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Abstract. Several recovery techniques for parallel iterative methods are presented. First, the
implementation of checkpoints in parallel iterative methods is described and analyzed. Then a
simple checkpoint-free fault-tolerant scheme for parallel iterative methods, the lossy approach, is
presented. When one processor fails and all its data is lost, the system is recovered by computing a
new approximate solution using the data of the nonfailed processors. The iterative method is then
restarted with this new vector. The main advantage of the lossy approach over standard checkpoint
algorithms is that it does not increase the computational cost of the iterative solver when no failure
occurs. Experiments are presented that compare the different techniques. The fault-tolerant FT-MPI
library is used. Both iterative linear solvers and eigensolvers are considered.
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1. Introduction. Among the most remarkable features of the ongoing com-
putational revolution in science is the ease with which the aspirations of domain
researchers have overtaken and outstripped the explosive growth in computing power
described by Moore’s law. The unquenchable desire of scientists to run ever larger
simulations and analyze ever larger data sets is fueling an escalation in the size of
supercomputing clusters from hundreds, to thousands, and even tens of thousands of
processors. Unfortunately, the struggle to design systems that can scale up in this
way also exposes the current limits of our understanding of how to efficiently trans-
late such increases in aggregate computing resources into corresponding increases in
scientific productivity.

One increasingly urgent aspect of this knowledge gap lies in the critical area of
reliability and fault tolerance. Even making some generous assumptions (e.g, that
the reliability of a single-processor system is several years), it is clear that, as the
processor count in high end clusters grows into the thousands, the mean time to
failure (MTTF) will drop from a few days to a few hours, or less. The type of
100,000-processor machines projected in the next few years can expect to experience
a processor failure almost hourly. Although today’s architectures are robust enough
to incur process failures without suffering complete system failure, at this scale and
failure rate, the only technique available to application developers for providing fault
tolerance within the current parallel programming model “checkpoint/restart” has
performance and conceptual limitations that make it inadequate to the future needs
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of the large-scale simulation and modeling community who will use these systems. An
excellent summary of current research in fault-tolerant algorithms is provided in [11].

To fulfill these needs, a new message passing library has been created called
FT-MPI [7, 8]. FT-MPI enables an implementer to create fault-tolerant algorithms
while maximizing freedom to the user. Based on this library, it becomes possible to
create more and more fault-tolerant algorithms and software without the need for
specialized hardware, thus providing the numerical analyst the ability to explore a
new area for implementation and development. For more about how to make an
application fault tolerant with the FT-MPI library, we refer the reader to [7].

In order for applications to survive faults, we design the following model. The
recovery process for the application is made up of three phases:

• Phase I : recover a correct computational environment,
• Phase II : recover the static data lost,
• Phase III: recover the dynamic data lost.

Phase I is the need to recover a correct MPI environment. In this paper, the recovered
environment has the same number of processors as the failed one. This is the task of
the FT-MPI library. Phase II consists of recovering the static data lost. By static data,
we mean, for example, the matrix, the right-hand side, or the preconditioner. This
represents data that is computed once in the initialization phase of the application
and is unchanged after. Phase III consists of recovering the dynamic data, which is
the data that changes during the algorithm.

In this paper we mainly discuss Phase III. Previous solutions to recover the
dynamic data were based on checkpointing. Checkpointing is a way to provide fault-
tolerant applications that require additional time and memory (or disks, or proces-
sors). In section 2, we explain how to implement checkpoints efficiently in some
iterative solvers. The checkpoint technique used in the experiments is called disk-
less checkpointing (see section 2.1) and is particularly suited for parallel distributed
computing.

Diskless checkpoints involve global operations with large size data, and their
overhead is in direct relation with the number of nodes involved in the application.

In the context of iterative methods, where scalability bottlenecks reside mostly
in global operations, such as scalar product computations [16, section 12.2], adding
diskless checkpoints just makes the scalability worse. For most computing systems
today, applications are unlikely to encounter a failure, and thus many users prefer to
take their chances. The mode is to run the application with no checkpointing and, if a
failure occurs, restart the application from scratch. The aim of this paper is to find a
way to operate Phase III without any significant overhead in the original application.

Our primary concern are iterative methods to solve the linear system Ax = b.
Parts of the vectors are stored on each of the processors. A failure of one of the pro-
cessors results in the loss of all the data stored in its memory (local data). Therefore,
when a failure occurs, a part of our approximate solution is lost. Assuming that no
checkpoint of the dynamic variables has been performed and a failure occurs, what
can be done? At this point, the local data of the approximate solution before failure
x(old) is lost on a processor. Being positive, we prefer to say that the approximate
solution before failure x(old) is still known on all the processors but one. Thus our
idea is to restore a new approximate solution from this data. This is done by solving
the local equation associated with the failed processor. In what follows, xj is the
local part of the vector x stored on processor j, and Ai,j represents the submatrix
whose rows are stored on processor i and with column indexes corresponding to the
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rows stored on processor j. If processor f fails, then we propose constructing a new
approximate solution x(new) via

x
(new)
j = x

(old)
j for j �= f,

x
(new)
f = A−1

f,f

⎛
⎝bf −

∑
j �=f

Af,jx
(old)
j

⎞
⎠ ,(1.1)

provided that Af,f is of full rank (see section 3.2 if not).

