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SUMMARY

Event tracing is a powerful method for analyzing the performance behavior of parallel applications.
Because event traces record the temporal and spatial relationships between individual runtime events, they
allow application developers to analyze dependences of performance phenomena across concurrent control
flows. However, in view of the large amounts of data generated on contemporary parallel machines, the
depth and coverage of a purely manual analysis is often limited. Our approach automatically searches
event traces for patterns of inefficient behavior, classifies detected instances by category, and quantifies the
associated performance penalty. This enables developers to study the performance of their applications
at a high level of abstraction, while requiring significantly less time and expertise than a manual
analysis. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-performance computing is playing an increasingly critical role in advanced scientific research as
simulation and computation are becoming widely used to augment and/or replace physical experiments.
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However, the gap between peak and achieved performance for scientific applications running on
parallel systems has grown considerably in recent years. The complex architecture of parallel systems
and the interdependence between different components and layers in conjunction with communication
structures imposed by the algorithm, present difficult challenges for the performance optimization of
scientific applications. Tools are needed that collect and present relevant information on application
performance at a high level of abstraction so as to enable developers to easily identify and determine
the causes of performance bottlenecks.

Event tracing is a powerful method for analyzing the performance behavior of parallel applications.
Time-stamped events, such as entering a function or sending a message, are recorded at runtime and
analyzed afterward with the help of software tools. Graphical trace browsers, such as VAMPIR [1] and
Paraver [2], allow the fine-grained investigation of parallel performance behavior using a zoomable
time-line display, as well as providing statistical summaries of communication behavior. Because event
traces record the temporal and spatial relationships between individual runtime events, they allow
application developers to analyze dependences of performance phenomena across concurrent control
flows.

However, in view of the large amounts of data generated on contemporary parallel machines, the
depth and coverage of the visual analysis offered by a browser is limited as soon as it targets more
complex patterns not included in the statistics generated by such tools. In this paper, we present an
alternative to manually scanning the time-line display. Our approach automatically searches event
traces of MPI and OpenMP programs for patterns of inefficient behavior, classifies detected instances
by category, and quantifies the associated performance penalty. This allows developers to study the
performance of their applications at a high level of abstraction, while requiring significantly less time
and expertise than a manual analysis. The abstraction level is achieved through specifying complex
patterns that embody higher-level behavior related to the parallel programming model. Moreover,
using wavefront algorithms as an example, we show that the semantic content of these patterns
can be further increased by correlating their occurrences with performance-critical phases of the
parallelization strategy used in an application. Such phases manifest themselves as another class of
patterns in the event trace and can be recognized using knowledge of virtual adjacency relationships
between individual processes.

Our approach constitutes the core of the KOJAK toolkit [3] and is primarily implemented in
the EXPERT trace analyzer component [4]. EXPERT maps the execution-time penalty caused by
each pattern onto a three-dimensional space consisting of the following hierarchical dimensions:
(i) performance property (i.e. a more general term used instead of ‘performance problem’ that also
includes non-negative performance aspects such as computation), (ii) call path, and (iii) system
resource (e.g. a process). A graphical browser allows a convenient in-depth study of this space at
varying levels of granularity.

The remainder of this document is organized as follows. After considering related work in Section 2,
we give a brief overview of the KOJAK toolkit and explain the basic process of analyzing a trace file
in Section 3. Then, in Section 4, we illustrate how patterns of inefficient execution can be specified
and study the underlying abstraction mechanisms along with a realistic example. The benefits of using
topological knowledge to explain the occurrence of inefficiency patterns in terms of the parallelization
strategy of a program are described in Section 5. Finally, we present a conclusion followed by an
outlook on future work in Section 6.
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2. RELATED WORK

This work is embedded in the ESPRIT/IST working group APART. One of the core results of APART
is the APART Specification Language (ASL) [5], which provides a formal notation to describe
performance properties of parallel applications. A performance property represents a not necessarily
negative aspect of an application’s performance, such as synchronization or computation. In ASL,
performance properties are specified as conditions referencing performance-related data, such as
source-code entities or certain measurements, in a uniform way by means of an object-oriented data
model. A severity expression quantifies a property’s impact on the overall performance, while a
confidence value quantifies the condition’s reliability. The notion of a performance property strongly
influenced EXPERT’s modular architecture, which is based on encapsulating each performance
property for which the search process is looking in a separate C++ class, offering methods to control
its evaluation. Conversely, the EXPERT approach inspired mechanisms in ASL to define performance
properties based on trace data.

