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Introduction 

The HPCC benchmark suite was initially developed for the DARPA's HPCS program 
1
 to 

provide a set of standardized hardware probes based on commonly occurring computational 

software kernels. The HPCS program has initiated a fundamental reassessment of how we define 

and measure performance, programmability, portability, robustness and, ultimately, productivity 

in the high-end domain. Consequently, the suite was aimed to both provide conceptual 

expression of the underlying computation as well as be applicable to a broad spectrum of 

computational science fields. Clearly, a number of compromises must have lead to the current 

form of the suite given such a broad scope of design requirements. HPCC was designed to 

approximately bound computations of high and low spatial and temporal locality (see Figure 1 

which gives the conceptual design space for the HPCC component tests). In addition, because the 

HPCC tests consist of simple mathematical operations, this provides a unique opportunity to look 

at language and parallel programming model issues. As such, the benchmark is to serve both the 

system user and designer communities 
2
. 

Finally, Figure 2 shows a generic memory subsystem and how each level of the hierarchy is 

tested by the HPCC software and what are the design goals of the future HPCS system - these are 

the projected target performance numbers that are to come out of the wining HPCS vendor 

designs. 

http://www.ctwatch.org/index.html


 
Figure 1. The application areas targeted by 

the HPCS Program are bound by the HPCC 

tests in the memory access locality space. 

 
Figure 2. HPCS program benchmarks and 

performance targets. 

The TOP500 Influence 

Table 1. All of the top-10 entries of the 27th TOP500 list that have results in the HPCC database. 

Rank Name Rmax HPL PTRANS STREAM FFT RANDA Latency Bandwidth 

1  BlueGene/L  280.6  259.2  4665.9  160  2311  35.47  5.92  0.16  

2  BlueGene W  91.3  83.9  171.5  50  1235  21.61  4.70  0.16  

3  ASC Purple  75.8  57.9  553.0  44  842  1.03  5.11  3.22  

4  Columbia  51.9  46.8  91.3  21  230  0.25  4.23  1.39  

9  Red Storm  36.2  33.0  1813.1  44  1118  1.02  7.97  1.15  

The most commonly known ranking of supercomputer installations around the world is the 

TOP500 list 
3
. It uses the equally famous LINPACK Benchmark 

4
 as a single figure of merit to 

rank 500 of the worlds most powerful supercomputers. The often raised issue of the relation 

between TOP500 and HPCC can simply be addressed by recognizing all the positive aspects of 

the former. In particular, the longevity of TOP500 gives an unprecedented view of the high-end 

arena across the turbulent times of Moore's law 
5
 rule and the process of emerging of today's 

prevalent computing paradigms. The predictive power of TOP500 will have a lasting influence in 

the future as it did in the past. While building on the legacy information, HPCC extends the 

context of the HPCS goals and can serve as a valuable tool for performance analysis. Table 1 

shows an example of how the data from the HPCC database can augment the TOP500 results. 

Short History of the Benchmark 

The first reference implementation of the code was released to the public in 2003. The first 

optimized submission came in April 2004 from Cray using their recent X1 installation at Oak 

Ridge National Lab. Every since then Cray has championed the list of optimized submissions. 

By the time of the first HPCC birds-of-feather at the 2004 Supercomputing conference in 

Pittsburgh, the public database of results already featured major supercomputer makers - a sign 
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that vendors noticed the benchmark. At the same time, a bit behind the scenes, the code was also 

tried by government and private institutions for procurement and marketing purposes. The 

highlight of 2005 was the announcement of a contest: the HPCC Awards. The two 

complementary categories of the competition emphasized performance and productivity - the 

very goals of the sponsoring HPCS program. The performance-emphasizing Class 1 award drew 

attention to the biggest players in the supercomputing industry, which resulted in populating the 

HPCC database with most of the top-10 entries of TOP500 (some of which even exceeding 

performance reported in the TOP500 - a tribute to HPCC's continuous results' update policy). 

