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THE PROBLEM WITH THE LINPACK 
BENCHMARK 1.0 MATRIX 
GENERATOR

Jack J. Dongarra1, 2, 3,

Julien Langou4

Abstract

We characterize the matrix sizes for which the Linpack
Benchmark 1.0 matrix generator constructs a matrix with
identical columns.

Key words: Linpack benchmark, pseudo-random number
generator, random matrix, HPL, TOP500

1 Introduction

Since 1993, twice a year, a list of the sites operating the
500 most powerful computer systems has been released
by the TOP500 project (http://www.top500.org/). A sin-
gle number is used to rank computer systems based on the
results obtained on the High Performance Linpack Bench-
mark (HPL Benchmark).

The HPL Benchmark consists of solving a dense linear
system in double precision, 64-bit floating point arith-
metic, using Gaussian elimination with partial pivoting.
The ground rules for running the benchmark state that
the supplied matrix generator, which uses a pseudo-ran-
dom number generator, must be used in running the HPL
benchmark. The supplied matrix generator can be found
in High Performance Linpack 1.0 (HPL-1.0; http://www.
netlib.org/benchmark/hpl/) which is an implementation of
the HPL Benchmark. In a HPL benchmark program, the
correctness of the computed solution is established and
the performance is reported in floating point operations
per sec (flops/sec). It is this number that is used to rank
computer systems across the world in the TOP500 list.
For more on the history and motivation for the HPL
Benchmark, see Dongarra, Luszczek, and Petitet (2003).

In May 2007, a large high performance computer man-
ufacturer ran a 20-hour-long HPL Benchmark. The run
failed with the output result:

|| A x - b ||_oo / (eps * ||A||_1 * N) 
= 9.224e+94...... FAILED

It turned out that the manufacturer chose n to be n =
2,220,032 = 213 · 271. This was a bad choice. In this case,
the HPL Benchmark 1.0 matrix generator produced a
matrix A with identical columns. Therefore the matrix
used in the test was singular and one of the checks of cor-
rectness determined that there was a problem with the
solution and the results should be considered questiona-
ble. The reason for the suspicious results was neither a
hardware failure nor a software failure but a predictable
numerical issue.

Nick Higham pointed out that this numerical issue had
already been detected in 1989 for the LINPACK-D bench-
mark implementation, a predecessor of HPL, and had
been reported to the community by David Hough (1989).
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6 COMPUTING APPLICATIONS

Another report has been made to the HPL developers in
2004 by David Bauer with n = 131,072. In this manu-
script, we explain why and when the Linpack Benchmark
1.0 matrix generator generates matrices with identical
columns. We define � as the set of all integers such that
the Linpack Benchmark 1.0 matrix generator produces a
matrix with at least two identical columns. We character-
ize and give a simple algorithm to determine if a given n
is in �.

Definition 1. We define � as the set of all integers such
that the Linpack Benchmark 1.0 matrix generator pro-
duces a matrix with at least two identical columns. For
i > 2, we define �i as the set of all integers such that the
Linpack Benchmark 1.0 matrix generator produces a
matrix with at least one column repeated i times.

In Table 1, for illustration, we give the 40 smallest
integers in � along with the largest i for which the associ-
ated matrix size is in �i.

Some remarks are in order.

Remark 1.1. If i > j > 2 then �i ⊂ �j⊂ �.

Remark 1.2. If n is in �, then the matrix generated by
the Linpack Benchmark 1.0 matrix generator has at least
two identical columns, therefore this matrix is necessar-
ily singular. If n is not in �, the coefficient matrix has no
identical columns; however, we do not claim that the
matrix is nonsingular. Not being in � is not a sufficient
condition for being nonsingular.