Also stimulated by ASL, Fahringer and Seragiotto Júnior [6] designed a language called JavaPSL to
specify performance properties in the Aksum tool based on the Java programming language. In contrast
to EXPERT, which concentrates on compound-event analysis, JavaPSL puts emphasis on the definition
of performance properties based on existing properties (i.e. by defining metaproperties) using advanced
concepts of the Java language, such as polymorphism, abstract classes, and reflection.

Fürlinger et al. [7] created another ASL-inspired tool called Periscope that conducts on-line
performance analysis based on a hierarchical network of agents transforming lower-level information
stepwise into higher-level information.

KappaPI 2 by Jorba et al. [8] searches trace files of message-passing applications for patterns
very similar to those used in our approach. A distinctive feature of KappaPI is that it generates
recommendations on how to improve the performance using knowledge of bottleneck use cases in
combination with source-code analysis.

Vetter [9] automatically identified wait states in MPI point-to-point communication based on
machine learning techniques. He traced individual message-passing operations and then classified
each individual communication event using a decision tree. The decision tree has been previously
trained by microbenchmarks that demonstrate both efficient as well as inefficient performance behavior.
As opposed to this approach, EXPERT draws conclusions from the temporal relationships of individual
events in a platform-independent way that does not require any training prior to analysis.

An alternative approach to describing complex event patterns was devised by Bates. The proposed
Event Definition Language (EDL) [10] focuses on specifying incorrect behavior of distributed systems.
It allows compound events to be defined in a declarative manner based on extended regular expressions,
where primitive events are clustered to higher-level events using certain formation operators. However,
EDL’s suitability for compound events that are associated with some kind of state, such as those
targeted by EXPERT, is limited.

The multidimensional hierarchical decomposition of the search space for performance problems
has a long tradition. Miller et al. [11] developed the W 3 Search Model as the basis for the on-line
performance-analysis performed by Paradyn. The W 3 model describes performance behavior in a space
spawned by the dimensions of performance problem, program resource, which may also include the
call graph, and time. Performance problems are expressed in terms of a threshold and one or more
metrics such as CPU time, blocking time, message rates, I/O rates, or number of active processors.
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The different metrics can be specified in a flexible manner using the metric-description language
(MDL). The main accomplishment of EXPERT in contrast to Paradyn is the description of performance
problems in terms of complex event patterns that go beyond counter-based metrics. Also, the uniform
mapping of arbitrary performance behavior onto fractions of the overall execution time allows the
correlation of different behavior in a single view.

Topological knowledge has been used to highlight certain aspects of parallel performance.
For example, Ahn and Vetter [12] mapped counter data onto the virtual topology of the SWEEP3D
benchmark to identify clusters of related behavior by statistical means. Also, topological knowledge
has proven to be beneficial for semantic debugging of parallel applications. Huband and McDonald
describe a trace-based debugger called DEPICT that exploits topological information to identify
processes with logically similar behavior in traces of MPI applications and to display semantic
differences among these groups [13]. The comparison is based on the order and number of events.
Furthermore, DEPICT’s ability to automatically identify the virtual topology using graph-distance
measures is also of interest to our work.

3. THE KOJAK TOOLKIT

KOJAK is an automatic performance evaluation system for MPI, OpenMP, SHMEM, and hybrid
applications written in C/C++ or Fortran. KOJAK generates event traces from running applications
and automatically searches them off-line for execution patterns indicating inefficient performance
behavior. KOJAK is jointly developed by Forschungszentrum Jülich, Germany, and the University
of Tennessee, U.S.A. Figure 1 gives an overview of KOJAK’s architecture, its components, and the
overall process of analyzing a trace file. The process involves three major parts: (i) a semi-automatic
multi-level instrumentation of the user application, (ii) the execution on the target platform, and (iii) the
automatic analysis of the generated trace file.

