
Design and

Implementation of the

HPC Challenge

Benchmark Suite

Piotr Luszczek,

University of Tennessee

Jack Dongarra,

University of Tennessee,

Oak Ridge National

Laboratory

Jeremy Kepner, MIT

Lincoln Lab

November 2006 A

Introduction

The HPCC benchmark suite was initially developed for the DARPA's HPCS program
1
 to

provide a set of standardized hardware probes based on commonly occurring computational

software kernels. The HPCS program has initiated a fundamental reassessment of how we define

and measure performance, programmability, portability, robustness and, ultimately, productivity

in the high-end domain. Consequently, the suite was aimed to both provide conceptual

expression of the underlying computation as well as be applicable to a broad spectrum of

computational science fields. Clearly, a number of compromises must have lead to the current

form of the suite given such a broad scope of design requirements. HPCC was designed to

approximately bound computations of high and low spatial and temporal locality (see Figure 1

which gives the conceptual design space for the HPCC component tests). In addition, because the

HPCC tests consist of simple mathematical operations, this provides a unique opportunity to look

at language and parallel programming model issues. As such, the benchmark is to serve both the

system user and designer communities
2
.

Finally, Figure 2 shows a generic memory subsystem and how each level of the hierarchy is

tested by the HPCC software and what are the design goals of the future HPCS system - these are

the projected target performance numbers that are to come out of the wining HPCS vendor

designs.

http://www.ctwatch.org/index.html

Figure 1. The application areas targeted by

the HPCS Program are bound by the HPCC

tests in the memory access locality space.

Figure 2. HPCS program benchmarks and

performance targets.

The TOP500 Influence

Table 1. All of the top-10 entries of the 27th TOP500 list that have results in the HPCC database.

Rank Name Rmax HPL PTRANS STREAM FFT RANDA Latency Bandwidth

1 BlueGene/L 280.6 259.2 4665.9 160 2311 35.47 5.92 0.16

2 BlueGene W 91.3 83.9 171.5 50 1235 21.61 4.70 0.16

3 ASC Purple 75.8 57.9 553.0 44 842 1.03 5.11 3.22

4 Columbia 51.9 46.8 91.3 21 230 0.25 4.23 1.39

9 Red Storm 36.2 33.0 1813.1 44 1118 1.02 7.97 1.15

The most commonly known ranking of supercomputer installations around the world is the

TOP500 list
3
. It uses the equally famous LINPACK Benchmark

4
 as a single figure of merit to

rank 500 of the worlds most powerful supercomputers. The often raised issue of the relation

between TOP500 and HPCC can simply be addressed by recognizing all the positive aspects of

the former. In particular, the longevity of TOP500 gives an unprecedented view of the high-end

arena across the turbulent times of Moore's law
5
 rule and the process of emerging of today's

prevalent computing paradigms. The predictive power of TOP500 will have a lasting influence in

the future as it did in the past. While building on the legacy information, HPCC extends the

context of the HPCS goals and can serve as a valuable tool for performance analysis. Table 1

shows an example of how the data from the HPCC database can augment the TOP500 results.

Short History of the Benchmark

The first reference implementation of the code was released to the public in 2003. The first

optimized submission came in April 2004 from Cray using their recent X1 installation at Oak

Ridge National Lab. Every since then Cray has championed the list of optimized submissions.

By the time of the first HPCC birds-of-feather at the 2004 Supercomputing conference in

Pittsburgh, the public database of results already featured major supercomputer makers - a sign

http://www.ctwatch.org/quarterly/figures/8/article3-figure1.gif
http://www.ctwatch.org/quarterly/figures/8/article3-figure2.gif

that vendors noticed the benchmark. At the same time, a bit behind the scenes, the code was also

tried by government and private institutions for procurement and marketing purposes. The

highlight of 2005 was the announcement of a contest: the HPCC Awards. The two

complementary categories of the competition emphasized performance and productivity - the

very goals of the sponsoring HPCS program. The performance-emphasizing Class 1 award drew

attention to the biggest players in the supercomputing industry, which resulted in populating the

HPCC database with most of the top-10 entries of TOP500 (some of which even exceeding

performance reported in the TOP500 - a tribute to HPCC's continuous results' update policy).

The contestants competed to achieve highest raw performance in one of the four tests: HPL,

STREAM, RANDA, and FFT. The Class 2 award, by solely focusing on productivity, introduced

subjectivity factor to the judging but also to the submitter criteria of what is appropriate for the

contest. As a result, a wide range of solutions were submitted spanning various programming

languages (interpreted and compiled) and paradigms (with explicit and implicit parallelism). It

featured openly available as well as proprietary technologies, some of which were arguably

confined to niche markets and some that are widely used. The financial incentives for entering

turned out to be all that was needed, as the HPCC seemed to have enjoyed enough recognition

among the high-end community. Nevertheless, HPCwire kindly provided both press coverage as

well as cash rewards for four winning contestants of Class 1 and the winner of Class 2. At the

HPCC's second birds-of-feather session during the SC|05 conference in Seattle, the former class

was dominated by IBM's BlueGene/L from Lawrence Livermore National Lab while the latter

was split among MTA pragma-decorated C and UPC codes from Cray and IBM, respectively.

