
A U T O T U N I N G

Accelerating TIME-TO-SOLUTION
for Computational

SCIENCE and ENGINEERING
To minimize the time-to-solution of a computational science or engineering problem, the time to write
and also run the program must both be considered. Generally, there is a tradeoff: you can spend
more time optimizing the program and then the computer has less time to run it, or you can spend
less time optimizing and give the computer more runtime. The goal of autotuning is to avoid this
tradeoff by having computers automatically optimize programs because they can tune faster — and
often better — than humans, and then humans can spend more of their time on science itself. 

The need to automate tuning is exacerbated by both
hardware and software innovations. The accelerat-
ing change in computing hardware (examples
include increasing parallelism, deeper memory
hierarchies, and heterogeneous processors such as
general purpose graphics processing units) means
that programs frequently need to be retuned to ben-
efit from these innovations. Likewise, when soft-
ware is modified to introduce a new mathematical
model or algorithm, tuning often needs to reoccur
to achieve a comparable level of performance.

Dense linear algebra libraries are widely used
examples of autotuning. The availability of tuned
Basic Linear Algebra Subroutine (BLAS) libraries
across many architectures led to the incorpora-
tion of the Linear Algebra Package (LAPACK)
library into MatLab, and fast Fourier transforms
(FFT), where the fastest FFTs on many architec-
tures are produced automatically by systems like
FFTW and Spiral (see Further Reading, p57).

Autotuners have used diverse techniques,
including the following:

• Varying code organization and generation, data
structures, high-level algorithms and even com-
binations of hardware and software — such as the
Lawrence Berkeley National Laboratory (LBNL)
Green Flash project — to generate a large design
space to search for the best implementation

• Measuring the performance of implementa-
tions in this design space to identify the fastest
one, possibly using hardware performance coun-
ters to assess detailed hardware behavior

• Using code synthesis and correctness proofs to
automatically generate complicated members of
the design space (perhaps filling in difficult cor-
ner cases in a provably correct manner)

• Using statistical machine learning techniques
and/or simplified performance models to more
efficiently search or prune the possibly enormous
design space

• Creating a database of tuning rules, growing it
as more become known, and applying it automat-
ically to search an ever larger design space (that
is, avoiding the reinventing of wheels); for exam-
ple, Spiral incorporates the knowledge of 50
papers describing different divide-and-conquer
FFT algorithms, which it can combine in arbitrary
ways to create new ones

• Creating a database of historical tuning results, so
that the results of prior searches can easily be reused

• Allowing the user to give hints or otherwise
steer the tuning process
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The accelerating change
in computing hardware
and software means that
programs frequently need
to be re-tuned to benefit
from these innovations.



A variety of user interfaces have also been effec-
tively applied to autotuners; ideally, such an interface
lets the user describe the desired computation as sim-
ply as possible and hides the details of how the above
mechanisms accomplish tuning. The simplest user
interface is to call a library routine that has been auto-
tuned for the desired architecture. Dense linear alge-
bra and FFTs were already mentioned as an example
of this. Such autotuning can in principle occur at
library install-time (or earlier), and thus it can take
a long time (hours or more) to find the best imple-
mentation, without inconveniencing the user.

Not every computation can be described by a few
concise parameters thereby lending itself to incorpo-
ration in such a pre-built library. Some autotuning
interfaces require a search to be done at runtime,
once enough information is available, and this search
must obviously be done quickly. The autotuner
might still provide a library interface, but now the
autotuner may want to use statistical techniques, user
hints, and a database of historical tuning results to
limit the runtime search. An example of tuning a
sparse matrix operation that requires detailed knowl-
edge of the sparsity structure is given in the section
“Tuning Sparse Matrix Computations” (p50).

Sometimes a library interface is simply too
restrictive to describe the computation, which is
best described by writing a simplified version in
some programming language. An example is a
stencil operation, where an arbitrary but identical
function of the values of the neighbors of each
point in a 1D, 2D, or higher-dimensional mesh is

computed. These values may actually be arrays or
other data structures, as long as the same data
structure is used at each point in the mesh. The sim-
plest example is the 1D Laplacian, where one com-
putes Anew(i) = A(i-1)-2A(i)+A(i+1) at each mesh
point i. At the other extreme is lattice-Boltzmann
magnetohydrodynamics (LBMHD), where 79 val-
ues representing various physical quantities are
stored at each point in a 3D mesh and combined in
a complicated nonlinear function requiring hun-
dreds of lines of code to express. The section “Tun-
ing Stencil Operations” (p53) describes successful
attempts to autotune these and similar stencil com-
putations, with speedups of up to 132 times for
LBMHD on the Cell processor.