Remark 1.3. In practice, we would like the coefficient
matrix to be well-conditioned (since we want to numer-
ically solve a linear system of equations associated with

them). This is a stronger condition than being nonsingu-
lar. Edelman (1988) proves that for real n-by-n matrices
with elements from a standard normal distribution, the
expected value of the log of the 2-norm condition number
is asymptotic to logn as n → ∞ (roughly logn + 1.537).
The Linpack Benchmark 1.0 matrix generator uses a uni-
form distribution on the interval [– 0.5, 0.5], for which the
expected value of the log of the 2-norm condition number
is also asymptotic to logn as n → ∞ (roughly 4log n + 1),
see Cuesta-Albertos and Wschebor (2003). Random
matrices are expected to be well-conditioned; however,
pseudo-random number generators are only an attempt to
create randomness and we will see that, in some particular
cases, the generated matrices have repeated columns and
are therefore singular (that is to say infinitely ill-condi-
tioned).

Remark 1.4. HPL-1.0 checks whether a zero-pivot
occurs during the factorization and reports it to the user.
As a result of rounding errors, even if the initial matrix
has two identical columns, exact-zero pivots hardly ever
occur in practice. Consequently, it is difficult for bench-
markers to distinguish between numerical failures and
hardware/software failures. This issue is further investi-
gated in Section 5.

Remark 1.5. In Remark 1.3, we stated that we would
like the coefficient matrix to be well-conditioned. Curi-
ously enough, we will see in Section 5 that the HPL
benchmark can successfully return when run on a matrix
with several identical columns. This is because the com-
bined effect of finite precision arithmetic (that transforms
a singular matrix into an ill-conditioned matrix) and the
use of a test for correctness that is independent of the
condition number of the coefficient matrix.

Table 1
The 40 matrix sizes smaller than 500,000 for which the Linpack Benchmark 1.0 matrix generator 
will produce a matrix with identical columns. The number in parenthesis indicates the maximum 
number of times each column is repeated. For example, the entry “491,520 (8)” indicates that, for 
the matrix size 491,520, there exists one column that is repeated eight times while there exists no 
column that is repeated nine times.

65,536 (2) 98,304 (2) 131,072 (8) 147,456 (2) 163,840 (3)

180,224 (2) 196,608 (6) 212,992 (2) 229,376 (4) 245,760 (2)

262,144 (32) 270,336 (2) 278,528 (3) 286,720 (2) 294,912 (5)

303,104 (2) 311,296 (3) 319,488 (2) 327,680 (10) 335,872 (2)

344,064 (3) 352,256 (2) 360,448 (6) 368,640 (2) 376,832 (3)

385,024 (2) 393,216 (24) 401,408 (2) 409,600 (4) 417,792 (2)

425,984 (7) 434,176 (2) 442,368 (4) 450,560 (2) 458,752 (14)

466,944 (2) 475,136 (4) 483,328 (2) 491,520 (8) 499,712 (2)
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7LINPACK BENCHMARK 1.0 MATRIX GENERATOR

2 How the Linpack Benchmark Matrix 
Generator Constructs a Pseudo-Random 
Matrix

The pseudo-random coefficient matrix A from the HPL
Benchmark 1.0 matrix generator is generated by the HPL
subroutine HPL_pdmatgen.c. In this subroutine, the
pseudo-random number generator uses a linear congruen-
tial algorithm (see for example Knuth 1997, Section 3.2)

X(n + 1) = (a * X(n) + c) mod m,

with m = 231, a = 1103515245, c = 1235. These choices of
m, a, and c are fairly standard and we find them, for exam-
ple, in the standard POSIX.1-2001 or in the GNU libc
library for the rand() function. The maximum period of
a sequence generated by a linear congruential algorithm is
at most m, and in our case, with HPL-1.0’s parameters a
and c, we indeed obtain the maximal period 231. (Proof:
either by direct check or using the Full-Period Theorem,
see Knuth 1997, Section 3.2). This provides us with a
periodic sequence s such that s(i + 231) = s(i), foranyi ∈ �.
HPL-1.0 fills its matrices with pseudo-random numbers
by columns using this sequence s starting with A(1, 1) =
s(1), A(2, 1) = s(2), A(3, 1) = s(3), and so on.

