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a b s t r a c t

The number of processors embedded on high performance computing platforms is growing daily to
satisfy the user desire for solving larger and more complex problems. Scalable and fault-tolerant runtime
environments are needed to support and adapt to the underlying libraries and hardware which require a
high degree of scalability in dynamic large-scale environments.
This paper presents a self-healing network (SHN) for supporting scalable and fault-tolerant runtime

environments. The SHN is designed to support transmission of messages acrossmultiple nodes while also
protecting against recursive node and process failures. It will automatically recover itself after a failure
occurs. SHN is implemented on top of a scalable fault-tolerant protocol (SFTP). The experimental results
show that both the latest multicast and broadcast routing algorithms used in SHN are faster and more
reliable than the original SFTP routing algorithms.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently, several high performance computing platforms have
been installed with more than 10,000 CPUs, such as Blue-Gene/L
at LLNL, BGW at IBM and Columbia at NASA [1]. However, as
the number of components increases, so does the probability of
failure. To satisfy the requirements of such a dynamic environment
(where the available number of resources is fluctuating), a
scalable and fault-tolerant framework is needed. Many large-scale
applications are implemented on top of message passing systems
for which the de facto standard is the Message Passing Interface
(MPI) [2]. MPI implementations require support from parallel
runtime environments, which are extensions of the operating
system services, and provide necessary functionalities (such as
naming resolution services) for both the message passing libraries
and applications. Although there are several existing parallel
runtime environments for different types of systems, they do not
meet some of the major requirements for MPI implementations:
scalability, portability and performance. Typically, distributed OS
and single system image systems are not portable while the
nature of Gridmiddle-ware has performance problems. TheMPICH
implementation [3] uses a parallel runtime environment called
Multi-Purposed Daemon (MPD) [4] to provide scalability and fault
tolerance through a ring topology for some operations and a
tree topology for others. Runtime environments of other MPI
implementations, such as Harness [5] of FT-MPI [6], Open RTE [7]
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of Open MPI [8] and LAM of LAM/MPI [9], do not currently
provide scalable or fault-tolerant solutions for their internal
communications.
The scalability and fault-tolerance issues have been addressed

in several networking areas. However, these approaches cannot be
used or they are not efficient in the parallel runtime environments.
Structured peer-to-peer networking based on distributed hash
tables such as CAN [10], Chord [11], Pastry [12] and Tapestry [13]
were designed for resource discovery. They are only optimized for
unicast messages. Techniques used in sensor or large-scale ad hoc
networking based on gossiping (or the epidemic algorithm) [14,15]
mainly focus on information aggregation.
A self-healing network (SHN) that can be used as a basis

for constructing a higher level, fault-tolerant parallel runtime
environment is described in this article. SHN was designed to
support transferring messages across multiple nodes efficiently,
while protecting against recursive node or process failures. SHN
automatically recovers itself to overcome the orphan situation (the
situation where nodes are unreachable because the network is
bisectioned).
SHN was built on top of a scalable and fault-tolerant protocol

(SFTP) [16] and automatically recovers itself after a failure occurs.
The SFTP is based on a k-ary sibling tree. The k-ary sibling tree
topology is a k-ary tree, where k is the number of fan-outs (k ≥ 2),
and the nodes on the same level (samedepth on the tree) are linked
together using a ring topology. The tree is primarily designed
to allow scalability for broadcast and multicast operations, while
the ring is used to provide a well-understood secondary path for
transmission when the tree is damaged during failure conditions.
The protocol has been formally proven by SPIN [17] to work under
both normal and failure modes.
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(a) Node 4 dies. (b) Nodes 4 and 5 die.

Fig. 1. SHN after recovery.
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Fig. 2. Orphan prevention.
The structure of this paper is as follows. The next section
introduces the self-healing network and its recovery algorithm.
Section 3 presents the routing algorithm along with some
experimental results, while Section 4 analyzes and discusses the
reliability of self-healing network, followed by conclusions and
future work in Section 5.

2. Self-healing network (SHN)

2.1. Overview

The self-healing network (SHN) is designed to support generic
runtime environments of MPI implementations. Currently, the
integration of SHN in a fault-tolerant implementation of message
passing interface called FT-MPI, as well as in the modular MPI
implementation called Open MPI, is in progress. The network is
designed to support various operations needed by scalable and
fault-tolerant MPI runtime environments. The examples of those
operations and the details on their usage are described below.

