
An Improved Magma Gemm For
Fermi Graphics Processing Units

Rajib Nath1, Stanimire Tomov1, and Jack Dongarra1,2,3

Abstract
We present an improved matrix–matrix multiplication routine (General Matrix Multiply [GEMM]) in the MAGMA BLAS
library that targets the NVIDIA Fermi graphics processing units (GPUs) using Compute Unified Data Architecture
(CUDA). We show how to modify the previous MAGMA GEMM kernels in order to make a more efficient use of the
Fermi’s new architectural features, most notably their extended memory hierarchy and memory sizes. The improved
kernels run at up to 300 GFlop/s in double precision and up to 645 GFlop/s in single precision arithmetic (on a

C2050), which is correspondingly 58% and 63% of the theoretical peak. We compare the improved kernels with the cur-

rently available version in CUBLAS 3.1. Further, we show the effect of the new kernels on higher-level dense linear alge-

bra (DLA) routines such as the one-sided matrix factorizations, and compare their performances with corresponding,

currently available routines running on homogeneous multicore systems.

Keywords
GPU BLAS, CUDA matrix mutiply, Fermi, dense linear algebra, hybrid computing

1 Introduction

Matrix–matrix multiplication is a fundamental linear

algebra routine. Many numerical algorithms can be

expressed in terms of General Matrix Multiply (GEMM),

or at least designed to partially use it. Numerous examples

from the area of dense linear algebra (DLA) can be seen in

the LAPACK library (Anderson et al., 1999). The tech-

nique to achieve that in DLA is based on delayed updates:

the application of basic linear transformations, e.g.

expressed in terms of matrix–vector multiplications, are

delayed and accumulated so that they are applied later at

once as a matrix–matrix multiplication.

The importance of having algorithms rich in GEMM is

because the computational intensity of GEMMs can be

increased by increasing the sizes of the matrices involved,

which in turn is crucial for the performance on modern

architectures with memory hierarchy. Major hardware ven-

dors such as Intel, IBM, AMD, and NVIDIA maintain their

own highly optimized GEMM routines, e.g. included into

their BLAS implementation libraries: MKL, ESSL,

ACML, and CUBLAS correspondingly. Non-vendor opti-

mized implementations for various architectures are also

available, such as ATLAS (Whaley et al., 2001) and

GotoBLAS1.

In the area of graphics processing unit (GPU) computing,

‘‘high-performance’’ GEMM implementations were not

possible in the ‘‘early’’ GPUs (Fatahalian et al., 2004). The

reason is that they did not have developed memory hierarchy

and, therefore, the GEMM’s performance peak was memory

bound. With the introduction of memory hierarchy, e.g. the

shared memory in the NVIDIA Compute Unified Data

Architecture (CUDA) GPU architectures2, this has changed.

Algorithms that would reuse data brought into the shared

memory were developed to achieve high, compute-bound

performance (Volkov and Demmel, 2008). The perfor-

mance of these algorithms relied on a number of very

well-selected parameters and optimizations (Wolfe,

2008).. Subsequent work in the area managed to ‘‘automate’’

or ‘‘auto-tune’’ the selection of these parameters and optimi-

zations used, to quickly find the best performing implemen-

tations for particular cases of GEMM (Li et al., 2009; Nath

et al., 2010).

The NVIDIA Fermi architecture introduced new fea-

tures to CUDA (NVIDIA, 2009). Although software devel-

oped for the previous NVIDIA hardware would run on the

newer Fermi hardware, the performance could be enhanced

sometimes significantly by the use of the new architectural

features. We show that this is the case with the previous

state-of-the-art GEMM implementations. Moreover, we

have found that even the auto-tuning frameworks cannot

1University of Tennassee, USA
2Oak Ridge National Laboratory, USA
3University Of Manchester, UK

Corresponding author:

Stanimire Tomov, University of Tennessee, 1122 Volunteer Boulevard,

Suite 203 Knoxville, TN 37996-3450, USA

Email: tomov@eecs.utk.edu

The International Journal of High
Performance Computing Applications
24(4) 511–515
ª The Author(s) 2010
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342010385729
hpc.sagepub.com

find the new ‘‘optimal’’ implementations, simply because

their search space did not consider the newly introduced

features in the architecture.