If x(old) is the exact solution of the system, (1.1) will construct x
(new)
f = x

(old)
f ;

the recovery of x will be exact. In general, the failure happens when x(old) is an

approximate solution, in which case x
(new)
f is not exactly x

(old)
f but should be close.

This assertion is justified theoretically in section 3.1. After the recovery step, the iter-
ative method is restarted from x(new). The goal of section 3 is to explain this technique
and give some theoretical results about it. This method is sometimes referred to as
lossy algorithm (as opposed to lossless for the checkpoint method). This is because

the dynamic data of the failed processor (e.g, x
(old)
f ) is lost and not recovered, but we

recover x
(new)
f an approximation of it. In section 3.3, we also explain how (1.1) can be

generalized for eigensolvers. In section 4, we present some experimental results that
compare the lossy method with some checkpointing approaches.

This study is dedicated to one failure at a time. Theoretically, it is not an issue
to generalize the results to multiple failures at a time. Some hints for addressing this
problem are given in section 3.2.

2. Checkpoint techniques for parallel iterative methods. Our discussion
will focus on the GMRES method [13], but there is no problem generalizing to the
other iterative methods.

In this discussion, we describe how we perform a recovery of vector quantities.
The scalar quantities (e.g, the number of iterations) are trivial to restore in case of a
failure.

2.1. Diskless checkpoint-restart technique. The information of the com-
puting processors is saved in a checkpoint in case of a failure. In order to save the
data from any of the processors while maintaining a low overhead in the storage,
we are using a checksum approach to checkpointing. If there are n processors for
each of which we want to save the vector xk (for simplicity, we assume that the
local sizes of xk are the same on all the processors), then we store the checksum
xn+1 such that xn+1 =

∑
i=1,...,n xi. If processor f fails, we can restore xf via

xf = xn+1 −
∑

i=1,...,n;i �=f xi. The arithmetic used for the operations + and − can
either be binary or floating-point arithmetic. (However, note that if the floating-point
arithmetic is used, then one has to be aware that the recovered data is not the same
as the initial one due to round-off errors; in particular, one shall expect important
relative errors if the coefficients of x differ by large orders of magnitude.) Our check-
points are diskless, in the sense that the checkpoint is stored in the memory of a
processor and not on a disk. To achieve this, an additional processor is added to the
environment. It will be referred to as the checkpoint processor, and its role is to store
the checksum. The checkpoint processor can be viewed as a disk but with low latency
and high bandwidth since it is located in the network of processors. For more infor-
mation, we refer the reader to [12], where special attention is given to simultaneous
failures.
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2.2. Classification of checkpointing strategies. To perform the checkpoint,
we will classify the algorithms in different categories. But first of all, we need to
classify the variables of the algorithms. The goal of this classification is to define
which variables

• need to be stored once, when they are referred to as “static” (e.g, the system
matrix A, the right-hand side b, or the preconditioner P );

• are changing along the iterations, when they are referred to as “dynamic”
(e.g, the approximate solution x);

• should be recomputed after a failure rather than checkpointed (e.g, obtaining
the residual via r = b−Ax might be faster than via a checkpoint);

• can be recomputed in case of a rollback but are worth saving their values in
order to gain time (e.g, a scalar product is expensive to compute and easy to
store and its value is the same on all processors, and thus it makes sense to
store those values in an array on all processors; at recovery time, we provide
those values to the failed processor, and this avoids recomputing those values
during the rollback).

Once this classification of the variables is done, we give two different strategies for
checkpointing. The first strategy (chkpt F) checkpoints the data at each iteration (see
section 2.3). It is suited for full GMRES and Arnoldi. The second strategy (chkpt R)
checkpoints the data every k iterations and implies rollback (see section 2.4). It is
suited for GMRES with restart and conjugate gradient (CG). In the experimental part
(section 4), both categories are represented and compared with the lossy approach.
We note that a checkpoint approach can be used to recover the static data (matrix,
right-hand side, preconditioner) in Phase II (instead of a disk I/O, for example).

2.3. Checkpointing at each iteration (chkpt F). In full GMRES and Arnoldi
methods, in order to perform iteration k, we need the knowledge of k vectors; thus
all the vectors need to be checkpointed. The full GMRES and the Arnoldi method
therefore have a very simple checkpoint strategy: each time a vector is computed, it
is checkpointed. This strategy is called chkpt F.

2.4. Checkpointing with rollback (chkpt R). The common point of CG and
GMRES with restart is that, in both methods, the iteration k can be performed using
only the knowledge of a constant number of vectors (independent of k).

For example in CG, in order to perform the kth iteration, we need the knowledge
of three vectors: x(k−1), p(k−1), and r(k−1). The vectors constructed at iteration
(k − 2) are no longer needed. (Actually, in practice, the CG implementation simply
overrides those vectors by the new ones.) In this case, it makes sense to checkpoint
all the vectors involved in a given iteration only occasionally. If a failure happens, then
we restart the computation from the last checkpointed version of those vectors. This
is called a rollback. Rollback implies that some computations need to be performed
again.

