 Gflop/s
(11.2 Gflop/s per core). And the total available memory is 128 GB which is spread
among 8 NUMA nodes. On the software side, we used Intel Math Kernel Library MKL
version 10.3 with an appropriate threading setting to force single-thread execution. The
blocking parameters we used in our tests were NB of 144 (the external tile blocking)
and IB of 48 (the internal tile blocking) for our double precisions runs. All experiments
have been conducted on all 48 cores to stress not only the asymptotic performance but
also scalability with the largest core count we could access.

6.2 Performance Comparisons

In the figures presented in this section, we refer to the standard two-stage tile BRD
as PLASMA and to the optimized two-stage tile BRD for tall and skinny matrices us-
ing tree reduction as PLASMA TR. Figure 5 shows the performance of PLASMA TR
with M = 57600 and N = 2880 (both sizes are fixed) and a varying number of subdo-
mains. When the number of subdomain is one, the implementation of PLASMA TR is in
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Fig. 3. DAG of the two-stage PLASMA BRD using tree reduction on a matrix with MT= 8 and
NT= 2 tiles using two subdomains.

fact equivalent to the one of PLASMA and this is why they report the same performance
number. However, when the number of subdomains increases, PLASMA TR rapidly out-
performs PLASMA. Noteworthy to mention the very low rates of execution of LAPACK
and MKL. This has been noticed for square matrices [17] and it is even worse for tall
and skinny matrices. Figure 6 shows the performance of PLASMA TR with M = 57600
(fixed) and a varying number of column tiles. The subdomain sizes giving the best per-
formance have been selected for PLASMA TR. When the the matrix has only a small
number of column tiles (i.e., skinny), this is where our implementation performs the best
compared to the three other libraries. PLASMA TR achieves up to 20-fold speedup and
up to 29-fold speedup compared to PLASMA (with M = 57600 and N = 3×144 = 432)
and LAPACK and MKL (with M = 57600 and N = 15×144 = 2160), respectively. The
clear advantage over LAPACK stems from exposing parallelism of reduction of tall ma-
trix panels and the good locality and plentiful parallelism of the two-stage approach. As
the number of column tiles or the matrix width increases, the performance of PLASMA
implementation starts catching up PLASMA TR, since the matrix becomes square.

7 Conclusions and Future Work

In this paper, we presented a new parallel implementation of the tile two-stage BRD
algorithm suitable for tall and skinny matrices on shared-memory multicore architec-
tures. Our implementation is far superior to any functionally equivalent code that we are
aware of. In fact, it outperforms LAPACK and Intel MKL nearly 29-fold and PLASMA
– 20-fold for matrices it was designed for. Our ongoing and future work focuses on au-
tomatic selection of domains in the tree reduction stage as well as optimal interleaving
strategies for QR and LQ application of the orthogonal reflectors.
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Fig. 4. DAG of the two-stage PLASMA BRD using tree reduction on a matrix with MT= 8 and
NT= 2 tiles using eight subdomains.
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