Distributed directory serviceDirectory service is a storage that
maintains information used during execution of an MPI job such
as contact information of each process, coordinator of recovery
algorithm in FT-MPI, etc. SHN enables us to use the network as
a distributed directory service by mapping necessary information
to the logical node ID. Scalable and fault-tolerant information
management (update, query) can be donewith unicastmessages of
SFTP routing (similar to resource discovery in the structured peer-
to-peer networking).

Standard I/O redirection Although the MPI standard does not
define how an input and an output can be treated, most of the MPI
implementation redirects the standard output and the standard
error to the user terminal (if not run under the batch scheduling).
This operation can be done using the k-ary tree as a main route
to forward the standard output/error and using the ring in case of
failures.

Monitoring framework A monitoring framework provides in-
formation such as processes, nodes, messages for tool and applica-
tion development. Examples of those tools are parallel debuggers,
runtime fault detectors, runtime verification and load balancers,
etc. To build a scalable and fault-tolerant monitoring framework,
all of the communication underneath the framework can use mul-
tiple types ofmessage transmissions (unicast,multicast and broad-
cast) provided by SHN.
In general, SHN provides the capability to send unicast,
multicast and broadcastmessages fromanynodeswhile protecting
the effective message delivery against node and process failures.

2.2. SHN recovery

There are some situations where nodes do not die but become
unreachable due to network bisectioning. This situation can be
prevented by self-recovery. When a node detects that a neighbor
disappears, it will send a unicast message to establish the
connectionwith the next neighbor in the ring in the direction of the
dead node. This procedure will be continued until the connection
with one of the nodes in the ring can be established or until the
node identifies itself as the last remaining node in the ring. If
two nodes try to establish a connection at the same time, the
connection which is initiated by the higher ID will be dropped.
Fig. 1(a) illustrates an example where logical node 4 dies. All

neighbors of node 4 will begin to recover the logical topology by
re-establishing their connections in the appropriate direction. If
node 5 also dies, the same recovery procedure will occur as shown
in Fig. 1(b). There is an exception when the number of nodes on
the last level (highest depth) of the tree is at most equal to k
(k is the fan-out as shown in Fig. 2(a)). In this case, the contact
information of the nodes on the last level should be propagated
to the grandparent in order to avoid the network bisection if the
parent disappears. Alternatively, if there are at least two nodes
in the last level, these nodes can be rearranged to reduce the
possibility of orphan nodes as shown in the Fig. 2(b). However, the
initialization phase of this topology is more complex. The simplest
solution to prevent this problem is to change the fan-out for a
particular number of nodes such that the number of nodes in the
last level of the tree is always more than that of fan-out as shown
in Fig. 3. The fan-outs between the lower bound and the upper
bound, except those exceptional cases in the Fig. 3, are safe from
the high possibility of an orphan problem. The experiments have
been conducted on an AMD AthlonTM64 Processor 3500+ 2.2 GHz
machine with 1 GB of main memory, running on Linux kernel
2.6.15.

3. Routing algorithm in SHN

The SHN routing algorithm is based on the SFTP routing algo-
rithm [16]. The initial system protocol, unicast message protocol,
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Fig. 3. Safe fan-out.

and broadcast froma specific root protocol are the same as the SFTP
protocol. The newmulticast andbroadcast routing algorithms from
any nodes in the network, which are extensions of the SFTP routing
algorithm, have been added. Both can be used before (including
some node failures) and after recovery of the logical topology. The
SHN routing algorithms can be described as follows.

3.1. Multicast messages in SHN

The multicast from any nodes in SHN is the capability to send
messages to several destinations (1 to m, where m < n). Unlike
the IPmulticast, multicast groupmanagement (group creation and
termination) is not required. The multicast group members are
embedded in the message header.
Multicast messages in SFTP are delivered by a sender to the

first destination in the destination lists. Then, the first destination
will forward the message to the next destination and so on. If an
intermediate node is one of the nodes in the destination list, it will
remove itself from the list. The order of nodes in the destination
list is a descending order sorted by the number of hops from a
sender to those destinations (i.e., the largest number of hops first).
This routing algorithm works fine if the destination nodes are
consecutive or if they are located in the same area of the tree.
The newmulticast routing algorithm in SHN is an enhancement

of the SFTP multicast routing algorithm. The multicast message
can be split at an intermediate node, if the shortest paths to
those destination nodes are not in the same direction from the
intermediate node point of view. However, if there are more than
one shortest path to a destination, the intermediate node will
choose the next hop that can go along with other destinations.
Fig. 4(a) shows an example of node 2 sending a multicast

message to nodes 7, 8 and 9 with the new routing algorithm.
Fig. 5. Multicast result (with 1 failure node).