It is clear that the checkpointing rate has to be chosen carefully. On the one
hand, distant checkpoints require long rollback. On the other hand, close checkpoints
imply a large overhead due to a large number of global communications. Gropp and
Lusk [9] explain how to choose the checkpointing frequency in an optimal manner.
The analysis below is based on their initial work.

To know the optimal rate of checkpoints, we use the following notation:

Titer the time for an iteration (or any unit time step of the code),
Tchkpt the time to perform a checkpoint,
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Trecov the mean time to repair and bring the application back to the last
checkpoint,

k the checkpoint frequency: a checkpoint is performed every k
iterations (or units of time),

N the number of iterations (or units of time) to converge (without
failure),

Trollback(k) the mean time to perform the rollback.

Given these definitions, we can write

Ttotal = NTiter + Tchkpt
N

k
+

Ttotal
TMTTF

(Trecov + Trollback(k)),

which means that the total time is the sum of the time to perform the N iterations,
the time to perform the checkpoints every k iterations, and the time to perform
the recovery of the encountered failures. The time to perform the recovery of the
encountered failures is the number of failures (Ttotal/TMTTF) times the mean time for
a recovery (Trecov + Trollback(k)).

As in [9], we assume that the probability of failure is constant over time, which
implies that the distribution of failures is exponential. Taking into account that the
distribution of failures is exponential of parameter TMTTF, the distribution of failures
that have happened between t = 0 and t = kTiter is

1

TMTTF(1 − e−kTiter/TMTTF)
e−t/TMTTF

for t between 0 and kTiter; and it is 0 elsewhere. The mean time of this law,
Trollback(k), is given by

Trollback(k) = TMTTF − kTiter
e−kTiter/TMTTF

1 − e−kTiter/TMTTF
.

When kTiter � TMTTF, then a good approximation of Trollback is kTiter/2, which
means that the failures happen, on average, in the middle of the checkpoint inter-
val. This makes sense since, when kTiter � TMTTF, the exponential distribution of
parameter TMTTF on 0 and kTiter is close to a uniform distribution.

Returning to the expression of the total time we can write

(2.1) Ttotal =

(
NTiter + Tchkpt

N

k

)(
kTiter
TMTTF

e−kTiter/TMTTF

1 − e−kTiter/TMTTF
− Trecov

TMTTF

)−1

.

Our goal is to minimize the total time Ttotal with respect to the parameter k. For
the sake of simplicity, we linearize the exponentials, assuming kTiter � TMTTF, and get

(2.2) Ttotal =

(
NTiter + Tchkpt

N

k

)(
1 − kTiter

2TMTTF
− Trecov

TMTTF

)−1

.

The minimum is obtained for

k =

√
Tchkpt(2TMTTF + Tchkpt − 2Trecov)

Titer
− Tchkpt

Titer
.

This gives us the optimal time between two checkpoints:

(2.3) kTiter =
√
Tchkpt(2TMTTF + Tchkpt − 2Trecov) − Tchkpt.
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With the assumptions TMTTF � Tchkpt and Tchkpt = Trecov, we recover the formula of
Gropp and Lusk [9]:

(2.4) k · Titer ∼
√

2TMTTF · Tchkpt.

The assumption Tchkpt = Trecov holds well when the fault-tolerant library is
unaware of the application; therefore checkpoints of the whole memory are made
at regular intervals, which is the context of [9]. In our experiments (see section 4),
there is a significant difference between Trecov and Tchkpt. This is due to the fact that
our checkpointing algorithm checkpoints only the dynamic data.

For GMRES with restart m, to compute the vector vk+1 at iteration k, we need
k[m]+1 vectors. The checkpointing strategy we choose is to checkpoint the data when
k[m] = 0 (at the restart). In this case, we just have one vector to checkpoint (the
approximate solution x) per m iterations. This strategy is called chkpt R. Note that
if the size of the restart is long relative to the mean time between failure, it is more
advantageous to checkpoint GMRES with restart as full GMRES (at every iteration)
in order to avoid long rollback.

3. The lossy approach. The lossy approach with the block Jacobi step is
defined by (1.1). The lossy approach is strongly connected to the block Jacobi
algorithm. Indeed, a failure step with the lossy approach is a step of the block Jacobi
algorithm on the failed processor. Related work is by Engelmann and Geist [6], where
the authors propose using the block Jacobi method itself as a scalable algorithm to
failure. In fact, the block Jacobi method needs only to be performed at the recovery
step, but it can be embedded into any iterative solver. This way, one can choose the
iterative solver desired, for example, a Krylov method. On a related note, we remind
the reader of the work of Jacobi and Gauss at the time when computations were done
by hand. Gauss (see [10, p. 321]) states that the method was extremely tolerant to
errors.

3.1. Quality of the new approximate solution given by the lossy
approach. The lossy approach implies that the method is no longer the same as
the method without failure. In this section, we give some hints on the convergence of
the lossy method. Surprisingly enough, failures sometimes enhance the convergence.

