CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 22:15-44
Published online 11 August 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1467

Scheduling dense linear
algebra operations on
multicore processors

Jakub Kurzak!:* T, Hatem Ltaief', Jack Dongarral’z’ 3
and Rosa M. Badia*

1Departmenl of Electrical Engineering and Computer Science, University of
Tennessee, TN, U.S.A.

2Computer Science and Mathematics Division, Oak Ridge National Laboratory,
TN, U.S.A.

3School of Mathematics and School of Computer Science, University of
Manchester, Manchester, U.K.

4Barcelona Supercomputing Center—Centro Nacional de Supercomputacion,
Barcelona, Spain

SUMMARY

State-of-the-art dense linear algebra software, such as the LAPACK and ScaLAPACK libraries, suffers
performance losses on multicore processors due to their inability to fully exploit thread-level parallelism.
At the same time, the coarse-grain dataflow model gains popularity as a paradigm for programming
multicore architectures. This work looks at implementing classic dense linear algebra workloads, the
Cholesky factorization, the QR factorization and the LU factorization, using dynamic data-driven execu-
tion. Two emerging approaches to implementing coarse—grain dataflow are examined, the model of nested
parallelism, represented by the Cilk framework, and the model of parallelism expressed through an arbi-
trary Direct Acyclic Graph, represented by the SMP Superscalar framework. Performance and coding
effort are analyzed and compared against code manually parallelized at the thread level. Copyright ©
2009 John Wiley & Sons, Ltd.

Received 6 February 2009; Revised 28 April 2009; Accepted 7 June 2009

KEY WORDS: task graph; scheduling; multicore; linear algebra; factorization; Cholesky; LU; QR; direct acyclic
graph; dynamic scheduling; matrix factorization

*Correspondence to: Jakub Kurzak, Department of Electrical Engineering and Computer Science, University of Tennessee,
TN, U.S.A.
E-mail: kurzak @eecs.utk.edu

Copyright © 2009 John Wiley & Sons, Ltd.

16 J. KURZAK ET AL. %

1. INTRODUCTION AND MOTIVATION

The current trend in the semiconductor industry to double the number of execution units on a
single die is commonly referred to as the multicore discontinuity. This term reflects the fact that
the existing software is inadequate for the new architectures and the existing code base will be
incapable of delivering increased performance, possibly not even capable of sustaining the current
performance.

This problem has already been observed with state-of-the-art dense linear algebra libraries,
LAPACK [1] and ScaLAPACK [2], which deliver a small fraction of the peak performance on
current multicore processors and multi-socket systems of multicore processors, mostly following
Symmetric Multi-Processor (SMP) architecture.

The problem is twofold. Achieving good performance on emerging chip designs is a serious
problem, calling for new algorithms and data structures. Reimplementing the existing code base
using a new programming paradigm is another major challenge, specifically in the area of high
performance scientific computing, where the level of required skills makes the programmers a
scarce resource and millions of lines of code are in question.

The main contribution of this paper is a critical look at a representative set of emerging parallel
programming frameworks for multicore processors through implementations of classic dense linear
algebra workloads and, specifically, exposing the weakness of models relying on nested parallelism.

2. BACKGROUND

In large-scale scientific computing, targeting distributed memory systems, the recent push towards
the PetaFlop barrier caused a renewed interest in Partitioned Global Address Space (PGAS)
languages, such as Co-Array Fortran (CAF) [3], Unified Parallel C (UPC) [4] or Titanium [5], as
well as the emergence of new languages, such as Chapel (Cray) [6], Fortress (Sun) [7] and X-10
(IBM) [8], sponsored through the DARPA’s High Productivity Computing Systems (HPCS) program.

In more mainstream, server and desktop computing, targeting mainly shared memory systems,
the well-known dataflow model is rapidly gaining popularity, where the computation is viewed
as a Direct Acyclic Graph (DAG), with nodes representing computational tasks and edges
representing data dependencies among them. The coarse—grain dataflow model is the main prin-
ciple behind emerging multicore programming environments such as Cilk/Cilk++ [9], Intel®
Threading Building Blocks (TBB) [10,11], Tasking in OpenMP 3.0 [12-15] and SMP Superscalar
(SMPSs) [16].

All these frameworks rely on a very small set of extensions to common imperative programming
languages such as C/C++ and Fortran and involve a relatively simple compilation stage and
potentially much more complex runtime system.

The following sections provide a brief overview of these frameworks, as well as an overview
of a rudimentary scheduler implemented using POSIX threads, which will serve as a baseline for
performance comparisons.

Since tasking facilities available in Threading Building Blocks and OpenMP 3.0 closely resemble
the ones provided by Cilk, Cilk is chosen as a representative framework for all three (also due to
the reason that it is available in open source).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 17

2.1. Cilk

Cilk was developed at the MIT Laboratory for Computer Science starting in 1994 [9]. Cilk is an
extension of the C language with a handful of keywords (cilk, spawn, sync, inlet, abort) aimed
at providing general-purpose programming language designed for multithreaded parallel program-
ming. When the Cilk keywords are removed from Cilk source code, the result is a valid C program,
called the serial elision (or C elision) of the full Cilk program. The Cilk environment employs
a source-to-source compiler, which compiles Cilk code to C code, a standard C compiler, and a
runtime system linked with the object code to provide an executable.

The main principle of Cilk is that the programmer is responsible for exposing parallelism by
identifying functions free of side effects (e.g. access to global variables causing race conditions),
which can be treated as independent tasks and executed in parallel. Such functions are annotated
with the cilk keyword and invoked with the spawn keyword. The sync keyword is used to indicate
that execution of the current procedure cannot proceed until all previously spawned procedures
have completed and returned their results to the parent.

Distribution of work to multiple processors is handled by the runtime system. Cilk scheduler uses
the policy called work-stealing to schedule execution of tasks to multiple processors. At runtime,
each processor fetches tasks from the top of its own stack—in First In First Out (FIFO) order.
However, when a processor runs out of tasks, it picks another processor at random and ‘steals’
tasks from the bottom of its stack—in Last In First Out (LIFO) order. This way the task graph is
consumed in a depth-first order, until a processor runs out of tasks, in which case it steals tasks
from other processors in a breadth-first order.

Cilk also provides the mechanism of locks. The use of locks can, however, easily lead to a
deadlock. ‘Even if the user can guarantee that his program is deadlock free, Cilk may still deadlock
on the user’s code because of some additional scheduling constraints imposed by Cilk’s scheduler’
[17]. In particular locks cannot be used to enforce parent—child dependencies between tasks.

Cilk is very well suited for expressing algorithms that easily render themselves to recursive
formulation, e.g. divide-and-conquer algorithms. Since stack is the main structure for controlling
parallelism, the model allows for straightforward implementations on shared memory multipro-
cessor systems (e.g. multicore/ SMP systems). The simplicity of the model provides for the execution
of parallel code with virtually no overhead from scheduling.

2.2. OpenMP

OpenMP was born in the 1990 s to bring a standard to the different directive languages defined by
several vendors. It has been recently extended (version 3.0) to provide construct similar to those
offered by Cilk. The new OpenMP directives allow the programmer to identify units of independent
work (tasks), leaving the scheduling decisions to the runtime system. The main difference between
Cilk and OpenMP 3.0 is that the latter can combine both types of parallelism, worksharing and tasks.

2.3. Intel® threading building blocks

Intel® Threading Building Blocks is a runtime-based parallel programming model for C ++. Similar
to OpenMPI 3.0 and Cilk, it is a runtime-based system, which emphasizes data parallelism, through

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

18 J. KURZAK ET AL. %

constructs like parallel for, but also provides constructs similar to Cilk for expressing nested
parallelism.

2.4. SMPSs

SMPSs [16] is a parallel programming framework developed at the Barcelona Supercomputer Center
(Centro Nacional de Supercomputacidn), part of the STAR Superscalar family, which also includes
Grid Supercalar and Cell Superscalar [18,19]. While Grid Superscalar and Cell Superscalar address
parallel software development for Grid environments and the Cell processor, respectively, SMP
Superscalar is aimed at ‘standard’ (x86 and like) multicore processors and SMP systems.