Because complicated computations like LBMHD
are best expressed in a programming language,
what should be the role of compilers in the auto-
tuning endeavor? The stencil autotuners described
above have used tools like PERL scripts to generate
code variants in the design space, which then need
to be rewritten for each new stencil. Ideally, a
domain-specific compiler would be able to take
(suitably annotated) stencil code and generate the
design space with much less user effort, and
attempts to do this are under way.

Indeed, autotuning’s high-level goal of mapping
simply described computations into highly-opti-
mized, machine-specific implementations sounds
very much like the goal of compilation. Compil-
ers have not traditionally used many of the auto-
tuning techniques listed above, such as changing
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Figure 1. Performance of tuned matrix multiplication for student teams.
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Indeed, autotuning’s high-
level goal of mapping
simply described
computations into highly-
optimized, machine-
specific implementations
sounds very much like the
goal of compilation.



A U T O T U N I N G

algorithms or using measurement to choose the
best implementation. But the potential perform-
ance improvements offered by these approaches
have inspired the compiler community to actively
research how they could be included in compil-
ers. Work on autotuners and compilers is becom-
ing closely related and synergistic.

Finally, performance (time-to-solution) is not
the only success metric an autotuner could have.
Saving energy is increasingly important, and
while it is usually strongly correlated with time-
to-solution, scenarios can be imagined where a
different optimum is reached for reducing energy
than reducing time. For example, a less parallel
algorithm that permits part of the system to be
powered down might use less energy overall, or
an algorithm might trade energy-hungry data
movement for additional but more efficient arith-
metic. Also, autotuning is beginning to be used
for hardware/software co-design, where a set of
algorithms and hardware parameters (such as
cache sizes) is simultaneously searched to find the
best overall design for special purpose processors,
where the success metric might involve time-to-
solution, power, and chip area.

Tuning Dense Linear Algebra
To measure the difficulty of hand-tuning code, an
experiment can be run where clever but inexperi-
enced high-performance computing programmers
are trained in the basics of performance tuning and
given a fixed amount of time to tune a particular
piece of code. Then, the performance of the tuned
code can be compared to a very highly-tuned ver-
sion. At the University of California (UC)–Berkeley
we run this experiment every year in the first home-
work assignment of our parallel computing class,
CS267 (see Further Reading, p57).

The students are given a few weeks to tune a dense
matrix multiplication code. They hear lectures on
general low-level tuning techniques (such as use of
Single Instruction, Multiple Data (SIMD) instruc-
tions and prefetching) and how to tune matrix mul-
tiplication in particular (by blocking). Then they are
given a code with basic optimizations (that is,
blocked for one level of memory hierarchy). The stu-
dents, mostly graduate students (about half are com-
puter scientists), are assigned to interdisciplinary
teams. Figure 1 (p47) shows the results of the stu-
dent teams using the Franklin Cray XT machine at
the National Energy Research Scientific Computing
(NERSC) Center, measured by fraction of machine
peak attained and sorted in decreasing order of
(median) performance attained — from the vendor-
supplied tuned version (ACML), the teaching assis-
tant’s version (GSI), down to the supplied version
(“given”). The data points are color coded based on
compiler and hardware features. Figure 2 shows the
same experiment, but where the horizontal axis is
now the number of lines of code (on a log scale). The
lesson from this data is that even for a well-under-
stood kernel (sidebar “No, Not that Kind of Kernel”)
like matrix multiplication, tuning for performance
is critical and difficult, even for clever UC–Berkeley
graduate students. Therefore, it is desirable for an
autotuner to do it automatically.