To quantify the convergence property of the lossy approach, we focus on the size
of the residual difference norm between before and after the failure. We also discuss
the speed of convergence after the recovery.

Since the lossy approach is nothing more than a step of a block-Jacobi-like
method, a part of the theory of stationary iterative methods applies, and one can
prove that

(3.1) ‖x(new) − x∗‖ ≤

⎛
⎝1 + ‖A−1

f,f‖2
∑
j �=f

‖Af,j‖2

⎞
⎠

1/2

‖(x(old) − x∗)‖,

(3.2) ‖r(new)‖ ≤

⎛
⎝1 + ‖A−1

f,f‖2
∑
j �=f

‖Aj,f‖2

⎞
⎠

1/2

‖r(old)‖.

(A formal proof is omitted in this paper. The results follow easily from the discussion
of Saad [15, section 4.2].)
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As a result of these inequalities, we can clearly quantify the jump of the resid-
ual norm after a recovery; the new residual norm is close to the previous one if
(‖A−1

f,f‖2
∑

j �=f ‖Aj,f‖2)1/2 is small compared to 1 (or at least of the same order).
This assumes that the diagonal blocks are not ill-conditioned and the extradiagonal
blocks have small norms relative to the diagonal block norms.

The residual norm of the approximate solution is not the only thing that mat-
ters. The iterative solver computes other information that is stored in other vectors.
Losing those vectors and restarting from the new approximate solution could theo-
retically lead to some delay in the convergence. This problem is the same problem
as the one induced by any restart in an iterative method. In a general manner, the
lossy approach will perform well if the convergence behavior of the method is linear
or sublinear. Thus, the lossy approach is justified in all the restarted methods (in
particular, GMRES with restart) as long as the residual norm difference, (3.2), is not
too high.

GMRES with restart has the drawback of stagnating fairly easily on practical
examples. If a failure occurs during stagnation, the lossy approach computes a new
approximate solution with the same quality in terms of error norm and residual
norm, (3.2) and (3.1), but with different spectral properties. In our experiments
(see Tables 3 and 4), we often observe that the GMRES with restart algorithm with
a failure and a lossy recovery step performs better in terms of the number of itera-
tions than the nonfailed GMRES with restart algorithm. This observation suggests
that including block Jacobi steps inside GMRES cycles might cure the stagnation of
restarted GMRES.

3.2. Remarks about the lossy approach. Block Jacobi preconditioner. The
main cost of the recovery step in Phase III is to perform the LU factorization of the
local matrix. However, it is worth noting that, if the preconditioner used is a block
Jacobi preconditioner, those factors are available from the recovery step in Phase II,
and thus the recovery of x can be done for the price of a preconditioner step and the
local contribution of a matrix-vector product.

What about a singular diagonal block Ai,i? If the matrix A is nonsingular (which
is given), we can extract rows from the column block A:,i such that these rows form
a nonsingular square block. Thus in theory, a singular diagonal block Ai,i is not
an issue. In practice, we focused only on matrices with nonsingular (and even well-
conditioned) diagonal blocks. Once more in the case of a block Jacobi preconditioner,
this property is assumed, and thus the lossy approach fits well.

What about a matrix-free method? The lossy approach needs to know the diagonal
block corresponding to the failed processor. In some matrix-free methods, those blocks
are known; when they are not, the lossy approach will not work. An idea is to apply
the global matrix-vector product to solve iteratively the local system (with restriction
operators). Since the space in which we are working is smaller than the size of the
initial matrix, the iterative solver should converge faster than restarting the method
from scratch.

What about multiple failures on a single instance? This is not a theoretical issue.
If processors i and j fail at the same time, we have to solve a system of linear equations
involving the coefficient matrix

(
Ai,i Ai,j

Aj,i Aj,j

)
.

Implicit knowledge of x. The lossy recovery requires the approximate solution
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x at each step of the iterative method. This assumption is true for most of the
iterative methods (stationary iterative methods, CG, Orthomin, GCR, BiCGStab,
etc.) but not all. For example, in the full GMRES method, the approximate solution
is computed only at the end of the algorithm. In this latter example, we use the
following trick. The solution x(k) at step k is implicitly known via the formula

(3.3) x(k) = x(0) + (v(1), . . . , v(k))y(k),

where v(i) represents the Krylov basis generated by GMRES. The quantities y(k) are
contained in a small vector that can be computed from the data of any nonfailed
processors, and the vectors x(0), v(1), . . . , v(k) are classically distributed among the
processors. From (3.3), if a failure occurs on the processor f , the local part of x(k)

(i.e, x
(k)
i , i �= f) can be computed on all the nonfailed processors. Thus the lossy

approach can also be used without modifying the generic algorithm.
Superlinear convergence. The lossy algorithm performs a restart of the iterative

method when a failure occurs. Adding an extra restart is fully justifiable in the context
of restarted methods (e.g., GMRES with restart). In the context of nonrestarted
methods (e.g., full GMRES or CG), we expect to lose the superlinear convergence
after restart. As a rule of thumb, the lossy algorithm will perform well in term of
iterations when the convergence of the iterative methods is linear (or sublinear).