The principles of SMP Superscalar are similar to the ones of Cilk. Similar to Cilk, the programmer
is responsible for identifying parallel tasks, which have to be side effect-free (atomic) functions.
Additionally, the programmer needs to specify the directionality of each parameter (input, output,
inout). If the size of a parameter is missing in the C declaration (e.g. the parameter is passed
by pointer), the programmer also needs to specify the size of the memory region affected by the
function. Unlike Cilk, however, the programmer is not responsible for exposing the structure of the
task graph. The task graph is built automatically, based on the information of task parameters and
their directionality.

Similar to Cilk, the programming environment consists of a source-to-source compiler and a
supporting runtime library. The compiler translates C code with pragma annotations to standard
C99 code with calls to the supporting runtime library and compiles it using the platform native
compiler.

At runtime the main thread creates worker threads, as many as necessary to fully utilize the system,
and starts constructing the task graph (populating its ready list). Each worker thread maintains its
own ready list and populates it while executing tasks. A thread consumes tasks from its own ready
list in LIFO order. If that list is empty, the thread consumes tasks from the main ready list in FIFO
order, and if that list is empty, the thread steals tasks from the ready lists of other threads in FIFO
order.

The SMPSs scheduler attempts to exploit locality by scheduling dependent tasks to the same
thread, such that output data is reused immediately. In addition, in order to reduce dependencies,
SMPSs runtime is capable of renaming data, leaving only the true dependencies, which is the same
technique used by superscalar processors [20] and optimizing compilers [21].

The main difference between Cilk and SMPSs is that, while the former allows mainly for expres-
sion of nested parallelism, the latter handles computation expressed as an arbitrary DAG. In addition,
while Cilk requires the programmer to create the DAG by means of the spawn keyword, SMPSs
creates the DAG automatically. Construction of the DAG does, however, introduce overhead, which
is virtually inexistent in the Cilk environment.

2.5. Static pipeline

The static pipeline scheduling presented here was originally implemented for dense matrix
factorizations on the CELL processor [22,23]. This technique is extremely simple and yet
provides good locality of reference and load balance for regular computation, like dense matrix
operations.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 19

In this approach each task is uniquely identified by the {m, n, k} triple, which determines the type
of operation and the location of tiles operated upon. Each core traverses its task space by applying
a simple formula to the {m,n, k} triple, which takes into account the id of the core and the total
number of cores in the system.

Task dependencies are tracked by a global progress table, where one element describes the
progress of computation for one tile of the input matrix. Each core looks up the table before
executing each task to check for dependencies and stalls if dependencies are not satisfied. Each
core updates the progress table after completion of each task. Access to the table does not require
mutual exclusion (using, e.g. mutexes). The table is declared as volatile. Update is implemented by
writing to an element. Dependency stall is implemented by busy-waiting on an element.

The use of a global progress table is a potential scalability bottleneck. It does not pose a problem,
however, on small-scale multicore/SMP systems for small to medium matrix sizes. Many alterna-
tives are possible. (Replicated progress tables were used on the CELL processor [22,23].)

As further discussed in Sections 4.3 and 5.3, this technique allows for pipelined execution of
factorizations steps, which provides similar benefits to dynamic scheduling, namely, execution of
the inefficient Level 2 BLAS operations in parallel with the efficient Level 3 BLAS operations.

The main disadvantage of the technique is potentially suboptimal scheduling, i.e. stalling in
situations where work is available. Another obvious weakness of the static schedule is that it cannot
accommodate dynamic operations, e.g. divide-and-conquer algorithms.

3. RELATED WORK

Dynamic data-driven scheduling is an old concept and has been applied to dense linear operations
for decades on various hardware systems. The earliest reference, that the authors are aware of, is
the paper by Lord et al. [24]. A little later dynamic scheduling of LU and Cholesky factorizations
was reported by Agarwal and Gustavson [25,26]. Throughout the years dynamic scheduling of
dense linear algebra operations has been used in numerous vendor library implementations such
as ESSL, MKL and ACML (numerous references are available on the Web). In the recent years,
the authors of this work have been investigating these ideas within the framework Parallel Linear
Algebra Software for Multicore Architectures (PLASMA) at the University of Tennessee [27—-30].

The most important issue in performance optimization of orthogonal transformations is aggre-
gation of transformations leading to efficient use of the memory system. The idea was first demon-
strated by Dongarra et al. [31], later by Bischof and van Loan [32], and yet later by Schreiber and
van Loan [33], resulting in the compact WY technique for accumulating Householder reflectors.

Elmroth and Gustavson [34—-36] generalized this work to produce high-performance recursive
QR factorization. In this work, the problem of reducing the amount of extra floating point operations
was addressed by the introduction of mini blocking/register blocking, referred to as inner blocking
in this paper. Serial implementation was presented as well as parallel implementation with dynamic
scheduling of tasks on SMPs.

One of the early references discussing methods for updating matrix factorizations is the paper
by Gill et al. [37]. Berry et al. successfully applied the idea of using orthogonal transformations
to annihilate matrix elements by tiles, in order to achieve a highly parallel distributed memory
implementation of matrix reduction to the block upper-Hessenberg form [38].

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

20 J. KURZAK ET AL. %

It is crucial to note that the technique of processing the matrix by square blocks only provides
the performance in tandem with data organization by square blocks, a fact initially observed by
Gustavson [39,40] and recently investigated in depth by Gustavson et al. [41]. The layout is referred
to as Square Block (SB) format by Gustavson et al. and as Block Data Layout (BDL) in this work.
The paper by Elmroth et al. [42] gives an excellent introduction to many of the important issues
concerning deep memory hierarchies and the use of recursion and hybrid data structures and also
contains a section on the QR factorization.

Seminal work leading to the tile QR algorithm presented here was done by Elmroth and Gustavson
[34-36]. Gunter and van de Geijn presented an ‘out-of-core’ (out-of-memory) implementation
[43], Buttari ef al. an implementation for ‘standard’ (x86 and alike) multicore processors [29,30]
and Kurzak et al. an implementation for the CELL processor [23]. The LU algorithm used here
was originally devised by Quintana-Orti and van de Geijn for ‘out-of-core’ (out-of-memory)
execution [44].

4. CHOLESKY FACTORIZATION

The Cholesky factorization (or Cholesky decomposition) is mainly used for the numerical solution
of linear equations Ax=>b, where A is symmetric and positive definite. Such systems arise often
in physics applications, where A is positive definite due to the nature of the modeled physical
phenomenon. This happens frequently in numerical solutions of partial differential equations.

The Cholesky factorization of an nxn real symmetric positive-definite matrix A has the form

A=LL"

where L is an nxn real lower triangular matrix with positive diagonal elements. In LAPACK
the double precision algorithm is implemented by the DPOTRF routine. A single step of the
algorithm is implemented by a sequence of calls to the LAPACK and BLAS routines: DSYRK,
DPOTF2, DGEMM, DTRSM. Owing to the symmetry, the matrix can be factorized either as
an upper triangular matrix or as a lower triangular matrix. Here the lower triangular case is
considered.

The algorithm can be expressed using either the top-looking version, the left-looking version
of the right-looking version, the first being the most /azy algorithm (depth-first exploration of the
task graph) and the last being the most aggressive algorithm (breadth-first exploration of the task
graph). The left-looking variant is used here, with the exception of Cilk implementations, which
favor the most aggressive right-looking variant.

Mathematically, the tile Cholesky algorithm is identical to the block Cholesky algorithm imple-
mented in LAPACK. Operations on relatively large submatrices (blocks) are replaced with opera-
tions on relatively small submatrices (tiles). In addition, the call to LAPACK DPOTF2 routine is
replaced with a call to the DPOTREF routine and multiple calls to the DTRSM routine. The algorithm
relies on four basic operations implemented by four computational kernels (Figure 1).

DSYRK: The kernel applies updates to a diagonal (lower triangular) tile 7' of the input matrix,
resulting from factorization of the tiles A to the left of it. The operation is a symmetric rank-k
update.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 21

DSYRK DSYRK DPOTRF

A T

DGEMM DGEMM DTRSM

DGEMM DGEMM DTRSM

Figure 1. Tile operations in the tile Cholesky factorization. The sequence is left-to-right and top-down. Hatching
indicates input data, shade of gray indicates in/out data.

FOR k = 0..TILES-1

FOR n = 0..k-1
A[K][k] « DSYRK(A[KI[N], A[KI[Kk])

A[K][K] « DPOTRF(A[KILK])

FOR m = k+1..TILES-1
FOR n = 0..k-1

A[m][k] « DGEMM(A[K]I[n], Alm][n], Alm][k])

AImIIk] « DTRSM(ATK1Tk1, ATm1TkT)

Figure 2. Pseudocode of the tile Cholesky factorization (left-looking version).