Why hand tuning is difficult is illustrated with
a small slice of the very large parameter space that
must be searched to find the best implementation
of matrix multiplication. Figure 4 plots perform-
ance as a function of just two block sizes, m0 and
n0, which determines the size of a small subblock
of the matrix that must fit in the 16 floating point
registers of a Sun Ultra IIi; thus we need only con-
sider m0*n0 <_ 16. Each such square subblock in fig-
ure 4 represents an (unrolled) implementation,
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Figure 2. Performance and lines of code of tuned matrix multiplication for student teams.
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Saving energy is
increasingly important,
and while it is usually
strongly correlated with
time-to-solution, scenarios
can be imagined where a
different optimum is
reached for reducing
energy than reducing time.



color coded by performance, from approximately
100 Mflop/s (dark blue) to approximately 600
Mflop/s (dark red). The fastest algorithm by far is
for m0 = 2, n0 = 3. There is no simple explanation for
why this is the needle in the haystack that we seek,
but the purpose of autotuning is not to explain
why, but simply to find it as quickly as possible.

Homework assignments can sometimes have
unintended side-effects. When the assignment
above was used in a CS267 class in the mid-1990s,
two student teams beat the vendor code. Intrigued
by the results, the teaching assistant (Jeff Bilmes)
and another graduate student (Krste Asanovic)
studied the students’ work and built the first pro-
totype autotuner for matrix multiplication called
Portable High Performance ANSI C (PHiPAC). In
turn, Clint Whaley and Jack Dongarra were
inspired to produce a more complete and portable
autotuner for matrix multiplication and eventually
all the BLAS, called ATLAS. ATLAS begins by
detecting specific hardware properties: the cache

sizes, the floating point pipeline length, and so on.
Then it systematically explores the different possi-
ble implementations (say of matrix–matrix multi-
plication), of which there can be hundreds of
thousands of variations. After eliminating unlikely
candidates by using heuristics based on gathered
information, ATLAS generates code to implement
the remaining alternatives, and then compiles, exe-
cutes, and times them all to choose the fastest.

Figure 5 compares the performance of matrix
multiplication from ATLAS, the vendor library, and
the un-optimized F77 version across a wide variety
of architectures. ATLAS is about as fast as the ven-
dor library (when it exists), sometimes faster, and
much faster than the un-optimized code.

Before ATLAS, vendors charged significant prices
for their tuned libraries, which discouraged some
independent software vendors from using them in
their products. ATLAS removed this obstacle,
which had significant implications for commercial
software. For example, the developers of MATLAB,
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Figure 4. Performance of matrix multiplication as a

function of register block sizes on a Sun Ultra IIi.
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Figure 5. Performance of matrix multiplication using ATLAS, the vendor library, and

unoptimized F77 on a variety of architectures.
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Unfortunately, the term “kernel” has become heavily overloaded even

within computer science. Often in our applications the bulk of the run

time is spent executing a tiny fraction of the code base. As such, we in

the scientific computing community refer to these key loop nests as

kernels — not to be confused with the identically named core

component of an operating system. Floating-point kernels include

operations like matrix–matrix multiplication (figure 3), fast Fourier

transforms, stencil sweeps, interpolations, and many more complicated

operations.

The un-optimized versions of these kernels can often be represented in

less than a hundred lines. However, the nested loop bounds are often so

large that millions, perhaps billions, of floating-point operations are

performed per invocation. Moreover, the kernel may be called thousands

of times in an application. As a result, optimizing this compact kernel may

dramatically accelerate application performance.

No,  Not  that  K ind  of  Kerne l

Figure 3. Matrix–matrix multiplication kernel
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ATLAS generates code to
implement the remaining
alternatives, and then
compiles, executes, and
times them all to choose
the fastest.
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MathWorks, incorporated the LAPACK linear alge-
bra library into their product. Now, concise MatLab
statements like x = A\b for solving the linear system
Ax = b uses LAPACK’s solvers and benefits from the
tuned BLAS on whose performance LAPACK

depends. LAPACK and its associated libraries
ScaLAPACK, CLAPACK, and LAPACK95 are the
most widely used dense linear algebra libraries, with
more than 100 million hits at www.netlib.org. They
have been adopted for use by Advanced Micro
Devices, Apple (under Mac OS X), Cray, Fujitsu,
Hewlett Packard, IBM, Intel, NEC, SGI, several Linux
distributions (such as Debian), Numerical Algo-
rithms Group, IMSL, Interactive Supercomputing,
and Portland Group.