Definition 2. We define a Linpack Benchmark 1.0 matrix
generator, a matrix generator such that

A(i, j) = s((j – 1) * n + i), 1 ≤ i, j ≤ n (1)

and s is such that

s(i + 231) = s(i), for any i ∈ � and s(i) ≠ s(j), 
for any 1 ≤  i, j ≤  231 (2)

Some remarks:

Remark 2.1. The assumption s(i) ≠  s(j), for any 1 ≤ i, j ≤
231 is true in the case of the Linpack Benchmark 1.0 matrix
generator. It can be relaxed to admit more sequences s for
which some elements can be identical. However, this
assumption makes the sufficiency proof of the theorem in
Section 4 easier and clearer.

Remark 2.2. It is important to note that the matrix gen-
erated by the Linpack Benchmark 1.0 matrix generator
solely depends on the dimension n. The Linpack Bench-
mark 1.0 matrix generator requires benchmarkers to use
the same matrix for any block size, for any number of
processors or for any grid size.

Remark 2.3. Moreover, since the Linpack Benchmark
1.0 matrix generator possesses its own implementation

of the pseudo-random number generator, the computed
pseudo-random numbers in the sequence s depend weakly
on the computer systems. Consequently the pivot pattern
of the Gaussian elimination is preserved from one com-
puter system to another, from one year to another.

Remark 2.4. Finally, the linear congruential algorithm
for the sequence s enables the matrix generator for a scal-
able implementation of the construction of the matrix:
each process can generate their local part of the global
matrix without communicating or generating the global
matrix. This property is not usual among pseudo-random
number generators.

Remark 2.5. To give a sense of the magnitude of the
size n of matrices, the matrix size for the #1 entry in the
TOP500 list of June 2008 was 2,236,927 which is
between 221 and 222. The smallest matrix size in the
TOP500 list of June 2008 was 273,919 which is between
218 and 219.

Remark 2.6. The pseudo-random number generator
has been changed five times in the history of the Linpack
Benchmark. We recall here some historical facts.

1980 – LINPACKD-1.0 – The initial LINPACKD
benchmark uses a matrix generator based on the (For-
tran) code below:

subroutine matgen(n,a,lda)
real a(lda,*)
init = 1325
do 10 j = 1,n

do 20 i = 1,n
init = mod(3125*init,65536)
a(i,j) = (init - 32768.0)/16384.0

20 continue
10 continue

end

The period of this pseudo-random number generator is:
214 = 16,384.

1989 – Numerical failure report – David Hough (1989)
observed a numerical failure with the LINPACKD-1.0
benchmark for a matrix size n = 512 and submitted his
problem as an open question to the community through
NA-Digest.

1989 – LINPACKD-2.0 – Two weeks after David Hough’s
post, Robert Schreiber (1989) posted in NA-Digest an
explanation of the problem, he gave credit to Nick Higham
and himself for the explanation. The problem #27.4 in
Nick Higham’s (2002) book Accuracy and Stability of
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8 COMPUTING APPLICATIONS

Numerical Algorithms is inspired by this story. Higham
and Schreiber also provide a patch to improve the pseudo-
random number generator. Replacing line 6 of the previ-
ous code

init = mod(3125*init,65536)

by

init = mod(3125*init-1,65536)

increases the period from 214 = 16,384 to 216 = 65,536.
We call this version LINPACKD-2.0.

1992 – LINPACKD-3.0 – The pseudo-random number
generator of LINPACKD is updated for good in 1992 by
using the DLARUV LAPACK routine based on Fish-
man’s (1990) multiplicative congruential method with
modulus 248 and multiplier 33952834046453.

2000 – HPL-1.0 – First release of HPL (09/09/2000).
The pseudo-random number generator uses a linear con-
gruential algorithm (see for example Knuth 1997, Sec-
tion 3.2)

X(n + 1) = (a * X(n) + c) mod m,

with m = 231, a = 1103515245, c = 1235. The period of
this pseudo-random number generator is 231.