In case of failure, if a node detects that the next hop for
the multicast messages has died, it automatically reroutes the
multicast messages using an alternate next hop as shown in
Fig. 4(b). When a node receives a multicast message, it will first
determine the header and choose the next hop for each multicast
destination according to the shortest path to them. The node will
recreate the header corresponding to the direction of each next
hop. Messages that contain the largest number of hops will be
forwarded first, in order to increase the network throughput (by
allowing a large number of messages simultaneously into the
network).
Fig. 5 confirms that the new multicast routing algorithm is

faster than the original algorithm used in the SFTP. The experi-
mental results were obtained from an average number of steps
for sending multicast messages to two destinations with a dead
node (fan-out = 2). The two destination nodes (D) were obtained
from combinations of all possible nodes (N), i.e.,

(
N
D

)
, where a

source node 6∈ D and the dead node were randomly selected.

3.2. Broadcast messages in SHN

Broadcast from any node routing protocol is an enhancement
of broadcast routing in SFTP. In SFTP, the broadcast is done by
sendingmessages to a root of the tree, which will then forward the
messages to the rest of the tree. Only the tree topology of SFTP is
used to prevent a broadcast stormandduplicatemessages. The ring
is used only in the case of failure. The first obvious improvement
of this routing protocol is to allow a node between a source and
a root of the tree to send messages to their children after they
send the messages to their parent (called up–down), as shown in
Fig. 6(a)with node 4 as the root. The second improvement is using a
logical spanning tree from the source as shown in Fig. 6(b). When a
(a) Normal circumstances. (b) Failure circumstances.

Fig. 4. Multicast message transmission.
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(a) Up–down. (b) Spanning tree from source.

Fig. 6. Broadcast message transmission.
Fig. 7. Broadcast result.

node receives a broadcast message, it will calculate the next hops
using spanning trees from the source node. There are two steps
involved in the computation of the next hop. The first step is to
create a spanning tree using a source node as the root node of the
tree. The spanning-tree creation algorithm is based on a modified
version of the breath first search with a graph coloring algorithm.
The second step is to calculate the next hop. The next hop is chosen
from children of each node according to the spanning tree that
has the highest cost among its children. The cost is computed
from the number of steps used to send a message to all nodes
in the children’s subtrees. In case of failure, a broadcast message
is encapsulated into a multicast message, and then the message
is sent from the parent of the failure node to its children in the
spanning tree.
Fig. 7 indicates that the up–down algorithm is marginally faster

than the original SFTP, while the new spanning-tree broadcast
routing algorithm is significantly faster than the SFTP broadcast
routing algorithm due to increased parallelism. The experimental
results were obtained from an average number of steps for sending
a broadcast message from every node (fan-out = 2).

4. Reliability analysis of SHN

The reliability of SHN has been analyzed using the discrete-
event simulation technique [18]. The reliability is defined as the
ability to maintain an operation over a period of time t , i.e., the
reliability R(t) = Pr (the network is operational in [0, t]). SHN
is ‘‘operational’’ if it can successfully deliver messages from any
source to the alive destination(s), even when some nodes in the
routing path die.
The cumulative distribution function (cdf), F (t) can be defined

as

F(t) =
∫ t

0
f (t)dt
Fig. 8. Bathtub curve.

where f (t) is the probability density function (pdf) that is
associated with the lifetime of the network.
There are several characteristics that are commonly used in

reliability analysis. These characteristics can be determined from
the pdf and cdf, e.g., reliability function, hazard function and mean
time between failures.
The reliability function (or survival function), R(t), is the

probability that SHN survives up to time t. It can be defined as

R(t) = 1− F(t).

The simulation assumes that there is no failure at the initial time,
i.e., t = 0, R(0) = 1.
The Hazard function, h(t) is the failure rate of the network. The

h(t) is defined by

h(t) =
f (t)
R(t)

.

The failure rate in practice has a bathtub shape [19]. The hazard
function of SHN is also assumed to change as the bathtub curve,
which consists of three phases: decreasing failure rate (burn in),
constant failure rate and increasing failure rate (wearing out) as
shown in Fig. 8.
The mean time between failure (MTBF) is defined to be the

average (or expected) lifetime of the network. TheMTBF is defined
by

MTBF =
∫
∞

0
R(t)dt.

The probability density function of SHN is assumed to follow
the Weibull distribution [20]. This distribution has the capability
to model the bathtub curve. The pdf of the Weibull distribution is
given by

f (t) = βα−β tβ−1 exp

[
−

(
t
α

)β]
where α is the scale parameter and β is the shape parameter. The
associate functions of theWeibull distribution can be summarized
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(a) β effect. (b) α effect.