3.3. Generalization to eigenvalue computation. We believe that the con-
cepts presented in the lossy algorithm for solving systems of linear equations could
be applied to other methods as well. In this section, we move from linear solvers to
eigenvalue solvers. We use the Arnoldi algorithm (see, e.g, [14, section 7.5]). For
the sake of simplicity, we assume in this description that the blocksize of the method
is one and that we are looking for the largest eigenvalue of the matrix A. (In the
experimental section, section 4, we take more complex cases.) If the processor f fails
at iteration nf , the lossy approach for the Arnoldi method is defined as follows:

1. For each nonfailed processor, compute the largest eigenvalue λ(Ritz) and the
associated eigenvector w(Ritz) of the nf -by-nf Hessenberg matrix.

2. For each nonfailed processor k, compute the local part of the Ritz vector:

v
(Ritz)
k = (v

(1)
k , . . . , v

(nf )
k )w(Ritz).

3. The failed processor sets its local part of the Ritz vector to 0: v
(Ritz)
f = 0.

4. Compute the residual: x = Av(Ritz) − v(Ritz)λ(Ritz).
5. Solve the residual equation on the failed processor f , xf = (Af,f−Iλ(Ritz)) xf .
6. The new vector x is an approximation of the eigenvector associated with the

largest eigenvalue; then the Arnoldi method can be restarted with x as the
starting vector.

4. Numerical experiments. Experiments were performed on the boba Linux
cluster at the University of Tennessee composed of 64 dual Intel Xeon processors at
2.40 GHz with Myrinet interconnect. We used the double-precision floating-point
arithmetic. The MPI library used was FT-MPI. Test matrices were from the Univer-
sity of Florida sparse matrix collection [1]. We chose the matrices among the largest
unsymmetric matrices available in the collection at the time of publication. It turns
out that, for those matrices, GMRES with restart and the block Jacobi preconditioner
converge nicely.

The presented results are simulations of our final goals, but we are still far from
the targeted thousands of processor experiments. However, we want to make clear
that the simulation stops there. The process failures are real. They are simulated
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in the experiments by a forced exit in the process designed to fail. The software
developed could be used on a larger-scale system with real failures.

4.1. Experiment setup. We recall that the recovery is performed in three
phases: Phase I: recover the MPI environment, Phase II: recover the static data,
and Phase III: recover the variable data. The subject of the paper is neither Phase I
nor Phase II; however, we give some clues about our actual implementation choices.

Phase I is based on FT-MPI, and we used the classical approach described in [7].
To recover the matrix A and the right-hand side b, we have chosen to perform

a disk I/O. Since the matrix is stored in a file, this is a rather natural solution. We
changed the original storage format of the matrices. They are not stored on the
Harwell Boeing compressed sparse column format, but rather we preprocessed them
to a compressed sparse row format. Doing this, each processor needs access to a
contiguous part of the file in the disk. At the first reading of the matrix (initialization
of the code), we store the pointers where each processor starts to read the file (we
use the C routine ftell); this part of the initialization is sequential. We spread these
pointers on all the processors. If a failure occurs, at Phase II of the recovery, we first
recover the pointer corresponding to the restarted processor, and then we access the
data in this huge file as if we had one small file for the failed processor (we use the C
routine fseek). Another solution would have been to perform a diskless checkpoint
of the matrix at the initialization. This solution is currently an option of the code we
have, and the performance is similar to disk I/O on our small examples. This subject
is not discussed any further, but it would become an interesting subject when the
number of processors gets larger. If there is a preconditioner (static data), then our
choice is to recompute the lost LU factors (no checkpoint).

For the lossy approach, the local solve is done via UMFPACK Version 4.3 [2,
3, 4, 5]. The default parameters are used. Before going through our main results
in section 4.2, we finish this section by explaining in detail the scenario for a given
matrix. In particular, we will justify technical choices of our implementation.

In the remainder of this section, we will study two diskless checkpointing options.
Namely, the first question is whether we shall perform the checksum in floating-point
arithmetic or in binary arithmetic; and the second question is whether or not it is
advantageous to save scalar products during the algorithm in case of a rollback.

The studied matrix is cage14, and it is of order n = 1, 505, 785 with nnz =
27, 130, 349 nonzero elements. The run is performed on 32 computing processors
(which means that there is a 33rd processor used to store the checkpoint data). The
right-hand side is b = Ax∗, where x∗ is the vector with all ones. The iteration
stops when the iterative method has found an approximate solution x such that ‖b−
Ax‖/‖b‖ ≤ tol, where tol= 10−6. The method is GMRES(30) without preconditioner.
Without failure, this method converges in 13 iterations, and the run takes 15.47s
(see Table 1).