2004 – Numerical failure report – Gregory Bauer
observed a numerical failure with HPL and n = 217 =
131,072. History repeats itself. The HPL developers rec-
ommended to HPL users willing to test matrices of size
larger than 215 to not use power two.

2007 – Numerical failure report – A large manufacturer
observed a numerical failure with HPL and n = 2,220,032.
History repeats itself again. Note that 2,200,032 = 213 ·
271, and is not a power of two.

2008 – HPL-2.0 – This present manuscript explains the
problem in the Linpack Benchmark 1.0 matrix generator.
As of September 10th 2008, Piotr Luszczek has incorpo-
rated a new pseudo-random number generator in HPL-
2.0. This pseudo-random number generator uses a linear
congruential algorithm with a = 6364136223846793005,
c = 11 and m = 264. The period of this pseudo-random
number generator is 264.

3 Understanding �
Consider a large dense matrix of order 3 · 106 generated
by the process described in Definition 2. The number of

entries in this matrix is 9 · 1012 which is above the
pseudo-random number generator period (231 ≈ 2.14 · 109).
However, despite this fact, it is fairly likely for the con-
structed matrix to have distinct columns and even to be
well-conditioned.

On the other hand, we can easily generate a “small”
matrix with identical columns. Take n = 216, we have for
any i = 1, …, n:

A(i, 215 + 1) = s(i + n * (j – 1)) 

= s(i + 215 * n) = s(i + 215 * 216) 

= s(i + 231) = s(i) = A(i, 1),

therefore the column 1 and the column 215 + 1 are exactly
the same. The column 2 and the column 215 + 2 are exactly
the same, etc. We can actually prove that 216 = 65,536 is
the smallest matrix order for which a multiple of a col-
umn can happen.

Another example of n ∈ � is n = 231 = 2,147,483,648
for which all columns of the generated matrix are the
same. Our goal in this section is to build more n in � to
have a better knowledge of this set.

If n is a multiple of 20 = 1 and n > 231 then n ∈ �. (Note
that the statement “any n is a multiple of 20 = 1 and n >
231” means n > 231.) The reasoning is as follows. There
are 231 indexes from 1 to 231. Since there are at least 231 +
1 elements in the first row of A (assumption n > 231),
then, necessarily, at least one index (say k) is repeated
twice in the first row of A. This is the pigeonhole princi-
ple. Therefore we have proved the existence of two col-
umns i and j such that they both start with the kth term of
the sequence. If two columns start with the index of the
sequence, they are the same (since we take the element of
the column sequentially in the sequence). The three
smallest numbers of this type are

n = 20 * (231 + 1) = 2,147,483,649 ∈ �

n = 20 * (231 + 2) = 2,147,483,650 ∈ �

n = 20 * (231 + 3) = 2,147,483,651 ∈ �.

If n is a multiple of 21 = 2 and n > 230 then n ∈ �. If n is
even (n = 2q), then the first row of A accesses the num-
bers of the sequence s using only odd indexes. There are 230

odd indexes between 1 and 231. Since there are at least 230

+ 1 elements in the first row of A (assumption n > 230),
then, necessarily, at least one index is repeated twice in
the first row of A. This is the pigeonhole principle. The
three smallest numbers of this type are:
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9LINPACK BENCHMARK 1.0 MATRIX GENERATOR

n = 21 * (229 + 1) = 1,073,741,826 ∈ �

n = 21 * (229 + 2) = 1,073,741,828 ∈ �

n = 21 * (229 + 3) = 1,073,741,830 ∈ �.