The component mainly responsible for trace generation is the EPILOG runtime system. Event traces
generated by EPILOG capture: MPI point-to-point, collective, and one-sided communication; OpenMP
parallelism change, parallel constructs, and synchronization; and SHMEM one-sided and collective
communication. In addition, data from hardware counters accessed using the PAPI library [14] can be
recorded as part of the event traces. To make measurements with the EPILOG system, the application
must be instrumented at specific points to activate EPILOG library calls. These points usually include
the entries and exits of various code regions, such as functions, OpenMP constructs, and MPI calls.

The automatic instrumentation of the user code is supported in three different ways, depending
on the availability of certain compilers and third-party tools: (i) using a compiler-supplied profiling
interface, (ii) using TAU [15], or (iii) using DPCL [16]. In addition, the user is free to instrument
arbitrary user regions manually by placing POMP directives after the entry point and before all exit
points. The POMP directives are later processed by OPARI [17], which is also responsible for the
automatic instrumentation of OpenMP constructs. MPI functions are instrumented fully automatically
by interposing a wrapper library.

During execution, the instrumented code generates several trace files, one for each process or
thread. Execution time overheads ranging between about 1 and 10% have been reported in Wolf [18].
After termination, the local traces are merged into a single global trace file. In the absence of a global
clock, time stamps are synchronized off-line using a linear interpolation between offset measurements
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Figure 1. KOJAK architecture.

taken during the program start and program termination, maintaining the correct logical event order to
a certain degree. If this is not sufficient, the correct causal order can be reestablished based on logical
clocks [19].

After the postprocessing has been completed, the global trace is subjected to an off-line analysis
performed by KOJAK’s EXPERT component, which attempts to identify specific performance
properties. Internally, EXPERT represents performance properties in the form of execution patterns that
model inefficient behavior. These patterns are used during the analysis process to recognize, classify,
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and quantify inefficient behavior in the application. The performance properties addressed by EXPERT
include inefficient use of the parallel programming models MPI and OpenMP as well as low CPU and
memory performance. The analysis process automatically transforms the traces into a compact call-
path profile that includes the execution time penalties caused by the different patterns. Section 4 covers
the pattern analysis in more detail.

The call-path profile can be viewed using the CUBE performance browser (Figure 5). CUBE
is a generic tool for displaying a multidimensional performance space consisting of the following
dimensions: (i) performance property, (ii) call path, and (iii) system resource. Each dimension is
represented as a tree browser that can be collapsed or expanded to achieve the desired level of
granularity or specialization. The tree browsers are coupled such that the penalty caused by a
particular performance property can be broken down by call path and process or thread. An algebra
utility [20] supports the comparison of analysis results between different experiments (e.g. to verify
optimizations).

In addition, the automatic analysis can be combined with manual time-line analysis using VAMPIR
or Paraver to investigate the context of the previously identified patterns in more detail. For this
purpose, KOJAK includes appropriate trace-format conversion utilities.

4. PATTERN ANALYSIS

The central idea behind the KOJAK approach is to identify performance properties by searching
event traces recorded during execution for patterns of inefficient behavior. This permits the use
of the following techniques: (i) classifying the behavior that leads to a performance degradation,
and (ii) quantifying its impact on the overall performance. The particular way EXPERT specifies
these patterns internally enables us to capture very complex situations not covered by the previously
mentioned trace-visualization tools or by typical profiling tools.

EXPERT specifies patterns as compound events. A compound event is a set of events appearing in
the trace file that satisfy conditions related to a specific performance problem. These conditions are
expressed in terms of an event model suitable for describing the execution of a parallel program.
The execution of a program, as represented by an event trace, is modeled as a chronologically
sorted sequence of events representing actions relevant to the purpose of the observation. Actions of
interest are: the sending and receiving of point-to-point messages; entering and exiting different types
of code regions, such as user functions, OpenMP constructs, and MPI (collective) operations; and
synchronization operations, such as acquiring and releasing OpenMP locks. Each action is represented
by a different event type. The basic structure of the event trace along with the applied event-type system
is called the basic event model.