DPOTRF: The kernel performs the Cholesky factorization of a diagonal (lower triangular) tile T
of the input matrix and overrides it with the final elements of the output matrix.

DGEMM: The operation applies updates to an off-diagonal tile C of the input matrix, resulting
from factorization of the tiles to the left of it. The operation is a matrix multiplication.

DTRSM: The operation applies an update to an off-diagonal tile C of the input matrix, resulting
from factorization of the diagonal tile above it and overrides it with the final elements of the
output matrix. The operation is a triangular solve.

Figure 2 shows the generic pseudocode of the left-looking Cholesky factorization. Figure 3 shows
the task graph of the tile Cholesky factorization of a 5x 5 tiles matrix, produced automatically from
the pseudocode using the DOT language. Although the code is as simple as four loops with three
levels of nesting, the task graph is far from intuitive, even for a tiny size.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

22 J. KURZAK ET AL.

DPOTRF

DPOTRF

DPOTRF

DPOTRF

Figure 3. Task graph of the tile Cholesky factorization (5x35 tiles).

4.1. Cilk implementation

Figure 4 presents implementation of Cholesky factorization in Cilk. The basic building blocks
are the functions performing the tile operations. dsyrk(), dtrsm() and dgemm() are implemented

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 23

cilk void dsyrk(double *A, double *T);

cilk void dpotrf(double *T);

cilk void dgemm(double *A, double *B, double *C);
cilk void dtrsm(double *T, double *C);

for (k = 0; k < TILES; k++) {

spawn dpotrf(A[kI[k]);
sync;

for (m = k+1; m < TILES; m++)
spawn dtrsm(A[k]I[k], A[m][k]);
sync;

for (m = k+1; m < TILES; m++) {
for (n =k+1;n<m; n++)
spawn dgemm(A[kI[n], ALmI1[n], AlmI[k]);
spawn dsyrk(A[Kk]I[n], A[k]I[Kk]);

sync;

}

Figure 4. Cilk implementation of the tile Cholesky factorization with 2D work assignment (right-looking version).

by calls to a single BLAS routine. dpotrf() is implemented by a call to the LAPACK DPOTRF
routine. The functions are declared using the cilk keyword and then invoked using the spawn
keyword.

The input matrix is stored using the format referred to in the literature as Square Block
(SB) format or Block Data Layout (BDL). The latter name will be used here. In this arrange-
ment, each function parameter is a pointer to a continuous block of memory, which greatly
increases the cache performance and virtually eliminates cache conflicts between different
operations.

For implementation in Cilk the right-looking variant was chosen, where factorization of each panel
is followed by an update to all the remaining submatrix. The code on Figure 4 presents a version,
referred here as Cilk 2D, where task scheduling is not constrained by data reuse considerations
(there are no provisions for reuse of data between different tasks).

Each step of the factorization involves:

e factorization of the diagonal tile—spawning of the dpotrf{) task followed by a sync,

e applying triangular solves to the tiles below the diagonal tile—spawning of the dtrsm() tasks
in parallel followed by a sync,

e updating the tiles to the right of the panel—spawning of the dsyrk() and dgemm() tasks in
parallel followed by a sync.

It is not possible to further improve parallelism by pipelining the steps of the factorization. Never-
theless, most of the work can proceed in parallel and only the dpotrf{) task has to be executed sequen-
tially.

Since the disregard for data reuse between tasks may adversely affect the algorithm’s perfor-
mance, it is necessary to consider an implementation facilitating data reuse. One possible approach

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

24 J. KURZAK ET AL. %

void dsyrk(double *A, double *T);

void dpotrf(double *T);

void dgemm(double *A, double *B, double *C);
void dtrsm(double *T, double *C);

cilk void cholesky panel(int k)

{
int m;

dpotrf(A[KI[Kk]);

for (m = k+1; m < TILES; m++)
dtrsm(A[KI[k], AlmI[K]);

}
cilk void cholesky update(int n, int k)

{
int m;

dsyrk(ALKI[n], A[KI[K]);

for (m = n+1; m < TILES; m++)
spawn dgemm(A[kI[n], Alm][n], AlmI[k]);

if (n == k+1)
spawn cholesky panel(k+1);

spawn cholesky_panel(0);
sync;

for (k = 0; k < TILES; k++) {
for (n = k+1; n < TILES; n++)
spawn cholesky_update(n, k);
sync;
}

Figure 5. Cilk implementation of the tile Cholesky factorization with 1D work assignment (right-looking version).

is processing of the tiles of the input matrix by columns. In this case, however, work is being
dispatched in relatively big batches and load imbalance in each step of the factorization will affect
the performance. A traditional remedy to this problem is the technique of lookahead, where update
of step N is applied in parallel with panel factorization of step N + 1. Figure 5 shows such imple-
mentation, referred here as Cilk 1D.

First, panel O is factorized, followed by a sync. Then updates to all the remaining columns are
issued in parallel. Immediately after updating the first column, next panel factorization is spawned.
The code synchronizes at each step, but panels are always overlapped with updates. This approach
implements one-level lookahead (lookahead of depth one). Implementing more levels of lookahead
would further complicate the code, while giving little hope for significant performance improve-
ment.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 25

#pragma css task input(A[NB][NB]) inout(T[NB][NB])
void dsyrk(double *A, double *T);

#pragma css task inout(T[NB][NB])
void dpotrf(double *T);

#pragma css task input(A[NB][NB], B[NB][NB]) inout(C[NB][NB])
void dgemm(double *A, double *B, double *C);

#pragma css task input(T[NB]J[NB]) inout(B[NB][NB])
void dtrsm(double *T, double *C);

#pragma css start
for (k = 0; k < TILES; k++) {

for (n=0; n<k; n++)
dsyrk(A[k1[n], ALKI[K]);
dpotrf(A[kI[k]);

for (m = k+1; m < TILES; m++) {
for (n=0; n <k; n++)
dgemm(A[kI[n], Alm][n], Alm][k]);
dtrsm(A[kI[k], A[m][K]);
)
)
#pragma css finish

Figure 6. SMPSs implementation of the tile Cholesky factorization (left-looking version).

4.2. SMPSs implementation

Figure 6 shows implementation using SMPSs. The functions implementing parallel tasks are desig-
nated with #pragma ccs task annotations defining directionality of the parameters (input, output,
inout). The parallel section of the code is designated with #pragma ccs start and #pragma ccs finish
annotations. Inside the parallel section the algorithm is implemented using the canonical represen-
tation of four loops with three levels of nesting, which closely matches the pseudocode definition
of Figure 2.

The SMPSs runtime system schedules tasks based on dependencies and attempts to maximize
data reuse by following the parent—child links in the task graph when possible.

4.3. Static pipeline implementation

As already mentioned in Section 2.5 the static pipeline implementation is a hand-written code
using POSIX threads and primitive synchronization mechanisms (volatile progress table and busy-
waiting). Figure 7 shows the implementation.

The code implements the left-looking version of the factorization, where work is distributed by
rows of tiles and steps of the factorization are pipelined. The first core that runs out of work in step
N proceeds to factorization of the panel in step N +1, following cores proceed to update in step
N +1, then to panel in step N 42 and so on (Figure 8).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

26 J. KURZAK ET AL. %

void dsyrk(double *A, double *T);

void dpotrf(double *T);

void dgemm(double *A, double *B, double *C);
void dtrsm(double *T, double *C);

k =0; m = my_core_id;
while (m >= TILES) {

k++; m = m-TILES+k;
}n=0;

while (k < TILES && m < TILES) {
next_n = n; next m = m; next_k = k;

next_n++;
if (next_n > next_k) {
next_m += cores_num;
while (next_m >= TILES && next_k < TILES) {
next_k++; next_m = next_m-TILES+next_k;
} next_n = 0;

=k) {
dpotrf(A[k][k]);
core_progress[k][k] = 1;

else {
while(core_progress[k][n] != 1);
dsyrk(A[kI[n]1, A[KI[k]);

else {
if (n ==k) {
while(core_progress[k][k] !'= 1);
dtrsm(A[K][k], Alm][K]);
core_progress[m][k] = 1;

else {
while(core_progress[k][n] != 1);
while(core_progress[m][n] != 1);
dgemm(A[k][n], Alm][n], A[m]I[k]);

-

}
n = next_n; m = next_m; k = next_k;

}
Figure 7. Static pipeline implementation of the tile Cholesky factorization (left-looking version).
The code can be viewed as a parallel implementation of the Cholesky factorization with one-

dimensional partitioning of work and lookahead, where lookahead of varying depth is implemented
by processors that run out of work.