Ultimately, some vendors have also adopted
autotuning as a tool to produce their own libraries.
Greg Henry of the Intel Math Kernel Library team
says they use autotuning as a tool now and are
looking for more ways to take advantage of it.

LAPACK and ScaLAPACK based on tuned
matrix multiplication are not the end of the story,
because neither one works as well as possible (and
sometimes not well at all) on emerging multicore,
GPU, and heterogeneous architectures. New ways
of organizing the algorithms, new data struc-
tures, and even new algorithms with different
numerical convergence and stability properties
are emerging as the algorithms of choice on these
architectures. Indeed, a new theory of communi-
cation-avoiding algorithms shows how to con-
struct algorithms that do asymptotically less data
movement than the algorithms in LAPACK and
ScaLAPACK. As communication costs continue
to grow exponentially more expensive relative to
floating point costs, these new communication-
avoiding algorithms may well become the algo-
rithms of choice. As the set of possible algorithms
and implementations continues to grow, tools for
more easily generating members of this set
become important. The sidebar “Optimization
versus Autotuning: A Visual Guide” discusses
performance on emerging architectures.

Tuning Sparse Matrix Computations
With dense matrices, only a few parameters (the
dimensions) are needed to define a problem, such
as multiplication, that permits offline autotuning.
In principle, this autotuning takes as much time
as needed — whether hours or weeks — to search
for the best implementation for each dimension
(or range of dimensions), which can then be pack-
aged in a library for use at runtime.

In contrast, to tune a sparse algorithm like
sparse-matrix (dense) vector multiplication
(SpMV), the sparsity pattern of the matrix needs
be to known, but it generally is not until runtime.
Even if many SpMVs are done with a given
matrix (pattern), too much time cannot be spent
at runtime to tune. The approach taken by Opti-
mized Sparse Kernel Interface (OSKI) (Further
Reading, p57), an autotuner for SpMV, is used to
illustrate.
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Figure 6. Performance of Blocked SpMV for different block sizes on the raefsky matrix

on Itanium 2.

R
. V

U
D

U
C

, G
E

O
R

G
IA

T
E

C
H

Figure 7. Sparsity pattern (blue) of the leading part of ex11 matrix.
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Because SpMV performs only two arithmetic
operations per nonzero matrix entry, perform-
ance is memory-bound. A critical goal of tuning
then is to choose a sparse matrix data structure
that is as compressed as possible to minimize
memory traffic. The conventional data structure
stores the value of each nonzero entry, its column
(or row) index, and where each row (resp. column)
begins and ends. The nonzero values are unavoid-
able, but clever data structures can eliminate most
of the indices. For example, a matrix from a finite-
element model typically consists of many small
dense r ✕ c blocks (one per element), so storing one

index per block instead of one index per nonzero
reduces the number of indices required by a fac-
tor r·c — a great improvement.

On a typical structural analysis matrix (raefsky,
from the University of Florida sparse matrix collec-
tion) that consists entirely of 8 ✕ 8 dense blocks, can
the number of indices be reduced by a factor of 64?
Each 8 ✕ 8 block can be stored as a collection of 4 ✕ 4
blocks, 2 ✕ 8 blocks, and so on, with 16 possibilities
in all (for all possible values of r and c chosen from {1,
2, 4, 8}). By implementing SpMV with raefsky in all
16 possible ways, the performance is measured (on
an Itanium 2). The results are shown in figure 6,
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We may define the quality of performance based

on a fraction of algorithmic peak — a speed of

light model that sets an upper bound to

performance. Given a reference implementation

of a computational kernel, the processors in

supercomputers today (spanning nearly a

decade of processor architectures) may achieve

dramatically different levels of performance

across a range of computational kernels.

Qualitatively speaking, we observe a general

decline in performance on ever-newer

architectures. In other words, it is becoming

increasingly difficult to achieve quality

performance on novel architectures. We may

qualitatively visualize this trend in figure 8(a).

Here we see 18 nondescript computational

kernels from three domains (“dwarfs” or “motifs”

in Berkeley View parlance). The quality of

performance is visualized as a heat map, where

red is ideal performance.