4.1. Abstraction mechanisms

As the compound events targeted by our analysis often involve complex inter-event relationships
referring to certain aspects of the execution state, such as message queues between different locations
or call stacks for single locations, the basic event model is not convenient to describe the corresponding
patterns as the only relationship explicitly provided at this level is the global temporal order within the
accuracy bounds of the time synchronization.
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To be better able to express complex relationships among the constituents of a compound event, the
basic event model has been enhanced by adding higher-level abstractions defined on top of the basic
event model. The abstractions offered by the enhanced event model are implemented in the EARL
trace access layer [21], which is a class library used by EXPERT during the pattern search to access
the trace file (Figure 1, above EXPERT). The main purpose of EARL is to simplify the specification
of execution patterns representing performance properties within the EXPERT analyzer and, thus, to
allow the easy extension and customization of the pattern base used in the analysis process. As opposed
to a raw trace file that allows reading individual event records only in a sequential manner, EARL offers
random access to individual events and two different categories of abstractions: (i) state sequences, and
(ii) pointer attributes.

State sequences reflect different aspects of the program’s overall execution state. The overall
execution state consists of a set of (component) states, each of which represents one aspect of the
overall state, such as call stacks or message queues. EARL models each component state as a set of
events. These sets are stepwise transformed by the sequence of events making up the trace file. That is,
an event causes a state transition altering the event set representing the component state by either
removing elements and/or adding itself to the set. Thus, for every component state, an event trace
defines a state sequence. The initial state is always the empty set. Transition rules define how a state
is transformed by an event into its successor state. For example, EARL maintains a message queue for
every pair of processes. The initial queue is empty. Whenever a send event occurs it is added to the
queue, and whenever a receive event occurs the corresponding send event is removed from the queue.
Note that the event set representing this component state derives its queue structure from the implicit
ordering of events. Other state sequences describe MPI collective communication, OpenMP parallel
operations, and lock synchronization, region stacks, and the call tree.

Pointer attributes are event attributes that refer to another related event. For example, receive events
provide an attribute called sendptr that points to the corresponding send event. The implementation of
pointer attributes makes use of state sequences. Other pointer attributes connect matching enter and
exit events, link actions on the same lock, and encode call-path information. For a detailed formal
definition of the state sequences and pointer attributes provided by EARL, the reader may refer to
Wolf [18]. A comprehensive documentation of EARL can be found in Bhatia and Wolf [21].

4.2. Compound events

To analyze an application’s performance behavior during a program run, EXPERT walks sequentially
through the trace file and tries to match the patterns that have been previously specified in the form
of compound events. To illustrate how compound events are specified and detected, Figure 2 shows
the time-line view of a situation called late sender. Process A waits for a message from process B
that is sent a significant time after the receive operation has been started. Therefore, most of the
time consumed by the receive operation of process A is actually idle time that could be used more
effectively. EXPERT recognizes this pattern by waiting for a receive event to appear in the event
stream. After capturing such an event, EXPERT follows pointer attributes computed by EARL (dashed
lines in Figure 2) to the enter events of the two communication operations to determine the temporal
displacement between these two events (idle time in Figure 2).

Conceptually, a compound event specification consists of three parts: (i) a root declaration, (ii) an
instantiation part, (iii) constraints, and (iv) a severity expression. Whenever EXPERT encounters
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Figure 2. Time-line view of the late-sender compound event.

an instance of the root event type specified in the root declaration, it stops and tries to match the
specified compound event. This matching involves two phases. The first phase consists of locating the
remaining constituents using state information and pointer attributes, as specified in the instantiation
part. The second phase is optional and includes checking additional constraints that need to be satisfied
in order to qualify for a match.

A specification of the late-sender situation is given in Figure 3 in a pseudo notation. The instantiation
starts at the root event (r), which must be a receive event, and follows pointer attributes to identify the
remaining constituents (s, e1, e2). The pointer attributes involved are sendptr, which points from a
receive event to the corresponding send event, and enterptr, which points to the enter event on the
top of the call stack (i.e. the enter event of the current region instance). The constraints require the
communication operations to be of synchronous type with the receive operation being posted earlier
than its sending counterpart. Finally, the severity expression calculates the associated execution-time
penalty (i.e. the waiting time).