5. QR FACTORIZATION

The QR factorization (or QR decomposition) offers a numerically stable way of solving underde-
termined and overdetermined systems of linear equations (least-squares problems) and is also the
basis for the OR algorithm for solving the eigenvalue problem.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 27

0
1
2 1
3 2
a4 3
4
5
DTRSM DSYRK DGEMM

- DPOTRF

Figure 8. Work assignment in the static pipeline implementation of the tile Cholesky factorization. Consecutive
steps of the factorization are shown (the sequence is left-to-right and top-down). Numbers signify the cores
responsible for processing corresponding rows of the matrix.

The QR factorization of an m xn real matrix A has the form
A=0R

where Q is an m xm real orthogonal matrix and R is an mxn real upper triangular matrix. The
traditional algorithm for QR factorization applies a series of elementary Householder matrices of
the general form

H=I—1vv’

where v is a column reflector and 7 is a scaling factor. In the block form of the algorithm a product
of nb elementary Householder matrices is represented in the form

HiH>...Hyp=I—VTVT

where V is an N xnb real matrix those columns are the individual vectors v, and T is an nbxnb
real upper triangular matrix [32,33]. In LAPACK the double precision algorithm is implemented
by the DGEQREF routine.

Here a derivative of the block algorithm is used called the tile QR factorization. The ideas behind
the tile QR factorization are very well known. The tile QR factorization was initially developed
to produce a high-performance ‘out-of-memory’ implementation (typically referred to as ‘out-of-
core’) [43] and, more recently, to produce high-performance implementation on ‘standard’ (x86
and alike) multicore processors [29,30] and on the CELL processor [23].

The algorithm is based on the idea of annihilating matrix elements by square tiles instead of
rectangular panels (block columns). The algorithm produces the same R factor as the classic
algorithm, e.g. the implementation in the LAPACK library (elements may differ in sign). However,

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

28 J. KURZAK ET AL. %

DGEQRT DLARFB DLARFB

= NI

DTSQRT DSSRFB DSSRFB

C1

E |] <

DTSQRT DSSRFB DSSRFB

N < <

Figure 9. Tile operations in the tile QR factorization. The sequence is left-to-right and top-down. Hatching
indicates input data, shade of gray indicates in/out data.

DGEQRT DLARFB

NB

DTSQRT DSSRFB

Figure 10. Inner blocking in the tile QR factorization.

a different set of Householder reflectors is produced and a different procedure is required to build
the Q matrix. Whether the Q matrix is actually needed depends on the application. The tile QR
algorithm relies on four basic operations implemented by four computational kernels (Figure 9).

DGEQRT: The kernel performs the QR factorization of a diagonal tile of the input matrix and
produces an upper triangular matrix R and a unit lower triangular matrix V containing the

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 29

Householder reflectors. The kernel also produces the upper triangular matrix 7 as defined by the
compact WY technique for accumulating Householder reflectors [32,33]. The R factor overrides
the upper triangular portion of the input and the reflectors override the lower triangular portion
of the input. The T matrix is stored separately.

DTSQRT: The kernel performs the QR factorization of a matrix built by coupling the R factor,
produced by DGEQRT or a previous call to DTSQRT, with a tile below the diagonal tile. The
kernel produces an updated R factor, a square matrix V containing the Householder reflectors
and the matrix 7 resulting from accumulating the reflectors V. The new R factor overrides the
old R factor. The block of reflectors overrides the square tile of the input matrix. The 7" matrix
is stored separately.

DIARFB: The kernel applies the reflectors calculated by DGEQRT to a tile to the right of the
diagonal tile, using the reflectors V along with the matrix 7.

DSSRFB: The kernel applies the reflectors calculated by DTSQRT to two tiles to the right
of the tiles factorized by DTSQRT, using the reflectors V and the matrix 7 produced by
DTSQRT.

Naive implementation, where the full 7 matrix is built, results in 25% more floating point
operations than the standard algorithm. In order to minimize this overhead, the idea of inner-blocking
is used, where the 7" matrix has sparse (block-diagonal) structure (Figure 10) [34—36].

Figure 11 shows the pseudocode of the tile QR factorization. Figure 12 shows the task graph of
the tile QR factorization for a matrix of 5x5 tiles. Orders of magnitude larger matrices are used in
practice. This example only serves the purpose of showing the complexity of the task graph, which
is noticeably higher than that of the Cholesky factorization.

5.1. Cilk implementation

The task graph of the tile QR factorization has a much denser net of dependencies than the Cholesky
factorization. Unlike for Cholesky the tasks factorizing the panel are not independent and have to
be serialized and the tasks applying the update have to follow the same order. The order can be
arbitrary. Here top-down order is used.

Figure 13 shows the first Cilk implementation, referred to as Cilk 2D, which already requires the
use of lookahead to achieve performance. The basic building blocks are the functions performing
the tile operations. Unlike for Cholesky, none of them is a simple call to BLAS or LAPACK. Owing

FOR k = 0..TILES-1

ALKI[k], TIKI[K] « DGRQRT(A[Kk1[k])
FOR m = k+1..TILES-1

A[KI[Kk], Alm][k], TIm][k] « DTSQRT(A[KI[K], Alm][Kk], TImI[KI)
FOR n = k+1..TILES-1

A[KI[n] « DLARFB(A[KI[K], TIKI[K], A[kI[n])

FOR m = k+1..TILES-1

AIKIIn1, AImIIn] « DSSRFB(AImI[K], TImI[k1, A[KIIn], AlmIinT)

Figure 11. Pseudocode of the tile QR factorization.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

30 J. KURZAK ET AL.

DGEQRT

e
/ T"
8)

e

DSSRFB DSSRFB

DSSRFB

DGEQRT

Figure 12. Task graph of the tile QR factorization (matrix of size 5x35 tiles).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 31

cilk void dgeqgrt(double *RV1, double *T);

cilk void dtsqrt(double *R, double *V2, double *T);

cilk void dlarfb(double *V1, double *T, double *C1);

void dssrfb(double *V2, double *T, double *C1, double *C2);

cilk void dssrfb_(int m, int n, int k)
{
dssrfb(AlmI[k], TImI[k], A[k]l[n], Alm][n]);

if (m == TILES-1 && n == k+1 && k+1 < TILES)
spawn dgeqrt(A[k+11[k+1], T[k+11[k+1]);

if (n == k+1 && m+1 < TILES)
spawn dtsqrt(A[k][k], Alm+11[k], T[m+11[k]);

spawn dgeqrt(A[0][0], T[0][0]);
sync;

for (k = 0; k < TILES; k++) {

for (n = k+1; n < TILES; n++)
spawn dlarfb(A[K][K], T[kI[k], A[KI[n]);

if (k+1 < TILES)
spawn dtsqrt(A[k][k], A[k+11[k], T[k+11[K]);
sync;

for (m = k+1; m < TILES; m++) {
for (n = k+1; n < TILES; n++)
spawn dssrfb_(m, n, k);
sync;
}
}

Figure 13. Cilk implementation of the tile QR factorization with 2D work assignment and lookahead.

to the use of inner-blocking the kernels consist of loop nests containing a number of BLAS and
LAPACK calls (currently coded in FORTRAN 77).
The factorization proceeds in the following steps:

o Initially the first diagonal tile is factorized—spawning of the dgeqrt() task followed by a sync.
Then the main loop follows with the remaining steps.

e Tiles to the right of the diagonal tile are updated in parallel with factorization of the tile
immediately below the diagonal tile—spawning of the dlarfb() tasks and the dtsqrt() task
followed by a sync.

e Updates are applied to the tiles right from the panel—spawning of the dssrfb() tasks by rows
of tiles (sync following each row). The last dssrfb() task in a row spawns the dtsqrt() task in
the next row. The last dssrfb() task in the last row spawns the dgeqri() task in the next step of
the factorization.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

32 J. KURZAK ET AL. %

void dgeqgrt(double *RV1, double *T);

void dtsqrt(double *R, double *V2, double *T);

void dlarfb(double *V1, double *T, double *C1);

void dssrfb(double *V2, double *T, double *C1, double *C2);

cilk void qr_panel(int k)

{
int m;

dgeqrt(ALK][K], TIKIIKD);

for (m = k+1; m < TILES; m++)
dtsqrt(A[KI[k], Alm][K], TImI[KD);
}

cilk void qr_update(int n, int k)
int m;
dlarfb(A[k][k], TIKI[K], AlKI[n]);

for (m = k+1; m < TILES; m++)
dssrfb(A[m][k], T[mI[k], A[k][n], Alm][n]);

if (n == k+1)
spawn qr_panel(k+1);

spawn gr_panel(0);
sync;

for (k = 0; k < TILES; k++) {
for (n = k+1; n < TILES; n++)
spawn qr_update(n, k);
sync;
}

Figure 14. Cilk implementation of the tile QR factorization with 1D work assignment and lookahead.