Section 2 is an overview of the GEMM for the previous

generation GPUs. Section 3 gives the main contribution of

this paper: an improved GEMM for the Fermi architecture.

Section 4 shows the effect of the improved kernels on

higher-level DLA routines such as the one-sided matrix fac-

torizations from the MAGMA library (Tomov et al., 2009),

and compares their performances with corresponding, cur-

rently available routines running on homogeneous multicore

systems. Finally, Section 5 is on conclusions and future work.

2 GEMM for the NVIDIA GTX280

This section gives an overview of the GEMM targeting the

old generation of GPUs, e.g. the GTX280 GPU. We con-

sider a GEMM algorithm (Volkov and Demmel, 2008),

parametrized to facilitate auto-tuning (Li et al., 2009; Nath

et al., 2010) for the case C :¼ aABþ bC. Uniform rectan-

gular sub-matrices of the resulting matrix C are computed

in parallel (see Figure 1 for an illustration). Following

CUDA terminology, we refer to these sub-matrices as

thread blocks (TBs). The size of a TB, denoted further by

NTBX � NTBY , must be hard coded and its selection is cru-

cial for the performance. The computation of each TB is

done by a number of threads. The number is hard coded and

denoted further by NT :¼ NTX � NTY . An example (Volkov

and Demmel, 2008) is NTBX � NTBY � 64� 16 and

NT � 64.

For simplicity, take NT :¼ NTBX . Then, each thread is

coded to compute a row of the sub-matrix of C. To do that,

it accesses the corresponding row of A (as indicated by an

arrow in Figure 1), and uses the K � NTBY sub-matrix of B

for computing the final result. The TB computation is

blocked, which is crucial for obtaining high performance.

In particular, sub-matrices of B of size nb� NTBY are

loaded into shared memory and multiplied nb times by the

corresponding NTBX � 1 sub-matrices of A. The NTBX � 1

elements are loaded and kept in registers while multiplying

them with the nb� NTBY part of B. The result is accumu-

lated to the resulting NTBX � NTBY sub-matrix of C, which

is kept in registers throughout the TB computation. All

memory accesses are coalesced.

Kernels for various NTBX , NTBY , NTX , NTY , and nb are

automatically generated in MAGMA BLAS to select the

best performing for a particular architecture and for partic-

ular GEMM parameters (Nath et al., 2010). The theoretical

peak of the GTX280 is 936 GFlop/s in single precision (240

cores � 1:30 GHz � 3 floating point instructions per

cycle). The kernel described achieves up to 40% of that

peak.

3 GEMM for Fermi

Many of the architectural changes in Fermi are related to

scaling up the compute capabilities of the previous genera-

tion of NVIDIA GPUs (NVIDIA, 2010), e.g. increased

shared memory, number of registers, number of CUDA

cores in a multiprocessor, etc. The algorithm from Section

2, designed for the older NVIDIA GPUs, can be automati-

cally adjusted to account for those changes in the Fermi

GPUs. In addition, there are other changes that must be

exploited (for performance) which, unfortunately, is impos-

sible to accomplish by simply auto-tuning the old algo-

rithm. For example, these are the changes that are related

to added cache memories, and most importantly, that the

latency to access registers and shared memory were compa-

rable in the previous generation of NVIDIA GPUs, but not

in the Fermi (where accessing data from registers is much

faster). This motivates to add one more level of blocking

in the algorithm, namely register blocking, to account for

the added memory hierarchy. A way to do it is to have

blocks of both matrices A and B first loaded into shared

Figure 1. The GPU GEMM (C :¼ aABþ bC) of a single TB for
GTX280.

Figure 2. The GPU GEMM (C :¼ aABþ bC) of a single TB for
Fermi.

512 The International Journal of High Performance Computing Applications 24(4)

memory, and second, additionally block the computation

with the matrices in shared memory by loading parts of

them in registers to have reuse of the data in registers (ver-

sus reusing only data in the shared memory). Details on this

new algorithm are given as follows.