Internally, compound event specifications are written as C++ or Python classes that provide call-
back methods to be called upon occurrence of specific event types (root declaration) in the event
stream. At present, we maintain two versions of the analyzer: one in C++ for ease of installation
and performance and one in Python for design studies. A pattern class registers a call-back method
for the root event type, whose instances are later provided as an argument to this method. When being
called, the method body performs the instantiation of the compound event along with an optional
constraint check. As a result of the trace-access model provided by EARL, the code of the call-back
methods can be kept simple by using expressions very similar to the pseudo notation shown in Figure 3.
The simplicity is derived from the fact that all higher-level abstractions, such as execution states and
links between related events, are expressed in terms of event sets or event references, thus never leaving
the familiar notion of an event.

Revisiting the late-sender situation depicted in Figure 2 in the context of the other message sent from
process C to A leads to the conclusion that the late-sender pattern could have been avoided or at least
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ROOT
RECV r;

INSTANTIATION
s := r.sendptr;
e1 := r.enterptr;
e2 := s.enterptr;

CONSTRAINT
e1.region = MPI Recv ∧
e2.region = MPI Send ∧
e1.time < e2.time

SEVERITY
e2.time – e1.time

Figure 3. Formal specification of late sender.

alleviated by reversing the acceptance order of these two messages. As the message from C is sent
earlier than that from B, it will in all probability have reached process A earlier. So instead of waiting
for the message from B, A could have used the time better by accepting the message from C first.
The late-sender pattern in this context is called late-sender/wrong-order. EXPERT recognizes this
situation by examining the execution state computed by EARL at the moment when A receives the
message from B. It inspects the queue of messages (i.e. their send events) sent to A and checks whether
there are older messages than the message that has just been received. In the figure, the queue would
contain the event of sending the message from C to A.

As our example suggests, the patterns recognized by EXPERT are organized in a specialization
hierarchy, as shown in Figure 4, with patterns referring to rather general performance properties at the
top and more specific properties at the bottom. There are two types of patterns: (i) simple profiling
patterns (white) aggregating the time spent in certain MPI calls or code regions, and (ii) patterns
describing complex inefficiency situations (gray) usually described by more complex compound events
(e.g. late sender in point-to-point communication or synchronization delay before all-to-all operations).
There are complex patterns defined for MPI-1, MPI-2, SHMEM, and OpenMP. A description of the
patterns supported so far can be found in [18,22]. Hardware-counter readings are merely aggregated
and can be considered as a special case of profiling patterns augmenting the time-based metrics [23].

With the exception of hardware-counter patterns, each pattern calculates a (call path, location)
matrix containing the time incurred by the application as a result of a specific property in a particular
(call path, location) pair, where a location is a process or thread. Thus, EXPERT maps the (performance
property, call path, location) space onto the losses caused by a particular performance property, while
the program was executing in a particular call path at a particular location. After finishing the analysis,
the mapping is written to a file and can be viewed using the CUBE display tool.

Figure 5 shows the results for an MPI application called TRACE [24], which simulates the
subsurface water flow in variably saturated porous media. The application was executed with
32 processes on a Linux cluster with eight Pentium III Xeon (550 MHz) 4-way nodes. To reduce
the size of the trace file, the instrumentation of user functions was restricted to the main solver routine
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Figure 5. Performance results for MPI application TRACE.

parallelcg() and a function responsible for exchanging buffer contents used inside and outside
the main solver (exchangedata()).

Almost 8% (4.4% + 3.5%) of the overall execution time was spent waiting in a late-sender situation
caused by exchangedata(), and a little less than half of it can be attributed to the main solver’s
operation. However, when executing not on behalf of parallelcg(), exchangedata() called
the receive operation only a few times, pointing to a small number of larger late-sender instances. Also,
a significant fraction of the overall late-sender time (3.5% of execution time) could be classified as the
more specialized wrong-order pattern.