If n is a multiple of 22 = 4 and n > 229 then n ∈ �. If n is
a multiple of 4 (n = 4q), then the first row of A accesses
the numbers of the sequence s using only (4q + 1)–
indexes. There are 229 (4q + 1)–indexes between 1 and
231. Since there are at least 229 + 1 elements in the first
row of A (assumption n > 229), then, necessarily, at least
one index is repeated twice in the first row of A. This is
the pigeonhole principle. The first three numbers of this
type are:

n = 22 * (227 + 1) = 536,870,916 ∈ �

n = 22 * (227 + 2) = 536,870,920 ∈ �

n = 22 * (227 + 3) = 536,870,924 ∈ �.

If n is a multiple of 213 and n > 218 then n ∈ �. This
gives for example:

n12 = 213 * (25 + 1) = 213 * 33 = 270,336 ∈ �

n13 = 213 * (25 + 2) = 213 * 34 = 278,528 ∈ �

n15 = 213 * (25 + 3) = 213 * 35 = 294,912 ∈ �.

These three numbers correspond to entries (3, 2), (3, 3),
and (3, 5) in Table 1.

If n is a multiple of 214 and n > 217 then n ∈ �. This
gives for example:

n4 = 214 * (23 + 1) = 214 * 9 = 147,456 ∈ �

n5 = 214 * (23 + 2) = 214 * 10 = 163,840 ∈ �

n6 = 214 * (23 + 3) = 214 * 11 = 180,224 ∈ �.

These three numbers correspond to entries (1, 4), (1, 5),
and (2, 1) in Table 1.

If n is a multiple of 215 and n > 216 then n ∈ �. This
gives for example:

n2 = 215 * (21 + 1) = 215 * 3 = 98,304 ∈ �

n3 = 215 * (21 + 2) = 215 * 4 = 131,072 ∈ �

n5 = 215 * (21 + 3) = 215 * 5 = 163,840 ∈ �.

These three numbers correspond to entries (1, 2), (1, 3),
and (1, 5) in Table 1.

If n is a multiple of 216 and n > 215 then n ∈ �.

n1 = 216 * (20 + 1) = 216 * 1 = 65,536 ∈ �

n3 = 216 * (20 + 2) = 216 * 2 = 131,072 ∈ �

n7 = 216 * (20 + 3) = 216 * 3 = 196,608 ∈ �.

These three numbers correspond to entries (1, 1), (1, 3),
and (2, 2) in Table 1.

From this section, we understand that any n multiple of
2k and larger than 231 – k is in �. In the next paragraph, we
prove that these are indeed the only integers in �, which
provides us with a complete characterization of �.

4 Characterization of �
Theorem. n ∈ � if and only if the matrix of size n gen-
erated by the Linpack Benchmark 1.0 matrix generator
has at least two identical columns if and only if

n > 231 – k where n = 2k · q with q odd.

Proof.

⇐ Let us assume that n is a multiple of 2k, that is to say

n = 2k · q, 1 ≤ q

and let us assume that

n > 231 – k.

In this case, the first row of A accesses the numbers of
the sequence s using only (2k · q + 1)–indexes. There
are 231 – k (2k · q + 1)–indexes between 1 and 231. Since
there are at least 231 – k + 1 elements in the first row of
A (assumption n > 231 – k), then, necessarily, at least
one index is repeated twice in the first row of A. This
is the pigeonhole principle. If two columns start with
the same index in the sequence, they are the same
(since we take the element of the column sequentially
in the sequence).

⇒ Assume that there are two identical columns i and j in
the matrix generated by the Linpack Benchmark 1.0
matrix generator (i ≠ j). Without loss of generality,
assume i > j. The fact that column i is the same as
column j means that these columns have identical

…
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entries, in particular, they share the same first entry.
We have

A(1, i) = A(1, j).

From this, equation (1) implies

s(1 + (i – 1)n) = s(1 + (j – 1)n).

Equation (2) states that all elements in a period of
length 231 are different, therefore, since i ≠ j, we nec-
essarily have

1 + (i – 1)n = 1 + (j – 1)n + 231 · p, 1 ≤ p.

This implies

(i – j)n = 231 · p, 1 ≤ p.