Fig. 9. Effects of shape (β) and scale (α).
Table 1
Associate characteristic functions of distributions.

Characteristics General Weibull

CDF, F (t)
∫ t
0 f (t)dt 1− e−(

t
α )

β

Reliability function, R(t) 1− F(t) e−(
t
α )

β

Hazard function, h(t) f (t)
R(t) βα−β tβ−1

MTBF
∫
∞

0 R(t)dt αΓ
(
1+ 1

β

)

in Table 1. The Γ denotes a gamma function where Γ (n) is defined
as

Γ (n) =
∫
∞

0
e−xxn−1dx.

If n is an integer thenΓ (n) = (n−1)!. In themost general form,
the 3-parameter form [21] of the Weibull includes an additional
waiting time parameter µ (sometimes called a shift or location
parameter). The formulas for the 3-parameter Weibull can be
easily obtained from these formulas by substituting occurrences
of t by (t − µ).
The Weibull lifetime distribution assumes that the hazard

function is time dependent. The hazard function is dependent on
the value of β as shown in Fig. 9(a).

– If β < 1, the hazard function is the decreasing function (infant
mortality or burn in), i.e., the older it is, the less likely it fails
(the first phase of the bathtub curve).

– If β = 1, the age has no effect. It is the second phase of the
bathtub curve.

– Ifβ > 1, the hazard function is the increasing function (wearing
out), i.e., the older it is, the more likely it is to fail. It is the third
phase of the bathtub curve. If 1 < β < 2, the hazard function
is concave (increasing at a decreasing rate). On the other hand,
the hazard function is convex (increasing at an increasing rate),
if β > 2.

Fig. 9(b) shows the effects of the characteristic life (α) on the
failure rate, which affects the spread (scale) of the distribution.
The simulation assumes thatMTBF of the network is three years

(26,280 h). Several β and its corresponding α parameters have
been tested as shown in Table 2. Ifβ equals to 1, the hazard function
is time independent, i.e., the network is equally likely to fail at
any moment during its lifetime, regardless of how old it is. The
failure rate is known to be a constant ( 1

α
). This is a special case

where Weibull becomes the exponential distribution [22]. Fig. 10
illustrates the effect of β and its corresponding α parameters
(as shown in Table 2) in the Weibull lifetime distribution to the
percent average of success of multicast operations. It shows that
the new multicast routing used in SHN is more reliable than the
original SFTP routing for every value of the β parameter. Fig. 11
Table 2
Weibull parameters (MTBF=26,280).

β α h(t) R(t)

0.5 13,140.00 0.5× 13, 140−0.5t−0.5 e−
(

t
13,140

)0.5
1.0 26,280.00 3.8× 10−5 e−

(
t

26,280

)
1.5 29,111.21 1.5× 29, 111, 21−1.5t0.5 e−

(
t

29,111.21

)1.5
2.0 29,653.80 2.0× 29, 653.80−2.0t e−

(
t

29,653.80

)2.0
2.5 29,619.14 2.5× 29, 619.14−2.5t1.5 e−

(
t

29,619.14

)2.5

Fig. 10. Weibull on multicast (MTBF=26,280).

illustrates the effect of β and its corresponding α parameters
(as shown in Table 2) in the Weibull lifetime distribution to the
percent average of success of broadcast operations. It shows that
the spanning-tree (from source) broadcast routing algorithm used
in SHN is themost reliable routing algorithmwhen comparedwith
the up–down and the original SFTP routing for all values of the β
parameter.

5. Conclusions and future work

The self-healing network (SHN) for parallel runtime environ-
ments was designed and developed to support runtime environ-
ments of MPI implementations. SHN is implemented on top of a
scalable fault-tolerant protocol (SFTP). Simulated performance re-
sults indicate that the new broadcast and multicast routing algo-
rithms of SHN are faster and more reliable than the original SFTP
routing algorithms.
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(a) SFTP. (b) Up–down. (c) Spanning tree.

Fig. 11. Weibull on broadcast (MTBF=26,280).
There are several improvements that we plan for the near
future. Making the protocol aware of the underlying network
topology (in both the LAN and WAN environments) will greatly
improve the overall performance of both the broadcast and
multicast message distribution. This is equivalent to adding a
function cost on each possible path and integrating this function
cost with the computation of the shortest path. In the longer term,
we hope that SHN will become the basic message distribution of
the runtimeenvironmentwithin the FT-MPI andOpenMPI runtime
systems.
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