Although lookahead is used and factorization of the panel is, to some extent, overlapped with
applying the update, tasks are being dispatched in smaller batches, which severely limits opportu-
nities for scheduling.

The second possibility is to process the tiles of the input matrix by columns, the same as was
done for Cholesky. Actually, it is much more natural to do it in the case of QR, where work within a
column has to be serialized. Load imbalance comes into picture again and lookahead is the remedy.
Figure 14 shows the implementation, referred to as Cilk ID.

The implementation follows closely the Cilk 1D version of Cholesky. First, panel O is factorized,
followed by a sync. Then updates to all the remaining columns are issued in parallel. Immedi-
ately after updating the first column, next panel factorization is spawned. The code synchronizes
at each step, but panels are always overlapped with updates. This approach implements one-level
lookahead (lookahead of depth one). Implementing more levels of lookahead would further compli-
cate the code.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 33

#pragma css task \
inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
inout(R[NB][NB], V2[NB][NB]) output(T[NB][NB])
void dtsqgrt(double *R, double *V2, double *T);

#pragma css task \
input(V1[NB][NB], T[NB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

#pragma css task \
input(V2[NB][NB], TINB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);

#pragma css start
for (k = 0; k < TILES; k++) {

dgeqrt(A[K]I[Kk], TIKI[K]);

for (m = k+1; m < TILES; m++)
dtsqrt(ALkI[k], Alm][k], T[m]I[k]);

for (n = k+1; n < TILES; n++) {
dlarfb(A[kI[k], T[KI[Kk], ALKI[n]);
for (m = k+1; m < TILES; m++)
dssrfb(Alm][k], TIm]1[k], A[KI[n], A[Im][n]);
}
}

#pragma css finish

Figure 15. SMPSs implementation of the tile QR factorization.

5.2. SMPSs implementation

Figure 15 shows implementation using SMPSs, which follows closely the one for Cholesky. The
functions implementing parallel tasks are designated with #pragma ccs task annotations defining
directionality of the parameters (input, output, inout). The parallel section of the code is designated
with #pragma ccs start and #pragma ccs finish annotations. Inside the parallel section the algorithm
is implemented using the canonical representation of four loops with three levels of nesting, which
closely matches the pseudocode definition of Figure 11.

The SMPSs runtime system schedules tasks based on dependencies and attempts to maximize
data reuse by following the parent—child links in the task graph when possible.

There is a caveat here, however. VI is an input parameter of task dlarfb(). It is also an inout
parameter of task dtsqrt(). However, dlarfb() only reads the lower triangular portion of the tile, while
ditsqrt() only updates the upper triangular portion of the tile. Since in both cases the tile is passed
to the functions by the pointer to the upper left corner of the tile, SMPSs sees a false dependency.
As a result, the execution of the dlarfb() tasks in a given step will be stalled until all the dtsgrt()
tasks complete, despite the fact that both types of tasks can be scheduled in parallel as soon as the
dgeqrt() task completes. Figure 16 shows conceptually the change that needs to be done.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

34 J. KURZAK ET AL. %

#pragma css task \
inout(RV1[NB][NB]) output(T[NB][NB])
void dgeqrt(double *RV1, double *T);

#pragma css task \
inout(R[, V2[NB][NB]) output(T[NB][NB])
void dtsqgrt(double *R, double *V2, double *T);

#pragma css task \
input(V1[n1, TINB][NB]) inout(C1[NB][NB])
void dlarfb(double *V1, double *T, double *C1);

#pragma css task \
input(V2[NB][NB], TINB][NB]) inout(C1[NB][NB], C2[NB][NB])
void dssrfb(double *V2, double *T, double *C1, double *C2);

#pragma css start
for (k = 0; k < TILES; k++) {

dgeqrt(A[K]I[Kk], TIKI[K]);

for (m = k+1; m < TILES; m++)
dtsqrt(ALKI[KIN, AImI[Kk], TImI[K]);

for (n = k+1; n < TILES; n++) {
dlarfb(ALkI[kIN, TIkI[Kk], A[KI[n]);
for (m = k+1; m < TILES; m++)
dssrfb(Alm][k], TIm][k], AlkI[n], Alm][n]);
}
b

#pragma css finish

Figure 16. SMPSs implementation of the tile QR factorization with improved
dependency resolution for diagonal tiles.

Currently, SMPSs is not capable of recognizing accesses to triangular matrices. There are however
multiple ways to enforce the correct behavior. The simplest method, in this case, is to drop depen-
dency check on the VI parameter of the dlarfb() function by declaring it as volatile*. Correct
dependency will be enforced between the dgeqri() task and the dlarfb() tasks through the T param-
eter. This implementation is further referred to as SMPSs*.

5.3. Static pipeline implementation

The static pipeline implementation for QR is very close to the one for Cholesky. As already
mentioned in Section 2.5 the static pipeline implementation is a hand-written code using POSIX
threads and primitive synchronization mechanisms (volatile progress table and busy-waiting).
Figure 17 shows the implementation.

The code implements the right-looking version of the factorization, where work is distributed by
columns of tiles and steps of the factorization are pipelined. The first core that runs out of work in
step N proceeds to factorization of the panel in step N + 1, following cores proceed to update in
step N +1, then to panel in step N 42 and so on (Figure 18).

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 35

void dgeqgrt(double *RV1, double *T);

void dtsqrt(double *R, double *V2, double *T);

void dlarfb(double *V1, double *T, double *C1);

void dssrfb(double *V2, double *T, double *C1, double *C2);

k =0; n=my_core_id;
while (n >= TILES) {

k+4; n = n-TILES+k;
}m=k;

while (k < TILES && n < TILES) {
next_n = n; next m = m; next_k = k;

next_m++;
if (next_m == TILES) {
next_n += cores_num;
while (next_n >= TILES && next_k < TILES) {
next_k++; next_n = next_n-TILES+next_k;
} next_m = next_k;

}
if

while(progress[k][k] != k-1);
dgeqrt(A[KI[Kk], T[k1[k]);
progress[kl[k] = k;

else{
while(progress[m][k] != k-1);
dtsqrt(A[KI[k], Alm][k], T[m][K]);
progress[m][k] = k;

}
else {
if (m ==k) {
while(progress[k][k] != k);
while(progress[k][n] !'= k-1);
dlarfb(A[k][k], T[kI[k], A[KI[n]);
}
else {
while(progress[m][k] != k);
while(progress[m][n] != k-1);
dssrfb(A[m][k], T[m][k], A[KI[n], Alm][n]);
progress[ml[n] = k;

-

}
n
}

= next_n; m = next_m; k = next_k;
Figure 17. Static pipeline implementation of the tile QR factorization.
The code can be viewed as a parallel implementation of the tile QR factorization with one-

dimensional partitioning of work and lookahead, where lookahead of varying depth is implemented
by processors that run out of work.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

36 J. KURZAK ET AL. %

I
SGEQRT STSQRT 7 SLARFB I:' SSSRFB
Wl sc= Q

Figure 18. Work assignment in the static pipeline implementation of the tile QR factorization. Consecutive
steps of the factorization are shown (the sequence is left-to-right). Numbers signify the cores responsible for
processing corresponding rows of the matrix.

6. LU FACTORIZATION

The LU factorization (or LU decomposition) with partial row pivoting of an m x n real matrix A
has the form

A=PLU

where L is an m xn real unit lower triangular matrix, U is an n xn real upper triangular matrix and
P is a permutation matrix. In the block formulation of the algorithm, factorization of nb columns
(the panel) is followed by the update of the remaining part of the matrix (the trailing submatrix)
[45,46]. In LAPACK the double precision algorithm is implemented by the DGETRF routine. A
single step of the algorithm is implemented by a sequence of calls to the following LAPACK and
BLAS routines: DGETF2, DLASWP, DTRSM, DGEMM, where DGETF2 implements the panel
factorization and the other routines implement the update.