We now use the fact that n = 2k · q with q odd and get

(i – j) · 2k · q = 231 · p, 1 ≤ p, q is odd.

Since q is odd, this last equality implies that 231 is a
divisor of (i – j) · 2k. This writes

(i – j) · 2k = 231 · r, 1 ≤ r.

From which, we deduce that

(i – j) · 2k ≥ 231.

A upper bound for i is n, a lower bound for j is 1;
therefore,

(n – 1) · 2k ≥ 231.

We conclude that, if a matrix of size n generated by
the Linpack Benchmark 1.0 matrix generator has at
least two identical columns, this implies

n > 231 – k where n = 2k · q with q odd.

5 Solving (Exactly) Singular System in 
Finite Precision Arithmetic with a Small 
Backward Error

From our analysis, the first matrix size n for which the
Linpack Benchmark 1.0 matrix generator will generate a
matrix with two identical columns is n = 65,536 (see
Table 1). However, HPL-1.0 passes all the tests for cor-
rectness on this matrix size. It is the same for n = 98,304

which is our second matrix size in the list (see Table 1).
If we look more carefully at the output file for n =
2,220,032, we see that only one out of the three tests for
correctness is triggered:

||Ax-b||_oo / (eps * ||A||_1 * N) 
= 9.224e+94 ...... FAILED

||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) 
= 0.0044958 ...... PASSED

||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) 
= 0.0000002 ...... PASSED

Despite the fact that the matrix has identical columns, we
observe that HPL-1.0 is sometimes able to pass all the
tests, sometimes two tests out of three and sometimes
none of the three tests. This section will answer how this
behavior is possible. First of all, we need to explain how
the Linpack Benchmark assesses the correctness of an
answer.

5.1 How the Linpack Benchmark Program Checks 
a Solution

To verify the result after the LU factorization, the bench-
mark regenerates the input matrix and the right-hand
side, then an accuracy check on the residual Ax – b is per-
formed.

The LINPACKD benchmark checks the accuracy of
the solution by returning

where ||A||M = maxi, j |aij| and ε is the relative machine pre-
cision.

For HPL-1.0, the three following scaled residuals are
computed:

A solution is considered numerically correct when all of
these quantities are less than a threshold value of 16. The
last quantity (r∞) corresponds to the normwise backward
error in the infinite norm allowing perturbations on A
only (Higham 2002). The last two quantities (r∞, r1) are

Ax b– ∞

nε A M x ∞
----------------------------

rn

Ax b– ∞

nε A 1

-----------------------,=

r1

Ax b– ∞

ε A 1 x 1

-----------------------,=

r∞
Ax b– ∞

nε A ∞ x ∞
----------------------------.=
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11LINPACK BENCHMARK 1.0 MATRIX GENERATOR

independent of the condition number of the coefficient
matrix A and should always be less than a threshold
value of the order of 1 (no matter how ill-conditioned A
is).

For HPL-2.0, the check for correctness is

(3)

This corresponds to the normwise backward error in the
infinite norm allowing perturbations on A and b only
(Higham 2002). A solution is considered numerically
correct when this quantity is less than a threshold value
of 16. Although the error analysis of Gaussian elimina-
tion with partial pivoting can be done in such a way that
b is not perturbed (in other words r∞ is the criterion you
want to use for Gaussian elimination with partial pivot-
ing), HPL-2.0 switches to r4, the usual backward error as
found in textbooks.

This discussion on the check for correctness explains
why HPL-1.0 is able to pass the test for correctness even
though the input matrix is exactly singular.

5.2 Repeating Identical Blocks to the Underflow

Schreiber and Higham (1989) explain what happens when
a block is repeated k times in the initial coefficient matrix
A. At each repeat, the magnitude of the pivot (diagonal
entries of the U matrix) are divided by ε. This is illustrated
in Figure 1. This process continues until underflow
occurs. Denormalized numbers might help but the process
is still the same and ultimately a zero pivot is reached, and
the algorithm is stopped. In single precision arithmetic with
εs = 2–24 and underflow 2–126, five identical blocks will
lead to underflow. In double precision arithmetic with ε =
2–16 and underflow 2–1022, one will need 64 identical
blocks.