The Benchmark Tests' Details

Figure 3. Detail description of the HPCC component tests (A,

B, C - matrices, a, b, c, x, z – vectors, α, β - scalars, T - array of

64-bit integers).

Figure 4. Testing scenarios of

the HPCC components.

http://www.ctwatch.org/quarterly/figures/8/article3-figure3.gif
http://www.ctwatch.org/quarterly/figures/8/article3-figure4.gif

Extensive discussion and various implementations of the HPCC tests are given elsewhere
6

7

8
.

However, for the sake of completeness, this section lists the most important facts pertaining to

the HPCC tests' definitions.

All calculations use double precision floating-point numbers as described by the IEEE 754

standard
9
 and no mixed precision calculations

10
 are allowed. All the tests are designed so that

they will run on an arbitrary number of processors (usually denoted as p). Figure 3 shows a more

detailed definition of each of the seven tests included in HPCC. In addition, it is possible to run

the tests in one of three testing scenarios to stress various hardware components of the system.

The scenarios are shown in Figure 4.

Benchmark Submission Procedures and Results

Figure 5. Sample kiviat diagram of results for

three different interconnects that connect the

same processors.

Figure 6. Sample interpretation of the HPCC

results.

The reference implementation of the benchmark may be obtained free of charge at the

benchmark's web site
11

. The reference implementation should be used for the base run: it is

written in portable subset of ANSI C
12

 using hybrid programming model that mixes OpenMP
13

14

 threading with MPI
15

16

17

 messaging. The installation of the software requires creating a

script file for Unix's make(1) utility. The distribution archive comes with script files for many

common computer architectures. Usually, few changes to one of these files will produce the

script file for a given platform. The HPCC rules allow only standard system compilers and

libraries to be used through their supported and documented interface and the build procedure

should be described at submission time. This ensures repeatability of the results and serves as an

educational tool for end users that wish to use the similar build process for their applications.

After, a successful compilation the benchmark is ready to run. However, it is recommended that

changes be made to the benchmark's input file that describes the sizes of data to use during the

run. The sizes should reflect the available memory on the system and the number of processors

available for computations.

There must be one baseline run submitted for each computer system entered in the archive. There

may also exist an optimized run for each computer system. The baseline run should use the

reference implementation of HPCC and, in a sense, it represents the scenario when an application

requires use of legacy code - a code that can not be changed. The optimized run allows

http://www.ctwatch.org/quarterly/figures/8/article3-figure5.gif
http://www.ctwatch.org/quarterly/figures/8/article3-figure6.gif

developers to perform more aggressive optimizations and use system-specific programming

techniques (e.g., languages, messaging libraries, etc.) but at the same time still gives the

verification process enjoyed by the base run.

All of the submitted results are publicly available after they have been confirmed by email. In

addition to the various displays of results and raw data export the HPCC website also offers a

kiviat chart display to visually compare systems using multiple performance numbers at once. A

sample chart that uses actual HPCC results' data is shown in Figure 5.

Figure 6 show performance results of currently operating clusters and supercomputer

installations. Most of the results come from the HPCC public database.

Scalability Considerations

Table 2. Time complexity formulas for various phases of the HPCC tests (m and n correspond to

the appropriate vector and matrix sizes, p is the number of processors.

Name Generation Computation Communication Verification Per-processor data

HPL n
2
 n

3
 n

2
 n

2
 p

-1

DGEMM n
2
 n

3
 n

2
 1 p

-1

STREAM m m 1 m p
-1

PTRANS n
2
 n

2
 n

2
 n

2
 p

-1

RandomAccess m m m m p
-1

FFT m mlog2m m mlog2m p
-1

b_eff 1 1 p
2
 1 1

There are a number of issues to be considered for benchmarks such as HPCC that have scalable

input data to allow for an arbitrary sized system to be properly stressed by the benchmark run.

Time to run the entire suite is a major concern for institutions with limited resource allocation

budgets. Each component of HPCC has been analyzed from the scalability standpoint and Table

2 shows the major time complexity results. In following, it is assumed that:

 M is the total size of memory,

 m is the size of the test vector,

 n is the size of the test matrix,

 p is the number of processors,

 t is the time to run the test.

Clearly any complexity formula that grows faster than linearly with respect to any of the system

sizes is a cause of potential problem time scalability issue. Consequently, the following tests

have to be addressed:

 HPL because it has computational complexity O(n
3
).

 DGEMM because it has computational complexity O(n
3
).

 b_eff because it has communication complexity O(p
2
).