The algorithmic view of the improved GEMM for Fermi

is shown in Figure 2. Similarly to the old GEMM, the com-

putation is divided into two-dimensional grid of TBs of size

NTBX � NTBY . Each TB is assigned to NT ¼ NTX � NTY

threads. As mentioned above, sub-matrices of both A and

B are loaded in shared memory. We take

NTBX ¼ NTBY ¼ 64 and NTX ¼ NTY ¼ 16. With these para-

meter values, 16� 16 threads will be computing 64� 64

elements of matrix C. Hence, each thread will be comput-

ing 16 elements. The 64� 64 block of matrix C is divided

into 16 sub-blocks of dimension 16� 16 as illustrated in

Figure 2. Each of the 16� 16 sub-blocks is computed by

16� 16 threads, i.e. one element is computed by one

thread. More precisely, element ðx; yÞ of the 16� 16 sub-

block is computed by thread ðx; yÞ of the 16� 16 block

of threads. All of the 16 elements computed by thread

ð0; 0Þ are shown by diamonds in the figure. In summary,

each thread will be computing a 4� 4 matrix with stride

16. This distribution allows us to perform coalesced (paral-

lel) writes of the final results from registers to the matrix C

in global memory. Other distributions may not facilitate

coalescent writes.

At each iteration of the shared memory blocking, all

threads inside a TB load 64� 16 elements of A and

16� 64 elements of B to shared memory in a coalesced

way. Depending upon OpðAÞ and OpðBÞ, the 256 threads

in the TB take one of the following shapes: 16� 16 or

64� 4. This reshaping helps coalesced memory access

from global memory. The elements from matrices A and

B, needed by thread ð0; 0Þ, are shown by arrows. First, four

elements from A (taken from the shared memory, shown

with a gray triangle) and four elements from B (again from

the shared memory, shown with a black rectangle in Figure

2) are loaded into registers. Then these 8 elements are used

on 16 floating-point multiply-add (FMAD) operations. To

get a further small performance increase, all of the accesses

for matrices A and B are done through texture memory.

This is a special memory with cached accesses. CUDA

offers the ability to bind global memory, e.g. A and B, to

it for direct access, avoiding the need to explicitly copy the

global memory data into the texture memory. The perfor-

mance of DGEMM in Fermi using this algorithm is shown

in Figure 3, along with the DGEMM performance from

CUBLAS 3.1. Note that the theoretical peak of the Fermi,

in this case a C2050, is 515 GFlop/s in double precision

(448 cores � 1:15 GHz � 1 instruction per cycle). The ker-

nel described achieves up to 58% of that peak.

A similar idea is applied in single precision. The best

blocking size is 96� 96. The number of threads used is

16� 16, where each tread computes 6� 6 matrix with

stride 16 using register blocking.

4 One-sided Factorizations on Fermi

In this section we discuss the performance of the one-sided

matrix factorizations using the new kernels. Figure 4 com-

pares the performance of LU factorization in double preci-

sion arithmetic from MAGMA on Fermi (C2050) with that

of MKL 11.0, PLASMA (Agullo et al., 2009), and

LAPACK on a 48-core system. The exact specifications are

given in the figure. Note that the Fermi and the multicore

system have the same theoretical peaks. The implementa-

tions of the LU factorizations in MAGMA, MKL and

LAPACK use the same data layout and algorithm: LU with

partial pivoting. The algorithm in PLASMA is different:

Figure 3. Performance of MAGMA BLAS DGEMM (left) and SGEMM (right) on Fermi (C2050). The performances achieved are
correspondingly 58% and 63% of the theoretical peaks. Complex arithmetic versions of GEMMs are derived using the M3 method

(Higham, 1992) and their performances are also shown, running at correspondingly 71% and 79% of the theoretical peaks. The per-
formance peaks in CUBLAS 3.1 occur for matrix sizes divisible by their internal blocking sizes: 48 in double precision and 80 in single
precision.

Nath et al. 513

LU with tile pairwise-pivoting on tile data layout. It is

interesting to note that MAGMA achieves significantly

higher percentage of the GPU’s peak than the percentage

of the peak that the other libraries achieve on the multicore

system. That is, we showed a case where LU runs more

efficiently on GPUs than on current, high-end homoge-

neous x86-based multicore systems. Moreover, GPUs have

better power efficiency and better system cost. As an exam-

ple, the cost of the 48-core system is approximately

$30; 000 vs $3; 000 for the Fermi GPU and its host.