To rectify this performance disparity,

individual groups within our community may

optimize their application or kernel of interest

for the processor available to them at the

time. In doing so, they may achieve ideal

performance for that particular processor-

kernel combination (figure 8(b)). This

optimized implementation may boost

performance on some existing architectures in

the DOE inventory as well as on some future

machines, but, unfortunately, as architectures

and even instruction set architectures

continue to evolve (such as streaming SIMD

extensions, multicore, Advanced Vector

Extensions, and so on), there is a half-life

associated with these optimizations. As a

result, eventually the performance advantage

will be lost.

Automatic performance tuning attempts to

generalize the optimization process on a

kernel-by-kernel basis by first parameterizing

the optimizations, then searching for the

appropriate parameters for each processor.

The benefit is that for all the autotuned

kernels, we may achieve near ideal

performance on all existing architectures

(figure 8(c)). Although the autotuner may

improve performance on future architectures,

it will need periodical refurbishing as

processor designers introduce new

architectural paradigms. Nevertheless,

applications that use the same computational

kernels may productively leverage the benefit

of autotuned kernels to accelerate their own

performance.

Although either hand optimization or

autotuning of a particular kernel will boost the

performance on a range of architectures

(vertical structures in figure 8), it will not boost

performance on unrelated kernels.

Opt imizat ion  versus  Autotun ing :  A  Visua l  Gu ide

Figure 8. A qualitative visualization cartoon of the typical performance benefits of

optimization and autotuning as a function of architecture (y-axis) and computational

kernel (x-axis).
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where each square represents an implementation,
color coded by speed in Mflop/s, and labeled by
speedup versus the 1 ✕ 1 case in the lower left. The
8 ✕ 8 case goes 1.55 times faster, but the fastest is
4 ✕ 2, which goes 4.09 times faster. As before, why
this is true is a complicated story, but from the user’s
point of view all that matters is that the autotuner can
figure this out and reorganize the data structure and
SpMV implementation accordingly.

To pick the best data structure we must some-
times go beyond storing the nonzero entries in
blocks. Consider the ex11 test matrix from the same
collection as raefsky; a “spyplot” zoomed in to the
top-left 100 ✕ 100 corner shows the nonzero entries
as blue dots in figure 7 (p50). No obvious block

structure is evident; if one were to insist on using,
say, 3 ✕ 3 blocks as shown in figure 7 (p50), then all
the zero entries shown in red would have to be
stored as explicit zeros within those blocks. The
effect would be an increase in the number of explicit
matrix entries stored by 1.5 times and also the num-
ber of floating point operations needed to perform
SpMV by 1.5 times. This hardly seems like a good
idea, but in fact it speeds up SpMV by a factor 1.5,
because the overall floating point rate increases a
factor 2.25 times, more than overcoming the
increase in the number of floating point operations.

How does the autotuner quickly figure this out
at runtime? OSKI begins by running an offline
benchmark to characterize how fast SpMV runs
for all possible different block sizes r ✕ c, from
1 ✕ 1 to 12 ✕ 12. This benchmark leads to an image
similar to figure 6 (p50), which can differ dramat-
ically from machine to machine. Two examples are
shown in figure 9, an Intel Itanium 2 at the top and
an IBM Power 4 at the bottom. At runtime, OSKI
does a quick statistical sampling of the user’s
matrix to estimate the number of extra zero entries
that would be stored using any r ✕ c block structure.
By combining for each r ✕ c the estimated speed
with the estimated number of floating point oper-
ations, OSKI can estimate the runtime of SpMV
and pick the value of r ✕ c that minimizes it.

For this run-time optimization, OSKI may need
5–40 times the cost of a single un-optimized SpMV.
Most of this is the cost of copying the matrix from
the old to the new data structure. It is only worth-
while if the user intends to do a fairly large number
of SpMVs, which is frequently the case in practice.
But because of this overhead and also because OSKI
can exploit tuning hints only the user can supply —
examples include “my matrix is symmetric,” or “it
is OK to reorder the rows and columns of my matrix
to accelerate SpMV, because I can adjust the rest of
my algorithm accordingly,” or “this is the same as the
matrix I used last week, called raefsky, so please just
use the same optimizations” — OSKI’s interface may
require more user effort than just calling a library.