The first experiment consists of the same run but with a failure at iteration 10
of processor 0, and the recovery mode is chkpt R. In this case (see section 2.4), the
chkpt R algorithm performs checkpoints at each restart. Since the failure (iteration
10) is earlier than the first restart (iteration 30), the only checkpoint made is the
one from iteration 0. Thus, when the failure occurs at iteration 10, the algorithm
has to roll back to the last checkpoint, that is, to roll back to iteration 0. And then
it performs the 13 iterations necessary to converge. This explains why it takes 23
iterations for the chkpt R algorithm to converge (see Table 1). The choice of chkpt R
is not appropriate, and one should certainly have performed checkpoints of the vectors



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECOVERY PATTERNS FOR ITERATIVE METHODS 111

Table 1

Comparison of three variants of the checkpoint fault-tolerant algorithms chkpt R with
GMRES(30): chkpt R(1) performs checkpoints in double-precision arithmetic and stores scalar prod-
ucts; chkpt R(2) performs checkpoints in double-precision arithmetic and recomputes scalar prod-
ucts during a rollback; chkpt R(3) performs checkpoints in binary arithmetic and stores scalar
products. Times are given in seconds, and the parameters for the problem are n = 1, 505, 785;
nnz = 27, 130, 349; tol=10−6; # procs = 32; nf = 47, 056; nnzf = 414, 240.

cage14

Recovery iterf # iters TWall
no 13 15.47

Chkpt R(1) 10 23 28.66
Chkpt R(2) 10 23 28.92
Chkpt R(3) 10 23 28.80

at each iteration (chkpt F) in order to have no rollback at the failure (see section 4
to see that chkpt F is more efficient than chkpt R in this example). This example is
good to stress that the optimization of the number of checkpoints versus the rollback
(discussed in section 2.4) is an important issue. In most of the cases, this problem
can be anticipated.

In Table 1, we compare three variants of the chkpt R algorithm. The first variant
uses double-precision arithmetic, the second variant uses binary arithmetic, the third
uses double-precision arithmetic, and the scalar products are recomputed during roll-
back. # iters represents the number of iterations for the algorithm to converge and
TWall the time to solution (in seconds). The detailed timing of the recovery will be
discussed in the next section. The first row of Tables 2–4 give the name of the matrix,
the order (n), the number of nonzero elements (nnz), the tolerance (tol), and the
number of computational processors (# procs). We are considering only one failure,
and for the sake of comparison between the methods, it always happens on the same
processor and at the same iteration. For the local matrix of the failed processor, we
give its order(nf ) and its number of nonzero elements (nnzf ). These two numbers
are representative of the amount of work that we will need to accomplish during a
recovery step. The load balancing among the processors is done by setting ni = n/
(# procs). For our matrices, this proves to equilibrate nnzi well.

From Table 1, we can conclude the following points:
1. At our problem scale, reusing the scalar products does not seem to have

a large effect on the overall time. We expect that this effect will be more
important when the size of the problem or the rollback gets larger. In what
follows, we do not recompute the scalar products at rollback.

2. Using either binary arithmetic or double-precision arithmetic does not seem
to be a big issue. Both arithmetics lead to similar timings. The errors due to
the floating-point arithmetic are not affecting the overall algorithm. In what
follows, the checkpoints are made using the binary arithmetic.

4.2. Experimental results. Seven matrices are tested, and the results for a
given matrix are given in Table 2 (GMRES(30) with block Jacobi preconditioner),
Table 3 (GMRES(30) without preconditioner), and Table 4 (Arnoldi method).

The meaning of the tables is the same as described in section 4.1. Regarding the

Arnoldi method, defining x
(k)
i , the approximate solution of unit norm of the kth eigen-

vector, and λ
(k)
i , the approximate value for the kth eigenvalue, λ

(k)
i = (x

(k)
i )TAx

(k)
i ,

and the eigensolver is stopped at iteration i if ‖Axi − xiλi‖2 ≤ |λi|·tol. Note that
if the algorithm uses checkpoints, the number of processors used is (# procs + 1),
whereas for the lossy variant it is # procs.
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Table 2

Comparison of the checkpoint fault-tolerant algorithm and the lossy fault-tolerant algorithm.
Times are given in seconds.

GMRES(30) with block Jacobi preconditioner
Matrix n nnz tol # procs nf nnzf

fidap035 19, 716 218, 308 10−6 8 2, 465 26, 848
Recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

Lossy no 353 7.38 none
Chkpt R no 353 7.40 0.02

Lossy 150 348 7.95 none −1.04 0.72 0.60 0.04 0.04 0.01
Chkpt R 150 353 7.96 0.02 0.00 0.71 0.60 0.04 0.04 0.00

Matrix n nnz tol # procs nf nnzf
af23560 23, 560 484, 256 10−6 8 2, 945 59, 841
Recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

Lossy no 52 3.23 none
Chkpt R no 52 3.23 0.00

Lossy 30 51 4.30 none −0.06 1.08 0.62 0.09 0.32 0.02
Chkpt R 30 52 4.29 0.00 0.00 1.06 0.63 0.09 0.32 0.00

Matrix n nnz tol # procs nf nnzf
stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
Recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TII,P TIII

Lossy no 18 7.98 none
Chkpt F no 18 8.43 0.52
Chkpt R no 18 8.15 0.00

Lossy 10 18 14.11 none 0.00 5.50 1.05 0.33 3.61 0.35
Chkpt F 10 18 13.65 0.52 none 5.19 1.10 0.33 3.61 0.13
Chkpt R 10 28 16.00 0.00 2.29 5.15 1.11 0.33 3.61 0.01

Table 3

Comparison of the checkpoint fault-tolerant algorithm and the lossy fault-tolerant algorithm.
Times are given in seconds.