Similar performance is obtained on the QR and Cholesky

factorizations. The performance in single precision is twice

as high. Compared with other GPU libraries, e.g. the com-

mercially available linear algebra library CULA 2.0, the

results presented are currently about 65% faster 3.

5 Conclusions and Future Directions

The development of fast BLAS, and in particular GEMM,

is crucial for the performance of many algorithms, and

therefore is of extreme interest. We presented an improved

GEMM algorithm for the Fermi GPUs, which significantly

outperforms the currently available software. Moreover,

this new kernel opens the possibility for further improve-

ments, e.g. based on auto-tuning. Also, this GEMM can

be used directly or auto-tuned for developing other

GEMM-based Level 3 BLAS such as SYRK, TRSM, etc.

An interesting (and straightforward) application was the

development of complex GEMM using three real matrix

multiplications (Higham, 1992) stabilityof to achieve up

to 365 GFlop/s for ZGEMM (or 71% of peak) and

815 GFlop/s for CGEMM (or 79% of peak).

We also showed the effect of using the improved kernel

on the performance of higher-level algorithms, e.g. the one-

sided factorizations. MAGMA’s LU is running 65% faster

than the implementation in CULA 2.0, a commercial GPU-

accelerated linear algebra library. Compared with vendor

libraries for multicore x86-based systems, the results are

similar: MAGMA’s LU on single Fermi can significantly

outperform the vendors’ LU on high-end systems, such as

the 48-core system in Figure 4. Further optimizations are

possible, with one directions being tuning. For example,

it is interesting to show that the performance can be as high

as 300 GFlop/s for smaller matrices.

A general conclusion is that DLA has become a better fit

for the evolving GPU architectures, to the point where DLA

can run more efficiently on GPUs than on current, high-end

homogeneous multicore-based systems. This progress has

been partially enabled by the added memory hierarchy in the

GPUs, which in effect enabled the development of fast

GEMM. The current implementation achieves a higher frac-

tion of the peak, namely 58% (and 63% in single), compared

with the 40% on the previous generation of GPUs.

Acknowledgments

This work was supported by NVIDIA, Microsoft, the U.S.

National Science Foundation, and the U.S. Department of

Energy. We thank Everett Phillips and Massimiliano Fatica

from NVIDIA for the useful discussions and optimization

suggestions regarding the Fermi architecture.

Notes

1. See http://www.tacc.utexas.edu/tacc-projects/gotoblas2/Goto

BLAS

2. See http://developer.download.nvidia.com/compute/cuda/1_0/

NVIDIA_CUDA_Programming_Guide_1.0.pdf

3. See http://www.culatools.com/features/performance/

References

Agullo, E., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Langou,

J., Ltaief, H., Luszczek, P., and YarKhan, A. (2009). PLASMA

users’ guide. http://icl.cs.utk.edu/plasma/

FERMI:
 Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL:

AMD 8 socket 6 core (48 cores) @2.8GHz
SP/DP peak is 1075 / 538 GFlop/s

Figure 4. Performance of LU factorization in double precision: we compare MAGMA on Fermi (C2050) versus MKL 11.0, PLASMA
and LAPACK on a 48-core system, having the same peak as a single Fermi GPU (C2050). The Fermi’s host is a quad-core Intel Core 2
Q9300 @2.5 GHz.

514 The International Journal of High Performance Computing Applications 24(4)

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,

J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling,

S., McKenney, A., and Sorensen, D. (1999). LAPACK User’s

Guide, 3rd Ed. SIAM, Philadelphia, PA.

Fatahalian, K., Sugerman, J., and Hanrahan, P. (2004).

Understanding the efficiency of GPU algorithms for matrix–

matrix multiplication. In Proceedings of HWWS’04. ACM

Press, New York, pp. 133–137.

Higham, N. J. (1992). Stability of a method for multiplying

complex matrices with three real matrix multiplications. SIAM

J. Matrix Anal. Appl. 13: 681–687.

Li, Y., Dongarra, J., and Tomov, S. (2009). A note on auto-tuning

GEMM for GPUs. In Proceedings of ICCS’09. Springer-

Verlag, Berlin, pp. 884–892.

Nath, R., Tomov, S., and Dongarra, J. (2010). Accelerating GPU

kernels for dense linear algebra. In Proceedings of VEC-

PAR’10, Berkeley, CA, 22–25 June 2010.