We illustrate this by applying OSKI to a matrix
arising in accelerator cavity design, which was sup-
plied by Kwok Ko and Parry Husbands. Figure 10
shows the original symmetric matrix, and figure 11
shows it after reordering its rows and columns to
“push” its nonzero entries toward the diagonal, in
order to create more dense blocks. Figure 12 zooms
in to the leading 100 ✕ 100 block and shows the loca-
tions of the original matrix entries before reorder-
ing (red and green dots) and after reordering (blue
and green dots). It is evident that the reordering cre-
ated much larger blocks for OSKI to exploit and
leads to speedups of 1.7 times on Itanium 2, 2.1
times on Pentium 4, 2.1 times on Power 4, and 3.3
times on Ultra 3.
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Figure 9. (a) Performance of blocked SpMV for various block sizes on an Intel Itanium

2; (b) performance of blocked SpMV for various block sizes on an IBM Power 4.
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Lastly, we illustrate some optimizations for mul-
ticore platforms to be included in a future version
of OSKI. SpMV seems straightforward to parallelize
because each group of matrix rows may be handled
as an independent SpMV, but in fact more care is
needed to attain high performance. Figure 13 (p54)
shows the speedups of SpMV on three different mul-
ticore platforms, for 13 different sparse matrices, and
for a variety of different optimization techniques.
Each vertical bar shows speed of SpMV for a partic-
ular matrix on a particular platform (so up is good),
color-coded by the extra speed resulting from the
labeled optimization technique. Optimizations
referred to are Parallel (using PThreads to evenly
divide the work, by rows, over the available hard-
ware threads: eight hardware threads on Xeon, eight
on Opteron, and 128 on Ultrasparc); NUMA (to
account for non-uniform memory access on
Opteron and Ultrasparc); Prefetch (to overlap com-
munication and computation); and Compression
(including r ✕ c blocking as described above). The
best speedups over the parallelized naïve code were
2.7 times on Xeon, 4 times on Opteron, and 2.9
times on Ultrasparc, and required all these optimiza-
tions to be used. This complexity should be hidden
from the user in an autotuner.

Tuning SpMV is not the end of the story for sparse
linear algebra, just as tuning matrix-multiplication
was not the end of the story for dense linear algebra.
Just as in the dense case, by looking at an entire algo-
rithm rather than just the kernel, it is possible to find
communication-avoiding algorithms that minimize
data movement. This search is even more important
in the sparse case than the dense case, because sparse
algorithms are naturally dominated by their data
movement costs. Briefly, a typical iterative method
for solving Ax = b seeks to find an “optimal solution”
(in some sense) lying in the so-called Krylov subspace
spanned by the vectors W = [b, Ab, A2b, A3b, …, Akb].
This class includes well-known algorithms like con-
jugate-gradients and generalized minimum residu-
als. The conventional implementations form a basis
for the space spanned by W by calling SpMV k times,
so that the communication cost grows proportion-
ally to k. The new method computes a different basis
of the same subspace for (roughly) the communi-
cation cost of just one call to SpMV, under reason-
able assumptions about the sparsity pattern of A.
This new set of algorithms greatly expands the tun-
ing space and requires the autotuning of algorithms
consisting of multiple interacting kernels that can-
not be tuned independently.

Tuning Stencil Operations
A stencil operation refers to a data structure with
a common data format at each point of a 1D, 2D,
or higher-dimensional mesh, not necessarily rec-
tangular, and the computation at each mesh point
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Figure 10. The sparsity pattern of an accelerator cavity

design matrix.
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Figure 11. The sparsity pattern of an accelerator cavity

design matrix after reordering.
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Figure 12. The sparsity pattern of an accelerator cavity

design matrix after reordering, zoomed into top right corner.
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of the same function F(.) of the data at the mesh
point and selected neighbors. The data format at
each mesh point and the function F(.) can be arbi-
trarily complicated (for example, LBMHD) or as
simple as computing some weighted average of
scalar values at the neighbors (such as the Lapla-
cian). When the function is linear, this is mathe-
matically equivalent to SpMV, but the special
structure (same nonzero entries in each row)
allows us to perform even more aggressive opti-
mizations than in sparse matrix computations.