To ensure efficiency and allow for more compact pattern specifications, the search process
takes advantage of the specialization relationships existing between different patterns in a stepwise
refinement process [4]. Pattern classes register not only for primitive events, i.e. events as they appear in
the event stream, but also register for compound events detected by others and publish compound events
that they themselves detect. Transferred to our example, the simple late-sender class publishes all
pattern instances it detects. Conversely, the class describing the combined situation late-sender/wrong-
order registers for these instances and then, upon receiving such an instance, only needs to check the
message queue, as described previously. The benefit is twofold: a more compact specification, as the
late-sender part of the pattern specification need not to be repeated, and a reduction of work because
the matching of the simple late-sender is performed only once.

EXPERT is designed in a modular fashion, separating the pattern specifications from the actual
analysis process. Internally, the semantics of individual pattern classes are hidden behind a common
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class interface, which makes it easy to modify existing patterns or to extend the current pattern base, for
example in order to integrate application-specific patterns, a feature beneficially utilized in Section 5.

5. VIRTUAL TOPOLOGIES

In many parallel applications, each process (or thread) communicates only with a limited number
of other processes. For example, a simulation modeling the spread of pollutants in the environment
might decompose the overall simulation domain into smaller pieces and assign each of them to a
single process. Given this distribution, a process would then only communicate with processes owning
subdomains adjacent to its own. The mapping of data onto processes and the neighborhood relationship
resulting from this mapping is called a virtual topology. In general, a virtual topology is specified
as a graph. Many applications use Cartesian topologies, such as two- or three-dimensional grids.
Virtual topologies can include processes or threads, depending on the programming model being
used. We argue that topological knowledge can help identify performance problems more effectively,
especially as many parallel algorithms are parameterized in terms of a virtual topology and this
topology often influences the order in which certain computations are performed.

In Section 4, we demonstrated that automatic pattern analysis in event traces can help generate
high-level feedback on an application’s performance. We identified wait states, i.e. intervals during
which a process has to wait (e.g. for a message to arrive), recognizable by temporal displacements
between individual events across multiple control flows but without utilizing any information on
logical adjacency between processes or threads. We now show that enriching the information contained
in event traces with topological knowledge significantly raises the abstraction level of the feedback
returned. In particular, we demonstrate that topological information permits the use of the following
techniques: (i) identifying higher-level events related to distinct phases of the parallelization scheme
applied in an application in order to refine the present classification of wait states targeted by our
pattern analysis, and (ii) exposing correlations of these wait states with the topological characteristics
of affected processes by visually mapping their severity onto the virtual topology.

As an example, we show correlations between late-sender instances and certain phases in wavefront
algorithms, a popular parallelization scheme used to solve particle transport problems. KOJAK has
recently been made capable of recording topological information as part of the event trace and of
visualizing the severity of the analyzed behaviors in a topological display [25]. To keep this extension
simple, we restricted ourselves to Cartesian topologies as a common case found in many of today’s
parallel applications.

The benchmark code SWEEP3D [26] is an MPI program performing the core computation of a
real ASCI application. It calculates the flux of neutrons through each cell of a three-dimensional grid
(i, j, k) along several possible directions (angles) of travel. The angles are split into eight octants, each
corresponding to one of the eight directed diagonals of the grid. To exploit parallelism, SWEEP3D
maps the (i, j ) planes of the three-dimensional domain onto a two-dimensional grid of processes.
The parallel computation follows a pipelined wavefront process that propagates data along diagonal
lines through the grid. Figure 6 shows the data-dependence graph for a 3 × 3 grid. The long arrows
symbolize data dependencies, while diagonal lines cut through algorithmically independent processes
and represent the computation as it progresses in the form of ‘wavefronts’ from the lower left to
the upper right corner (short arrows). The actual direction of the wavefront is determined by the
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Figure 6. SWEEP3D wavefront propagation.

particular angle or octant being processed at a given moment. The code initiates wavefronts from all
four corners of the two-dimensional grid of processes. The wavefronts are pipelined to enable multiple
wavefronts to follow each other along the same direction simultaneously. Performance models of
wavefront processes, in particular as they appear in SWEEP3D, have been extensively studied [27,28].
With EXPERT we analyze the characteristics of wavefront communication from an experimental
viewpoint with an emphasis on wait states resulting from the data dependencies illustrated in Figure 6.