Here a derivative of the block algorithm is used called the tile LU factorization. Similar to the tile
QR algorithm, the tile LU factorization originated as an ‘out-of-memory’ (‘out-of-core’) algorithm
[44] and was recently rediscovered for the multicore architectures [30]. No implementation on the
CELL processor has been reported so far.

Again, the main idea here is the one of annihilating matrix elements by square tiles instead of
rectangular panels. The algorithm produces different U and L factors than the block algorithm (e.g.
the one implemented in the LAPACK library) and produces a different pivoting pattern, which is
farther discussed in more detail. The tile LU algorithm relies on four basic operations implemented
by four computational kernels (Figure 19).

DGETRF: The kernel performs the LU factorization of a diagonal tile of the input matrix and
produces an upper triangular matrix U, a unit lower triangular matrix L and a vector of pivot
indexes P. The U and L factors override the input and the pivot vector is stored separately.

DTSTRF: The kernel performs the LU factorization of a matrix build by coupling the U factor,
produced by DGETREF or a previous call to DTSTRF, with a tile below the diagonal tile. The kernel
produces an updated U factor and a square matrix L containing the coefficients corresponding

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 37

p1 DGETRF p1 DGESSM DGESSM

DTSTRF DSSSSM DSSSSM
P2 P2 c1
Y S el | B
L1 L
DTSTRF DSSSSM DSSSSM

2N N 2N

Figure 19. Tile operations in the tile LU factorization with inner blocking. The sequence is left-to-right and
top-down. Hatching indicates input data, shade of gray indicates in/out data.

to the off-diagonal tile. The new U factor overrides the old U factor. The new L factor overrides
corresponding off-diagonal tile. New pivot vector P is created and stored separately. Owing to
pivoting, the lower triangular part of the diagonal tile is scrambled and also needs to be stored
separately as L’.

DGESSM: The kernel applies the transformations produced by the DGETREF kernel to a tile to the
right of the diagonal tile, using the L factor and the pivot vector P.

DSSSSM: The kernel applies the transformations produced by the DTSTRF kernel to the tiles to
the right of the tiles factorized by DTSTREF, using the L’ factor and the pivot vector P.

One topic that requires further explanation is the issue of pivoting. Since in the tile algorithm
only two tiles of the panel are factorized at a time, pivoting only takes place within two tiles
at a time, a scheme that could be described as block-pairwise pivoting. Clearly, such pivoting
is not equivalent to the ‘standard’ partial row pivoting in the block algorithm (e.g. LAPACK).
A different pivoting pattern is produced, and also, since pivoting is limited in scope, the proce-
dure results in a less numerically stable algorithm. The numerical stability of the tile algorithm
is not discussed here. As of today the authors are not aware of an exhaustive study of the
topic.

As already mentioned earlier, due to pivoting, the lower triangular part of the diagonal block
gets scrambled in consecutive steps of panel factorization. Each time this happens, the tiles to the
right need to be updated, which introduces extra floating point operations, not accounted for in the
standard formula for LU factorization. This is a similar situation to tile QR factorization, where
the extra operations are caused by the accumulation of the Householder reflectors. For LU the

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

38 J. KURZAK ET AL. %

impact is yet bigger, resulting in 50% more operations for a naive implementation. The problem is
remedied in the exact same way as for the tile QR factorization, by using the idea of inner blocking
(Figure 19).

Another issue that comes into play is the concept of LAPACK-style pivoting versus LINPACK-
style pivoting. In the former case, factorization of the panel is followed by row swaps both to the
right of the panel and to the left of the panel. When using the factorization to solve the system,
first permutations are applied to the entire right-hand side vector, and then straightforward lower
triangular solve is applied to perform the forward substitution. In the latter case, factorization of
the panel is followed by row swaps only to the right of the panel (only to the trailing submatrix).
As a result, in the forward substitution phase of solving the system, applications of pivoting and
Gauss transforms are interleaved.

The tile algorithm combines LAPACK pivoting within the panel, to achieve high performance for
the kernels on a cache-based system, and LINPACK pivoting between the steps of the factorization,
to facilitate flexible scheduling of tile operations. The combination of the two pivoting techniques
is explained in great detail by Quintana-Orti and van de Geijn [44].

6.1. Parallel implementation

The tile LU factorization is represented by a DAG of the exact same structure as the one for QR
factorization. In other words, the tile LU factorization is identical, in terms of parallel scheduling,
to the tile QR factorization. For that reason, the parallel implementations of the tile LU factorization
are virtually identical to the parallel implementation of the tile QR factorization and all the facts
presented in Section 5 hold here. In the codes, in Figures 11, 13—16, the DGEQRT operation is
replaced by the DGETRF operation, DLARFB operation by DGESSM operation, DTSQRT by
DTSTRF and DSSRFB by DSSSSM.

7. RESULTS AND DISCUSSION

Results were collected on a 2.4 GHz quad-socket quad-core (16 cores total) Intel Tigerton system
running Linux kernel 2.6.18. Cilk and SMPSs codes were built using Cilk 5.4.6, SMPSs 2.0 and
GCC 4.1.2. Static pipeline codes were built using ICC 10.1. Kernels coded in FORTRAN were
compiled using IFORT 10.1. All codes were linked with MKL 10.0.1. Random input matrices were
used (diagonally dominant for Cholesky factorization). Block Data Layout was used in all cases.
Memory was allocated using huge TLB pages of size 2 MB.

It is the author’s intention to use vendor compilers and libraries as much as possible.
However, problems were encountered when compiling source distributions of Cilk and SMPSs
using ICC, and GCC was used instead. This, however, has virtually no impact on the perfor-
mance, since in all cases, the performance critical functions are performed by BLAS provided
in MKL.

Figure 20 shows execution traces of all the implementations of Cholesky factorization.
The figure shows a small run (9x9 tiles, 1080x 1080 elements) on a small number of
cores (four). The goal here is to clearly illustrate differences in scheduling by the different
approaches.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

% SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 39

Cilk 2D

core 0
core 1
core 2
core 3

core 0] Z A

core 1 7 Z| |2 % /] 7

core 2 WATIIITdY A1 11 1] ZE N 1 1 171 9

core 3 VAATTTATT] ZERRZ Y ATVA] ZEN] 7 7
SMPSs

core 0

core 1
core 2
core 3

Il orotrF

DTRSM
] bsyrk
[] pGEMM

core 0
core 1
core 2
core 3

Figure 20. Execution traces of the tile Cholesky factorization in double precision on four cores of a 2.4 GHz
Intel Tigerton system. Matrix size N=1080, tile size nb=120, total number of tasks =140.

The Cilk 1D implementation performs the worst. The 1D partitioning of work causes a disastrous
load imbalance in each step of the factorization. Despite the lookahead, panel execution is very
poorly overlapped with the update, in part due to the triangular shape of the updated submatrix and
quickly diminishing amount of work in the update phase.

The Cilk 2D implementation performs much better by scheduling the dtrsm() operations in the
panel in parallel. In addition, scheduling the dsyrk() and dgemm() tasks in the update phase without
constraints minimizes the load imbalance. The only serial task, dpotrf(), does not cause disastrous
performance losses.

Far better is the SMPSs implementation, where tasks are continuously scheduled without gaps
until the very end of the factorization, where small stalls occur. Data reuse is clearly visible through
clusters of dsyrk() tasks. Yet better is the static pipeline schedule, where no dependency stalls occur
at all and data reuse is exploited to the fullest.

Figure 21 shows execution traces of all the implementations of QR factorization. The same as
for Cholesky, the figure shows a small run (7x7 tiles, 1008 x 1008 elements) on a small number of
cores (four). Once again, the goal here is to clearly illustrate the differences in scheduling by the
different approaches. Traces for the tile LU factorization for a similar size problem are virtually
identical to the QR traces and are not shown here. The following discussion applies equally to the
tile QR and to the tile LU factorization.