GMRES(30) (no preconditioner)
Matrix n nnz tol # procs nf nnzf
stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
Recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TIII

Lossy no 385 38.89 none
Chkpt R no 385 41.04 1.92

Lossy 100 372 42.38 none −1.56 5.38 1.03 0.33 3.91
Chkpt R 100 395 45.49 1.92 2.40 1.68 1.02 0.32 0.20

Lossy 200 374 42.44 none −1.32 5.46 1.02 0.33 3.83
Chkpt R 200 395 47.34 1.92 3.60 1.83 1.02 0.33 0.20

Matrix n nnz tol # procs nf nnzf
cage14 1, 505, 785 27, 130, 349 10−6 32 47, 056 414, 240
Recovery iterf # iters TWall Ttotchkpt Trollback Trecov TI TII,A,b TIII

Lossy no 13 15.47 none
Chkpt F no 13 16.88 1.50
Chkpt R no 13 15.49 0.02

Lossy 10 14 21.36 none 1.19 6.35 2.20 1.56 1.64
Chkpt F 10 13 22.92 1.50 none 5.51 2.20 1.73 1.39
Chkpt R 10 23 28.80 0.02 7.12 4.80 2.20 1.50 0.24

For the different matrices and the different iterative methods, we test the three
recovery modes explained in sections 2.1 and 3: chkpt R, chkpt F, or lossy (whenever
they apply). For the sake of comparison, we also provide failure-free data (with
or without checkpoints).
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Table 4

Comparison of the checkpoint fault-tolerant algorithm and the lossy fault-tolerant algorithm.
Times are given in seconds.

Arnoldi method
Matrix n nnz tol ne bs # procs nf nnzf

fidap035 19, 716 218, 308 10−6 3 3 8 2, 465 26, 848
Recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

Lossy no 69 2.32 none
Chkpt F no 69 2.51 0.19
Lossy 35 83 3.02 none 0.88 0.60 0.03 0.20

Chkpt F 35 69 3.69 0.19 0.88 0.61 0.04 0.23

Matrix n nnz tol ne bs # procs nf nnzf
torso1 116, 158 8, 516, 500 10−6 4 4 16 7, 260 425, 766
Recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

Lossy no 60 16.35 none
Chkpt F no 60 17.28 0.92
Lossy 35 77 23.92 none 3.46 1.08 0.58 1.30

Chkpt F 35 60 21.28 0.92 2.90 1.08 0.56 0.33

Matrix n nnz tol ne bs # procs nf nnzf
cage12 130, 228 2, 032, 536 10−2 5 5 8 16, 279 162, 766
Recovery iterf # iters TWall Ttotchkpt Trecov TI TII,A,b TIII

Lossy no 120 24.28 none
Chkpt F no 120 24.33 0.10
Lossy 65 146 36.02 none 11.55 0.60 0.22 10.43

Chkpt F 65 120 26.31 0.10 1.44 0.90 0.22 0.31

Matrix n nnz tol ne bs # procs nf nnzf
cage13 445, 315 7, 479, 343 10−6 1 1 32 13, 917 112, 831
Recovery iterf # iters TWall Ttotchkpt Trecov TI TII TIII

Lossy no 63 44.11 none
Chkpt F no 63 47.97 3.86
Lossy 30 73 54.89 none 2.72 2.25 0.19 0.48

Chkpt F 30 63 50.15 3.86 2.84 2.06 0.18 0.38

The iteration where the failure occurs is iterf . By default, iterf is set to (roughly)
half of the number of iterations for the scheme without failure. To assess the robust-
ness with respect to the location of iterf , we also present experiments with two failure
locations: one at the first third, the second at the second third. The checkpointing
choices and timing of faults have been chosen so that there is no rollback for chkpt R;
this setup is made to favor the checkpointing methods in order to test the lossy algo-
rithm against the harshest competition. The LU factors of the block diagonals of the
initial matrices used in the block Jacobi preconditioner are computed via UMFPACK
Version 4.3 [2, 3, 4, 5].

Then we give the results:
• the number of iterations to converge (# iters),
• the time to solution (TWall),
• the total time for all the checkpoints (Ttotchkpt),
• the time lost in the rollback (Trollback: for the chkpt F method, there is no

rollback, and so there is none; for the chkpt R method, there is a rollback; for
the lossy approach, if this time is positive, the method with failure performs
more iterations than without, and this quantifies the time spent in those iter-
ations; if this time is negative, the lossy approach improves the convergence),

• the time for the recovery (Trecov: it is the maximum time among all the
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processors of the difference between the time when the code enters the recov-
ery routine and the time when the code exits it),

• the time for Phase I of the recovery (TI: this is the time that it takes for
the system and the FT-MPI library to provide a new MPI environment; we
typically measure it on one of the nonfaulty processors),

• the time for Phase II of the recovery (TII,A,b: the time to do the I/O to recover
A and b; and, if needed, TII,P : the time to compute the preconditioner; we
measure them on the restarted processor),

• and, finally, the time for Phase III of the recovery (TIII: the time to recover
a value on the restarted processor for x; it is measured on the restarted
processor).