5.3 Anomalies in Matrix Sizes Reported in the 
June 2008 TOP500 List

Readers of this manuscript may be surprised to find three
entries in the TOP 500 data from June 2008 with matrix

sizes that lead to matrices with identical columns if the
HPL test matrix generator is used. These three entries are
given in Table 2. For example, the run for the Earth Sim-
ulator from 2002 was done with n = 1,075,200 which
corresponds to 211 · 525, therefore, the column j = 220 =
1,048,576 would have been a repeat of the first under our
assumptions. The benchmark run on the Earth Simulator
in 2002 was done with an older version of the test har-
ness. This test harness predates the HPL test harness and
uses another matrix generator than the one provided by
HPL. Today we require the HPL test harness to be used
in the benchmark run.

6 How to Fix the Problem

Between 1 and 1 · 106, there are 49 matrix sizes in � (see
Table 1). Between 1 and 3 · 106, there are 1,546 matrix
sizes in �. Therefore, for this order of matrix size, there is

Table 2
The three entries in the TOP500 June 2008 list with suspicious n.

Rank Site Manufacturer Year NMax

16 Information Technology Center, The University of Tokyo Hitachi 2008 1,433,600 (6)

49 The Earth Simulator Center NEC 2002 1,075,200 (2)

88 Cardiff University – ARCCA Bull SA 2008 634,880 (2)

r4

Ax b– ∞

nε A ∞ x ∞ b ∞+( )
-------------------------------------------------.=

Fig. 1 Magnitude of the pivot (diagonal entries along
the matrix U) for n = 512 = 29 and the LINPACK-2.0
matrix generator. The period of the LINPACK-2.0
matrix generator is n = 65536 = 216 so that, for a matrix
of size n = 512, columns repeat every 128 columns. We
observe that pivots are multiplied by εεεε ≈ 2.2 · 10–16 at
every repetition.
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a good chance of choosing a matrix size that is not in �.
Unfortunately benchmarkers tend to pick multiples of
high power of 2 for their matrix sizes which increases the
likelihood of picking an n ∈ �.

1. The obvious recommendation is to choose any n
as long as it is odd. In the odd case if n < 231 ≈ 4 ·
109, then n ∉ �.

2. A check can be added at the beginning of the exe-
cution of the Linpack Benchmark matrix genera-
tor. The C-code looks as follows:

long long int m,n;
int i,k,t,s;
s = 31;
m=n; k=0; while (m%2==0) 

{k++; m=m/2;}
m=1; t=0; while (m<=n) {t++; m=m*2;}
if (t+k>s) i = 1; else i = 0;

n is the matrix size, 2s is period of the pseudo-ran-
dom number generator (s = 31 in our case) and i is
the output flag. If i = 1, then n ∈ �. If i = 0, then
n ∉ �. (The check could also consist of looking
over a table.)

3. If n ∈ �, one can simply pad the matrix with an
extra line. This can be easily done in the HPL
code HPL_pdmatgen.c by changing the varia-
ble jump3 from M to M+1 whenever n ∈ �.

4. Another possibility is to increase the period of
the pseudo-random number generator used. For
example, if the pseudo-random number generator
had a period of 264 and if n ≤ 232, then, assuming
(i ≠ j ⇒ s(i) ≠ s(j)), entries would never repeat.

5. A check for correctness robust to ill-conditioned
matrix could be used as discussed in Section 5.

The problem with the Linpack Benchmark 1.0 matrix
generator is now corrected in the Linpack Benchmark 2.0
matrix generator. The fix includes both proposition 4
(extend the period of the pseudo-random generator) and
proposition 5 (have a test for correctness robust to ill-
conditioned matrices).
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