The situation looks a bit different for the tile QR and LU factorizations compared with the tile
Cholesky factorization. The fine-grain Cilk 2D implementation performs poorest, which is mostly
due to the dispatch of work in small batches. Although the tasks of panel factorization (dgeqrt(),
dtsqrt()) are overlapped with the tasks of the update (dlarfb(), dssrfb()), synchronization after each
row, and related load imbalance, contribute a big number of gaps in the trace.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

40 J. KURZAK ET AL. %

time
h‘ Cilk 2D
core 0 %7
] Ll [T T] (1]
L]
[

i [
core 3 7] [T TTITTITIATIT T TITTIA T AT

71 7 7!
ATTTTITHATTTITITETITIIT] ZEEN

SMPSs*

7]
DO I ITUII [T
77 7 N R N /R B ocearr
— DTSQRT
[T T[] "] DLARFB
/EEEEEE/EEEEE [T[] %
[A dil gL [] pssrrs

Figure 21. Execution traces of the tile QR factorization in double precision on four cores of a 2.4 GHz Intel
Tigerton system. Matrix size N=1008, tile size nb=144, inner block size / B=48, total number of tasks =140.

The Cilk 1D version performs better. Although the number of gaps is still significant, mostly due
to 1D partitioning and related load imbalance, overall this implementation loses less time due to
dependency stalls.

Interestingly, the initial SMPSs implementation produces almost an identical schedule to the
Cilk 1D version. One difference is the better schedule at the end of the factorization. The overall
performance difference is small.

The SMPSs* implementation delivers a big jump in the performance, due to dramatic improve-
ment in the schedule. Here the static pipeline schedule is actually marginally worse than SMPSs
due to a few more dependency stalls. More flexible scheduling of SMPSs provides for a better
schedule at the end of the factorization. This advantage diminishes on larger number of cores, where
the overheads of dynamic scheduling puts the performance of the SMPSs implementation slightly
behind the one of the static pipeline implementation.

Figure 22 shows the performance for the Cholesky factorization, where Cilk implementations
provide mediocre performance, SMPSs provides much better performance and static pipeline
provides the performance clearly superior to other implementations.

Figure 23 shows the performance for the QR factorization. The situation is a little different here.
The performance of Cilk implementations is still the poorest and the performance of the static
pipeline is still superior. However, the performance of the initial SMPSs implementation is only
marginally better than Cilk 1D, while the performance of the improved SMPSs* implementation is

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 41

Tile Cholesky Factorization Performance
110 T T T T T T T T

100 : : :]

80 | >]
70 | : : :

Gflop/s

50 } i : : : . - .
40 ! : : A .
30 1

20 o : : — - - Static Pipeline

, 2z —6— SMPSs

10 } % : : . -8 -Cik2D
B —&—Cilk 1D

0 E - I 1 1 1 I I
0 1000 2000 3000 4000 5000 6000 7000 8000

Matrix Size

Figure 22. The performance of the tile Cholesky factorization in double precision on a 2.4 GHz quad-socket
quad-core (16 cores total) Intel Tigerton system. Tile size nb=120.

Tile QR Factorization Performance
110 T T T T T - - -

100 5
90
80 f
70

Gflop/s

50 |
40 |
30 |

- - - Static Pipeline

—o— SMPSs* I
- - SMPSs
—a— Cilk 1D M
-g -Cilk2D

10

0 . 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Matrix Size

Figure 23. The performance of the tile QR factorization in double precision on a 2.4 GHz quad-socket quad-core
(16 cores total) Intel Tigerton system. Tile size nb =144, inner block size I B=48.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

42 J. KURZAK ET AL. %

Tile LU Factorization Performance
110 T T T T T T T T

100 L : : : : : : : i
90 | A
80 |
70
g_ 60
8 L
o 50
40|
30 |
| ’ - - —Static Pipeline |
20 / —o—SMPSs*
_ 6 -SMPSs
10 —a—Cilk 1D
_ & -Cilk 2D

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Matrix Size

Figure 24. The performance of the tile LU factorization in double precision on a 2.4 GHz quad-socket quad-core
(16 cores total) Intel Tigerton system. Tile size nb=200, inner block size I B=40.

only marginally worse than static pipeline. The same conclusions apply to the tile LU factorization
(Figure 24).

Relatively better performance of SMPSs for the QR and LU factorizations versus the Cholesky
factorization can be explained by the fact that the LU factorization is two times more expensive
and the QR factorization is four times more expensive, in terms of floating point operations. This
diminishes the impact of various overheads for smaller size problems.

8. CONCLUSIONS

In this work, the suitability of emerging multicore programming frameworks was analyzed for
implementing modern formulations of classic dense linear algebra algorithms, the tile Cholesky,
the tile QR and the tile LU factorizations. These workloads are represented by large task graphs
with compute-intensive tasks interconnected with a very dense and complex net of dependencies.

For the workloads under investigation, the conducted experiments show clear advantage of
the model, where automatic parallelization is based on construction of arbitrary DAGs. SMPSs
provides much higher level of automation than Cilk and similar frameworks, requiring only minimal
programmer’s intervention and basically leaving the programmer oblivious to any aspects of paral-
lelization. At the same time it delivers superior performance through more flexible scheduling of
operations.

SMPSs still loses to hand-written code for very regular compute-intensive workloads investigated
here. The gap is likely to decrease, however, with improved runtime implementations. Ultimately,
it may have to be accepted as the price for automation.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

SCHEDULING DENSE LINEAR ALGEBRA OPERATIONS 43

Parallel programming based on the idea of representing the computation as a task graph and

dynamic data-driven execution of tasks shows clear advantages for multicore processors and multi-
socket shared-memory systems of such processors. One of the most interesting questions is the
applicability of the model to large-scale distributed-memory systems.

REFERENCES

1.

NN AW

=

10.
11.

12.

13.

14.

15.

17.

18.

20.
21.

22.

Anderson E, Bai Z, Bischof C, Blackford LS, Demmel JW, Dongarra JJ, Du Croz J, Greenbaum A, Hammarling S,
McKenney A, Sorensen D. LAPACK Users’ Guide. SIAM: Philadelphia, PA, 1992. Available at: http://www.netlib.
org/lapack/lug/ [2 June 2009].

. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra JJ, Hammarling S, Henry G, Petitet A,

Stanley K, Walker D, Whaley RC. ScaLAPACK Users’ Guide. SIAM: Philadelphia, PA, 1997. Available at: http://www.
netlib.org/scalapack/slug/ [2 June 2009].

. Co-Array Fortran. Available at: http://www.co-array.org/ [2 June 2009].

. The Berkeley Unified Parallel C (UPC) project. Available at: http://upc.lbl.gov/ [2 June 2009].

. Titanium project home page. Available at: http:/titanium.cs.berkeley.edu/ [2 June 2009].

. Cray, Inc. Chapel Language Specification 0.775. Available at: http://chapel.cs.washington.edu/spec-0.775.pdf [2 June

2009].

. Sun Microsystems Inc. The Fortress Language Specification, Version 1.0, 2008. Available at: http://research.

sun.com/projects/plrg/Publications/fortress.1.0.pdf [2 June 2009].

. Saraswat V, Nystrom N. Report on the Experimental Language X10, Version 1.7, 2008. Available at: http://dist.

codehaus.org/x10/documentation/languagespec/x10-170.pdf [2 June 2009].

. Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y. Cilk: An efficient multithreaded runtime

system. Principles and Practice of Parallel Programming, Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP’95. ACM: Santa Barbara, CA, 19-21 July 1995; 207-216.
DOI: 10.1145/209936.209958.

Intel Threading Building Blocks. Available at: http://www.threadingbuildingblocks.org/ [2 June 2009].

Reinders J. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. O’Reilly Media, Inc.,
2007. Available at: http://www.amazon.com/exec/obidos/ASIN/0596514808/ ISBN: 0596514808 [2 June 2009].
OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.0, 2008. Available at:
http://www.openmp.org/mp-documents/spec30.pdf [2 June 2009].

The community of OpenMP users, researchers, tool developers and providers. Available at: http://www.compunity.org/
[2 June 2009].

Ayguadé E, Copty N, Duran A, Hoeflinger J, Lin Y, Massaioli F, Su E, Unnikrishnan P, Zhang G. A proposal for
task parallelism in OpenMP. A Practical Programming Model for the Multi-Core Era, 3rd International Workshop on
OpenMP, IWOMP 2007 (Lecture Notes in Computer Science, vol. 4935), Beijing, China. Springer: Berlin, 3-7 June
2007; 1-12. DOI: 10.1007/978-3-540-69303-1_1.