NVIDIA (2009). NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi. http://www.nvidia.com/object/fermi_

architecture.html

NVIDIA (2010). NVIDIA CUDA C Programming Guide, version

3.1.1. http://developer.nvidia.com/object/cuda_3_1_downloads.

html

Tomov, S., Nath, R., Du, P., and Dongarra, J. (2009). MAGMA

version 0.2 Users’ Guide. http://icl.cs.utk.edu/magma

Volkov, V. and Demmel, J. (2008). Benchmarking GPUs to tune

dense linear algebra. In Proceedings of SC’08. IEEE Press,

Piscataway, NJ, pp. 1–11.

Whaley, R. C., Petitet, A., and Dongarra, J. (2001). Automated

empirical optimizations of software and the ATLAS project.

Parallel Comput. 27(1–2): 3–35.

Wolfe, M. (2008). Special-purpose hardware and algorithms for

accelerating dense linear algebra. HPC Wire, October. http://

www.hpcwire.com/features/33607434.html

Author’s Biographies

Rajib Nath received a Bachelor of Science in Computer

Science and Engineering from Bangladesh University of

Engineering and Technology, Dhaka, Bangladesh in 2005

and a Master of Science in Electrical Engineering and

Computer Science from the University of Tennessee,

Knoxville in 2010. He joined the Ph.D. program at the

UCSD Department of Computer Science and

Engineering. His research focuses on high-performance

computing. He is involved with the MAGMA (Matrix

Algebra on GPU and Multicore Architectures) and

PLASMA (Parallel Linear Algebra for Scalable Multi-

core Architectures) projects.

Stanimire (Stan) Tomov is Research Scientist at the

Innovative Computing Laboratory (ICL) and Adjunct

Assistant Professor in the Electrical Engineering and

Computer Science Department at the University of

Tennessee, Knoxville (UTK). He received his Bachelor

and Master of Science degrees in Computer Science from

Sofia University ‘‘St. Kliment Ohridski’’, Bulgaria, in

1994 and a Ph.D. in Mathematics from Texas A&M

University in 2002. He held positions at the Lawrence

Livermore National Laboratory and the Brookhaven

National Laboratory before joining ICL. His research

interests are in parallel algorithms, numerical analysis, and

high-performance scientific computing. Currently, he leads

ICL projects on developing linear algebra libraries on

emerging hybrid architectures.

Jack Dongarra received a Bachelor of Science in

Mathematics from Chicago State University in 1972

and a Master of Science in Computer Science from the

Illinois Institute of Technology in 1973. He received his

Ph.D. in Applied Mathematics from the University of

New Mexico in 1980. He worked at the Argonne

National Laboratory until 1989, becoming a senior

scientist. He now holds an appointment as University

Distinguished Professor of Computer Science in the

Computer Science Department at the University of

Tennessee and holds the title of Distinguished Research

Staff in the Computer Science and Mathematics

Division at Oak Ridge National Laboratory (ORNL),

Turing Fellow at Manchester University, and an

Adjunct Professor in the Computer Science Department

at Rice University. He is the director of the Innovative

Computing Laboratory at the University of Tennessee.

He is also the director of the Center for Information

Technology Research at the University of Tennessee

which coordinates and facilitates IT research efforts at

the University. He specializes in numerical algorithms

in linear algebra, parallel computing, the use of

advanced computer architectures, programming metho-

dology, and tools for parallel computers. His research

includes the development, testing and documentation of

high-quality mathematical software. He has contributed to the

design and implementation of the following open source

software packages and systems: EISPACK, LINPACK, the

BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI,

NetSolve, Top500, ATLAS, and PAPI. He has published

approximately 200 articles, papers, reports, and technical

memoranda and he is coauthor of several books. He was

awarded the IEEE Sid Fernbach Award in 2004 for his

contributions in the application of high-performance

computers using innovative approaches and in 2008 he was

the recipient of the first IEEE Medal of Excellence in Scalable

Computing; in 2010 he was the first recipient of the SIAM

Special Interest Group on Supercomputing’s award for

Career Achievement. He is a Fellow of the AAAS, ACM,

IEEE, and SIAM and a member of the National Academy

of Engineering.

Nath et al. 515

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