Optimizations for Stencils
Consider two different 3D stencils on a cube of
scalar data: the seven-point stencil computes a
weighted average of the data at the mesh point and
its six nearest neighbors, and the 27-point stencil
uses the 33 – 1 = 26 nearest neighbors (figure 14).
In the seven-point case, instead of seven different
coefficients to weight the values, there is only X, and
in the 27-point case, there is only Y. This arrange-
ment permits the use of common subexpression
elimination as an optimization (that is, factoring out
the common coefficient).

The simplest implementation of a stencil would
simply loop over the mesh points (in the order in
which they are stored in memory) and apply the
function. The simplest parallel implementation
would assign disjoint parts of the mesh (say slabs) to
different processors. This “naïve” code is shown as
the purple bar at the bottom of each performance
plot in figure 15 (p56) for seven-point stencils and in
figure 16 (p57) for 27-point stencils. The other col-
ored bars show the importance of an entire sequence
of other autotuning optimizations, including NUMA
awareness (so that processors work on data in their
local memories), padding (to keep data aligned on
cache boundaries), core blocking and register block-
ing (to use the fast memory hierarchy levels most
effectively), software prefetching (to overlap commu-
nication and computation), SIMDization (to use the
fastest floating point units), cache bypass (to avoid
unnecessary cache traffic), and common subexpres-
sion elimination. Finally, “two-pass greedy search”
refers to searching for the best parameters of each
optimization one at a time instead of searching all
possible combinations, to reduce search time. Each
of these optimizations is critical for performance on
at least one machine. Trying them all is a job to be
automated by an autotuner.

Different derivations of finite difference meth-
ods can result in substantially more points in the
stencil. If properly optimized, the memory traf-
fic will be the same as a seven-point stencil. As a
result, the code may be substantially more com-
putationally intense. To that end, many of the reg-
ister blocking optimizations used in dense linear
algebra may be applied to improve performance.
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Figure 13. Autotuning SpMV on multicore (performance

versus matrix).

Each of these optimizations
is critical for performance
on at least one machine.
Trying them all is a job to
be automated by an
autotuner.
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The stencil operators can be substantially more
complex than simple linear operators. For exam-
ple, in lattice Boltzmann methods — in addition
to macroscopic quantities like density, momen-
tum, and magnetic field — a distribution of veloc-
ities is maintained at each point in space. The
corresponding stencil gathers a particular veloc-
ity from each neighbor without reuse to evolve
both the macroscopic quantities as well as the
velocities one step in time. Although structurally
similar to finite difference methods, the opera-
tor’s computation is dramatically different.

Because the stencil in lattice methods touches
so many different velocities, finite translation
lookaside buffer (TLB) capacity becomes a per-
formance impediment. To that end, we may block
for the TLB instead of the cache.

Autotuning LBMHD
The LBMHD application was developed to study
homogenous isotropic in turbulence MHD, the
macroscopic behavior of an electrically conduct-
ing fluid interacting with a magnetic field. The
study of MHD turbulence plays an important
role in the physics of steller phenomena, accre-
tion discs, interstellar medium, and magnetic
fusion devices.

At each point, one calculates macroscopic quan-
tities like density, momentum, and magnetic field,
and being a lattice-Boltzmann method, a distribu-
tion of 27 velocities must be maintained. However,
as LBMHD couples computational fluid dynam-
ics (CFD) with Maxwell’s equations, a 15-veloc-
ity magnetic field distribution is also maintained.
The result is that each point in space stores three
macroscopic quantities and two velocity distribu-
tions — a total of 79 doubles (figure 17, p57).

LBMHD iterates through time performing a
series of collision( ) operators — a nonlinear sten-
cil operator. Although this results in a concep-
tually simple memory access pattern, the sheer

scale of it can severely impair performance on
modern cache-based microprocessors.

In addition to blocking for the TLB, data struc-
ture changes are required to achieve optimal per-
formance. As the optimal parameterizations of
the optimizations varied from one architecture
to the next, we choose to construct an applica-
tion-specific autotuner for LBMHD’s collision( )
operator that explores changes to loop structure
(blocking for the TLB), data structure (array
padding), and approaches to exploit multicore
parallelism (skewed loop parallelization).