Duran A, Perez JM, Ayguadé RM, Badia Labarta J. Extending the OpenMP tasking model to allow dependent tasks.
OpenMP in a New Era of Parallelism, 4th International Workshop, IWOMP 2008 (Lecture Notes in Computer Science,
vol. 5004), West Lafayette, IN. Springer: Berlin, 12-14 May 2008; 111-122. DOI: 10.1007/978-3-540-79561-2_10.

. Barcelona Supercomputing Center. SMP Superscalar (SMPSs) User’s Manual, Version 2.0, 2008. Available at:

http://www.bsc.es/media/1002.pdf [2 June 2009].

Supercomputing Technologies Group. Cilk 5.4.6 Reference Manual, MIT Laboratory for Computer Science, 1998.
Available at: http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf [2 June 2009].

Bellens P, Perez JM, Badia RM, Labarta J. CellSs: A programming model for the Cell BE architecture. Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing. Tampa, FL. ACM: New York, 11-17 November 2006; DOI:
10.1145/1188455.1188546.

. Perez JM, Bellens P, Badia RM, Labarta J. CellSs: Making it easier to program the Cell Broadband Engine processor.

IBM Journal of Research and Development 2007; 51(5):593—-604. DOI: 10.1147/rd.515.0593.

Smith JE, Sohi GS. The microarchitecture of superscalar processors. Proceedings of the IEEE 1995; 83(12):1609—-1624.
Kuck DJ, Kuhn RH, Padua DA, Leasure B, Wolfe M. Dependence graphs and compiler optimizations. Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM: Williamsburg, VA, January
1981; 207-218. DOI: 10.1145/209936.209958.

Kurzak J, Buttari A, Dongarra JJ. Solving systems of linear equation on the CELL processor using Cholesky factorization.
IEEE Transactions on Parallel and Distributed Systems 2008; 19(19):1175-1186. DOIL: TPDS.2007.70813.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44

DOI: 10.1002/cpe

44 J. KURZAK ET AL.

23. Kurzak J, Dongarra JJ. QR factorization for the CELL processor. Scientific Programming 2009; 17(1-2):31-42. DOI:
10.3233 /SPR-2009-0268.

24. Lord RE, Kowalik JS, Kumar SP. Solving linear algebraic equations on an MIMD computer. Journal of the ACM 1983;
30(1):103-117. DOI: 10.1145/322358.322366.

25. Agarwal RC, Gustavson FG. A parallel implementation of matrix multiplication and LU factorization on the IBM 3090.
Proceedings of the IFIP WG 2.5 Working Conference on Aspects of Computation on Asynchronous Parallel Processors.
North-Holland Publishing Company: Stanford, CA, 22-25 August 1988; 217-221. ISBN: 0444873104.

26. Agarwal RC, Gustavson FG. Vector and parallel algorithms for Cholesky factorization on IBM 3090. Proceedings of
the 1989 ACM/IEEE Conference on Supercomputing, Reno, NV. ACM: New York, 13-17 November 1989; 225-233.
DOI: 10.1145/76263.76287.

27. Kurzak J, Dongarra JJ. Implementing linear algebra routines on multi-core processors with pipelining and a look
ahead. Applied Parallel Computing, State of the Art in Scientific Computing, 8th International Workshop, PARA 2006
(Lecture Notes in Computer Science, vol. 4699), Umea, Sweden. Springer: Berlin, 18-21 June 2006; 147-156. DOI:
10.1007/978-3-540-75755-9_18.

28. Buttari A, Dongarra JJ, Husbands P, Kurzak J, Yelick K. Multithreading for synchronization tolerance in matrix
factorization. Scientific Discovery Through Advanced Computing, SciDAC 2007 (Journal of Physics: Conference Series,
vol. 78:012028), Boston, MA. IOP Publishing: Bristol, U.K., 24-28 June 2007. DOI: 10.1088/1742-6596/78/1/012028.

29. Buttari A, Langou J, Kurzak J, Dongarra JJ. Parallel tiled QR factorization for multicore architectures. Concurrency and
Computation: Practice and Experience 2008; 20(13):1573-1590. DOI: 10.1002/cpe.1301.

30. Buttari A, Langou J, Kurzak J, Dongarra JJ. A class of parallel tiled linear algebra algorithms for multicore architectures.
Parallel Computing: Systems and Applications 2009; 35:38-53. DOI: 10.1016/j.parco0.2008.10.002

31. Dongarra JJ, Kaufman L, Hammarling S. Squeezing the most out of eigenvalue solvers on high-performance computers.
Linear Algebra and its Applications 1986; 77:113-136.

32. Bischof C, van Loan C. The WY representation for products of Householder matrices. Journal on Scientific and Statistical
Computing 1987; 8:2—13.

33. Schreiber R, van Loan C. A storage-efficient WY representation for products of Householder transformations. Journal
on Scientific and Statistical Computing1991; 10:53-57.

34. Elmroth E, Gustavson FG. Applying recursion to serial and parallel QR factorization leads to better performance. /BM
Journal of Research and Development 2000; 44(4):605-624.

35. Elmroth E, Gustavson FG. High-performance library software for QR factorization. Applied Parallel Computing, New
Paradigms for HPC in Industry and Academia, 5th International Workshop, PARA 2000 (Lecture Notes in Computer
Science, vol. 1947), Bergen, Norway. Springer: Berlin, 18-20 2000; 53-63. DOI: 10.1007/3-540-70734-49.

36. Elmroth E, Gustavson FG. New serial and parallel recursive QR factorization algorithms for SMP systems. Applied Parallel
Computing, Large Scale Scientific and Industrial Problems, 4th International Workshop, PARA’98 (Lecture Notes in
Computer Science, vol. 1541), Umea, Sweden. Springer: Berlin, 1417 June 1998; 120-128. DOI: 10.1007/BFb0095328.
Available at: http://dx.doi.org/10.1007/BFb0095328 [2 June 2009].

37. Gill PE, Golub GH, Murray WA, Saunders MA. Methods for moditying matrix factorizations. Mathematics of Computation
1974; 28(126):505-535.

38. Berry MW, Dongarra JJ, Kim Y. LAPACK working note 68: A highly parallel algorithm for the reduction of a
nonsymmetric matrix to block upper-Hessenberg form. Technical Report UT-CS-94-221, Computer Science Department,
University of Tennessee, 1994. Available at: http://www.netlib.org/lapack/lawnspdf/lawn68.pdf [2 June 2009].

39. Gustavson FG. Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM Journal of
Research and Development 1997; 41(6):737-756. DOIL: 10.1147/rd.416.0737.

40. Gustavson FG. New generalized matrix data structures lead to a variety of high-performance algorithms. Proceedings of
the IFIP WG 2.5 Working Conference on Software Architectures for Scientific Computing Applications. Kluwer Academic
Publishers: Ottawa, Canada, 2—4 October 2000; 211-234. ISBN: 0792373391.

41. Gustavson FG, Gunnels JA, Sexton JC. Minimal data copy for dense linear algebra factorization. Applied Parallel
Computing, State of the Art in Scientific Computing, 8th International Workshop, PARA 2006 PARA 2006. (Lecture Notes
in Computer Science, vol. 4699), Umed, Sweden. Springer: Berlin, 18-21 June 2006; 540-549. DOI: 10.1007/978-3-
540-75755-9_66.

42. Elmroth E, Gustavson FG, Jonsson I, Kégstrom B. Recursive blocked algorithms and hybrid data structures for dense
matrix library software. SIAM Review 2004; 46(1):3—45. DOI: 10.1137/S0036144503428693.

43. Gunter BC, van de Geijn RA. Parallel out-of-core computation and updating the QR factorization. ACM Transactions
on Mathematical Software 2005; 31(1):60-78. DOI: 10.1145/1055531.1055534.

44. Quintana-Orti ES, van de Geijn RA. Updating an LU factorization with pivoting. ACM Trans. Math. Softw 2008; 35(2):11.
DOI: 10.1145/1377612.1377615.

45. Dongarra JJ, Duff IS, Sorensen DC, van der Vorst HA. Numerical Linear Algebra for High-Performance Computers.
SIAM: Philadelphia, 1998. ISBN: 0898714281.

46. Demmel JW. Applied Numerical Linear Algebra. SIAM: Philadelphia, 1997. ISBN: 0898713897.

Copyright © 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:15-44
DOI: 10.1002/cpe