Although parallel operation in SWEEP3D can be very efficient once the pipeline is filled, the
opportunity for parallelism is limited whenever the direction of the wavefront changes and the pipeline
has to be refilled, although the algorithm allows for some overlap between pipelines in different
directions. SWEEP3D uses MPI Recv() calls that are likely to block whenever the pipeline is refilled
and the calling process is distant from the pipeline’s origin. This phenomenon is a specific instance of
the late-sender pattern discussed earlier.

To investigate this type of behavior, we extended the pattern base normally used by our EXPERT
analysis tool and added four patterns describing the occurrence of late-sender instances at the moment
of a pipeline direction change (i.e. a refill), one pattern for each direction (i.e. South-West, North-
West, North-East, and South-East). The direction change is recognized by maintaining a first-in-first
out queue for every process that records the directions of messages received. For this purpose, the
direction of every message is calculated using topological information. Since the wavefronts propagate
along diagonal lines, as depicted in Figure 6, each wavefront direction has a horizontal as well as a
vertical component, involving messages in two different orthogonal directions. We therefore need to
consider two potential wait states at the moment of a direction change, each resulting from one of the
two direction components. However, special attention has to be paid to processes located at the border
of the grid (Figure 6). Because they have a smaller number of neighbors, their inbound as well as their
outbound communication may be restricted to one direction only, depending on their position relative
to the wavefront propagation.

To validate our design, we chose a problem size of 512 × 512 × 150 grid points and ran the
application with 64 processes on a Solaris cluster equipped with UltraSPARC-III 750 MHz processors.
The topology was recorded with minimum effort by manually inserting two EPILOG API calls into
the module responsible for the domain decomposition. If the application had used MPI topology
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Figure 7. Distribution of late-sender wait states as a result of pipeline refill from the North-West.

support, it would have even been recored completely automatically by appropriate PMPI wrapper
functions. The total time spent in late-sender wait states was 25.4%. Late-sender instances observed
simultaneously with a pipeline direction change account for about 60% of the overall late-sender
time. The times measured for individual directions vary between 6.0% of total execution time for
pipeline refill from the North-West and 1.7% for refill from the North-East. Figure 7 shows the CUBE
topology view rendering the distribution of late-sender times for pipeline refill from the North-West
(i.e. upper left corner). The colors are assigned relative to the maximum and minimum wait times for
this particular pattern. As can be seen, the corner reached by the wavefront last incurs most of the
waiting times, whereas processes closer to the origin of the wavefront incur less.

This experiment demonstrates that with only minimal user intervention it is possible to automatically
highlight a performance problem related to the parallelization scheme applied in SWEEP3D. Manual
instrumentation of the direction change is not required. Note that our patterns do not make any
assumption about the specifics of the computation performed, and should therefore be applicable to
a broad range of wavefront applications. Moreover, although the current implementation applies to
wavefront processes based on a two-dimensional domain decomposition, we expect that it can be
easily adapted to a three-dimensional decomposition by considering wavefronts propagating along
three orthogonal direction components instead of two.

6. CONCLUSION

Because many performance problems of parallel applications involve behavioral dependencies between
concurrent control flows, trace analysis is an effective way of identifying undesired wait states that
are not obvious without considering temporal and spatial relationships between runtime events across
different processes and threads. Automating this process and providing high-level feedback on an
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application’s performance can increase programmer productivity and reduce the time taken to obtain
the solution by reducing both development time and execution time.

We have shown that by selecting appropriate abstraction mechanisms, complex performance
problems can be specified as patterns in a way that allows the automatic recognition of problem
instances in event traces. Using this method, we have found evidence of wait states resulting from
an inefficient use of the parallel programming model in real applications. Moreover, such wait states
can be correlated with distinct phases of the parallelization strategy applied in a program by utilizing
knowledge of the virtual process topology. The modular design of our detection tool allowed us
to easily extend the base of predefined patterns and to demonstrate this correlation for wavefront
algorithms using algorithm-specific patterns.

While our approach gives automatic performance feedback on a significantly higher level than
traditional tools, its dependence on the collection of trace files constrains its scalability on present
and future architectures consisting of thousands of processors. Therefore, our future research in this
area will focus on using selective instrumentation to record only relevant sections of program execution
and on applying parallel and distributed approaches to the processing and reduction of trace data.
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