When running on an SMP, the common code base
could improve performance at full concurrency by
four times on a dual-socket, quad-core Opteron; 16
times on a dual-socket, 128-thread Niagara2; and 132
times on a dual-socket QS20 Cell Blade.

A distributed memory autotuner was created that
allowed the exploration of alternate Message Pass-
ing Interface (MPI) decompositions as well as differ-
ent balances between MPI processes and threads per
MPI process (hybrid programming model). This
autotuner allowed the fusion of the traditional SMP
autotuning technology with the desired distributed
memory application. When integrated into the
application, autotuning improved performance by
2.5 times on a 512-core simulation (single-socket,
quad-core Opteron nodes) compared with the exist-
ing, Gordon Bell-nominated, flat MPI implemen-
tation; and performance improved by three times
when including autotuning of MPI and thread
decomposition.

The Future of Structured Grid Autotuning
Typically, autotuners for structured grids are con-
structed with Perl scripts. Unfortunately, this is not
a particularly productive solution because there is a
myriad of structured grid kernels and limited retar-
getability of autotuners. To that end, current research
is examining the prospect of integrating compilation
techniques into autotuners. As we have observed
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Figure 14. Conceptualization of (a) seven- and (b) 27-point stencil operators.
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Current research is
examining the prospect of
integrating compilation
techniques into autotuners.
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with autotuners for stencils and lattice methods, this
technique must evolve beyond simple autotuner
compilers and integrate the ability to explore alter-
native data structures. Because of the sheer number
of structured grid-based applications, if autotuning
of structured grids is made productive, the technol-
ogy will have a much larger impact on the commu-
nity than autotuning linear algebra or FFTs.

Machine Learning to Automate Autotuning
A major challenge of autotuning is the size of the
parameter space to explore: state-of-the-art auto-
tuners that consider only a single application, a sin-
gle compiler, a specific set of compiler flags, and
homogeneous cores may explore a search space of
over 40 million configurations. An exhaustive
search would take about 180 days to complete on
a single machine. If the autotuner considers alterna-
tive compilers, multichip NUMA (non-uniform
memory architecture) systems, or heterogeneous
hardware, the search becomes prohibitively expen-
sive. Even parallel exploration of multiple configu-
rations (such as in a supercomputing environment)
achieves only linear speedup in the search, so most
autotuners prune the space by using heuristics of
varying effectiveness.

To address this challenge, researchers have
begun turning to statistical machine learning
(SML) algorithms that can draw inferences from
automatically constructed models of large quan-
tities of data. SML-based autotuning does not
require knowledge of the application or the
microarchitecture. In addition, some SML algo-
rithms even allow simultaneously tuning for mul-
tiple metrics of success.

We are able to reduce the half-year long search
to two hours while achieving performance at
least within 1% of and up to 18% better than that
achieved by a human expert.

As an example, Archana Ganapathi, Kaushik
Datta, Armando Fox, and David Patterson of
UC–Berkeley applied a state-of-the-art SML tech-
nique, Kernel Canonical Correlation Analysis
(KCCA), to guide an autotuner’s search through the
parameter space of optimizing two stencil codes on
two different multicore architectures. Compared to
a human expert hand-optimizing the codes given
extensive knowledge of the microarchitecture, the
autotuned codes matched or outperformed the
human expert by up to 18%. The autotuner took
about two hours to explore a space that would take
weeks to explore exhaustively on a single computer
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Figure 15. Auto-tuning the seven-point stencil for multicore (performance versus concurrency).
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by conventional techniques because the search
guided by KCCA navigates a narrow path through
the high-dimensional space of optimization param-
eters, avoiding combinatorial explosion. SML-
guided search therefore opens new autotuning
research directions that were previously intractable,
including optimizing jointly for power and per-
formance, optimizing the composition of kernels
rather than considering only each kernel in isola-
tion, and tuning for multichip architectures by opti-
mizing both computation on individual (possibly
heterogeneous) nodes as well as communication
efficiency across the network. ●
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Figure 16. Autotuning the 27-point stencil for multicore (performance versus concurrency).
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Figure 17. Conceptualization of the data structures used in LBMHD. 
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