The computational complexity of HPL of order O(n
3
) may cause excessive running time because

the time will grow proportionately to a high power of total memory size:

To resolve this problem, we have turned to the past TOP500 data and analyzed the ratio of Rpeak

to the number of bytes for the factorized matrix for the first entry on all the lists. It turns out that

there are on average 6±3 Gflop/s for each matrix byte. We can thus conclude that the

performance rate of HPL remains constant over time (rHPL ~ M), which leads to:

that is much better than (1).

There seems to be a similar problem with the DGEMM as it has the same computational

complexity as HPL but fortunately, the n in the formula related to a single process memory size

rather than the global one and thus there is no scaling problem.

Lastly, the b_eff test has a different type of problem: its communication complexity is O(p
2
)

which is already prohibitive today as the number of processes of the largest system in the HPCC

database is 131072. This complexity comes from the ping-pong component of b_eff that attempts

to find the weakest link between all nodes and thus, theoretically, needs to look at the possible

process pairs. The problem was remedied in the reference implementation by adapting the

runtime of the test to the size of the system tested.

Conclusions

No single test can accurately compare the performance of any of today's high-end systems let

alone any of those envisioned by the HPCS program in the future. Thus, the HPCC suite stresses

not only the processors, but the memory system and the interconnect. It is a better indicator of

how a supercomputing system will perform across a spectrum of real-world applications. Now

that the more comprehensive HPCC suite is available, it could be used in preference to

comparisons and rankings based on single tests. The real utility of the HPCC benchmarks are

that architectures can be described with a wider range of metrics than just flop/s from HPL.

When looking only at HPL performance and the TOP500 list, inexpensive build-your-own

clusters appear to be much more cost effective than more sophisticated parallel architectures. But

the tests indicate that even a small percentage of random memory accesses in real applications

can significantly affect the overall performance of that application on architectures not designed

to minimize or hide memory latency. The HPCC tests provide users with additional information

to justify policy and purchasing decisions. We expect to expand and perhaps remove some

existing benchmark components as we learn more about the collection.

This work was supported in part by the DARPA, NSF, and DOE through the DARPA HPCS

program under grant FA8750-04-1-0219 and SCI-0527260.

1
 Kepner, J. “HPC productivity: An overarching view,” International Journal of High

Performance Computing Applications, 18(4), November 2004.
2
 Kahan, W. “The baleful effect of computer benchmarks upon applied mathematics, physics and

chemistry,” The John von Neumann Lecture at the 45th Annual Meeting of SIAM, Stanford

University, 1997.
3
 Meuer, H. W., Strohmaier, E., Dongarra, J. J., Simon, H. D. TOP500 Supercomputer Sites, 28th

edition, November 2006. (The report can be downloaded from

http://www.netlib.org/benchmark/top500.html).
4
 Dongarra, J. J., Luszczek, P., Petitet, A. “The LINPACK benchmark: Past, present, and future,”

Concurrency and Computation: Practice and Experience, 15:1-8, 2003.
5
 Moore, G. E. “Cramming more components onto integrated circuits,” Electronics, 38(8), April

19 1965.
6
 Dongarra, J., Luszczek, P. “Introduction to the HPC Challenge benchmark suite,” Technical

Report UT-CS-05-544, University of Tennessee, 2005.
7
 Luszczek, P., Dongarra, J. “High performance development for high end computing with

Python Language Wrapper (PLW),” International Journal of High Perfomance Computing

Applications, 2006. Accepted to Special Issue on High Productivity Languages and Models.
8
 Travinin, N., Kepner, J. “pMatlab parallel Matlab library,” International Journal of High

Perfomance Computing Applications, 2006. Submitted to Special Issue on High Productivity

Languages and Models.
9
 ANSI/IEEE Standard 754-1985. “Standard for binary floating point arithmetic,” Technical

Report, Institute of Electrical and Electronics Engineers, 1985.
10

 Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., Dongarra, J. “Exploiting the

performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy,” In Proceedings of

SC06, Tampa, Florida, Nomveber 11-17 2006. See http://icl.cs.utk.edu/iter-ref .
11

 HPCC - http://icl.cs.utk.edu/hpcc/
12

 Kernighan, B. W., Ritchie, D. M.. The C Programming Language. Prentice-Hall, 1978.
13

 OpenMP: Simple, portable, scalable SMP programming. http://www.openmp.org/ .
14

 Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers, 2001.
15

 Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard,” The

International Journal of Supercomputer Applications and High Performance Computing, 8,

1994.
16

 Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1),

1995. Available at: http://www.mpi-forum.org/ .
17

 Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, 18

July 1997. Available at http://www.mpi-forum.org/docs/mpi-20.ps .

URL to article: http://www.ctwatch.org/quarterly/articles/2006/11/design-and-implementation-

of-the-hpc-challenge-benchmark-suite/

http://www.ctwatch.org/quarterly/articles/2006/11/design-and-implementation-of-the-hpc-challenge-benchmark-suite/index.html
http://www.ctwatch.org/quarterly/articles/2006/11/design-and-implementation-of-the-hpc-challenge-benchmark-suite/index.html