All those times are given in seconds.
For all the experiments, we should have the following identities (in theory):

TWall = TWall(lossy) + Ttotchkpt + Trollback + Trecov,

Trecov = TI + TII,A,b + TII,P + TIII.

Although the checkpointing time for the strategy chkpt R is not significant, it
becomes more significant for chkpt F. For example, for the Arnoldi method and
cage12 (see Table 4), the checkpointing time represents up to 8.7% of the method.

For a given number of processors, we observe that the time for Phase I (recovery
of a correct MPI environment) is constant. It is, in fact, proportional to the number
of processors used: 0.60s for eight processors, 1.10s for 16, and 2.00s for 32. The
use of ftell and fseek in the I/O has eliminated the I/O problem. At this point,
recovery of the static data (Phase II) is of the same order of magnitude as Phase I
and Phase III. Phase III consists of recovering the dynamic data. It is either the time
to do a single checkpoint (chkpt R) or several checkpoints (chkpt F) or to solve the
local problem (lossy).

In case of a failure, TI and TII should be the same whether we use a check-
point mechanism or the lossy variant. The time to recover from a failure differs only
from TIII . Our results report times for TI and TII that reflect slight but acceptable
differences among the experiments.

Note that if the preconditioner used is block Jacobi (Table 2), then, for the lossy
algorithm, the burden of the computation of the factorization of the local matrix is
migrated into Phase II (TII,P ).

Even though those problems are small, it is important to note that both fault-
tolerant techniques (checkpoint and lossy) have reached their initial goal. The number
of extra iterations (resp., extra time for solution) for these variants with a fault is
significantly smaller than the total number of iterations (resp., total time for solution).
Therefore our fault-tolerant techniques are much better than restarting from scratch.

Since we lose part of the convergence theory of the initial method, the main
concern with the lossy algorithm is losing the convergence. As claimed in section 3,
we note that, for GMRES(30), the best number of iterations is given for the failed
lossy algorithm, not the algorithm without failure (four cases out of five). So indeed,
the lossy recovery improves the convergence. For Arnoldi, the lossy recovery performs
more iterations than the original algorithm, but this remains reasonable.

We see from the tables that the lossy and the checkpoint methods compare fairly in
terms of time, and, even when one is better than the other, the results are pretty close.

The main cost of the lossy algorithm during the recovery is to perform the LU
factorization of the local submatrix. However, in the case of block Jacobi preconditioned
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GMRES, this LU factorization is needed anyhow. Moreover, in the case of the block
Jacobi preconditioner, the local diagonal blocks are well-conditioned. These two
points make the lossy algorithm very attractive in the block Jacobi preconditioner
case.

5. Conclusions. The lossy technique (at least in the form presented in this
paper) is intended to work on matrices where a block Jacobi preconditioner is appro-
priate. In this paper, only matrices that satisfy this property are presented, and, from
our experience and with no improvements of the technique, it does not generalize to
other matrices. The lossy algorithm has its risks. Despite the theoretical background
given in (3.1) and (3.2), the success of the lossy algorithm is hard to predict (in par-
ticular, the speed of convergence after the recovery). The robust solution is at this
point checkpointing. From a performance point of view, the checkpointing algorithm
performs well, and, for the size of the problem we consider (fewer than 32 processors),
by carefully adapting the checkpoint algorithm to the iterative method, the overhead
remains acceptable.

A major advantage of the lossy algorithm resides in the fact that it enables fault
tolerance with no overhead when there is no failure. We think that, at this early
stage of the implementation of the fault tolerance in end-user codes, it is a convincing
argument. As a consequence, this method can be plugged as an external library for
any existing software without modifications to the code. Another advantage of the
lossy algorithm is that, for sparse matrices, Phase III of the recovery involves only a
small number of processors.

In this paper, we have focused only on the one failure at a time problem (either
for the checkpoint or for the lossy approach). However, our codes are able to deal
with any number of failures, provided they occur separately. Generalizing to deal
with multiple failures at the same time is theoretically not an issue.

For the lossy approach, in the case where we are not using a block Jacobi precondi-
tioner (or for multiple failures at a time), the local solve is performed via UMFPACK
Version 4.3 [2, 3, 4, 5]. This is a sparse direct solver. Another idea is certainly to
perform the local solve via an iterative method. When multiple failures occur si-
multaneously, this alternative is interesting. Also note that using an iterative method
enables us to adjust its stopping criterion since it makes sense to solve the local system
only at the level where the failure has occurred.

We have observed that performing a block Jacobi step between two GMRES cycles
often improves the speed of convergence (in our case always).
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