The contestants competed to achieve highest raw performance in one of the four tests: HPL, 

STREAM, RANDA, and FFT. The Class 2 award, by solely focusing on productivity, introduced 

subjectivity factor to the judging but also to the submitter criteria of what is appropriate for the 

contest. As a result, a wide range of solutions were submitted spanning various programming 

languages (interpreted and compiled) and paradigms (with explicit and implicit parallelism). It 

featured openly available as well as proprietary technologies, some of which were arguably 

confined to niche markets and some that are widely used. The financial incentives for entering 

turned out to be all that was needed, as the HPCC seemed to have enjoyed enough recognition 

among the high-end community. Nevertheless, HPCwire kindly provided both press coverage as 

well as cash rewards for four winning contestants of Class 1 and the winner of Class 2. At the 

HPCC's second birds-of-feather session during the SC|05 conference in Seattle, the former class 

was dominated by IBM's BlueGene/L from Lawrence Livermore National Lab while the latter 

was split among MTA pragma-decorated C and UPC codes from Cray and IBM, respectively. 

The Benchmark Tests' Details 

 
Figure 3. Detail description of the HPCC component tests (A, 

B, C - matrices, a, b, c, x, z – vectors, α, β - scalars, T - array of 

64-bit integers). 

 
Figure 4. Testing scenarios of 

the HPCC components. 
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Extensive discussion and various implementations of the HPCC tests are given elsewhere 
6
 
7
 
8
. 

However, for the sake of completeness, this section lists the most important facts pertaining to 

the HPCC tests' definitions. 

All calculations use double precision floating-point numbers as described by the IEEE 754 

standard 
9
 and no mixed precision calculations 

10
 are allowed. All the tests are designed so that 

they will run on an arbitrary number of processors (usually denoted as p). Figure 3 shows a more 

detailed definition of each of the seven tests included in HPCC. In addition, it is possible to run 

the tests in one of three testing scenarios to stress various hardware components of the system. 

The scenarios are shown in Figure 4. 

Benchmark Submission Procedures and Results 

 
Figure 5. Sample kiviat diagram of results for 

three different interconnects that connect the 

same processors.  

 
Figure 6. Sample interpretation of the HPCC 

results. 

The reference implementation of the benchmark may be obtained free of charge at the 

benchmark's web site 
11

. The reference implementation should be used for the base run: it is 

written in portable subset of ANSI C 
12

 using hybrid programming model that mixes OpenMP 
13

 
14

 threading with MPI 
15

 
16

 
17

 messaging. The installation of the software requires creating a 

script file for Unix's make(1) utility. The distribution archive comes with script files for many 

common computer architectures. Usually, few changes to one of these files will produce the 

script file for a given platform. The HPCC rules allow only standard system compilers and 

libraries to be used through their supported and documented interface and the build procedure 

should be described at submission time. This ensures repeatability of the results and serves as an 

educational tool for end users that wish to use the similar build process for their applications. 

After, a successful compilation the benchmark is ready to run. However, it is recommended that 

changes be made to the benchmark's input file that describes the sizes of data to use during the 

run. The sizes should reflect the available memory on the system and the number of processors 

available for computations. 

There must be one baseline run submitted for each computer system entered in the archive. There 

may also exist an optimized run for each computer system. The baseline run should use the 

reference implementation of HPCC and, in a sense, it represents the scenario when an application 

requires use of legacy code - a code that can not be changed. The optimized run allows 

http://www.ctwatch.org/quarterly/figures/8/article3-figure5.gif
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developers to perform more aggressive optimizations and use system-specific programming 

techniques (e.g., languages, messaging libraries, etc.) but at the same time still gives the 

verification process enjoyed by the base run. 

All of the submitted results are publicly available after they have been confirmed by email. In 

addition to the various displays of results and raw data export the HPCC website also offers a 

kiviat chart display to visually compare systems using multiple performance numbers at once. A 

sample chart that uses actual HPCC results' data is shown in Figure 5. 

Figure 6 show performance results of currently operating clusters and supercomputer 

installations. Most of the results come from the HPCC public database. 

Scalability Considerations 

Table 2. Time complexity formulas for various phases of the HPCC tests (m and n correspond to 

the appropriate vector and matrix sizes, p is the number of processors. 

Name Generation Computation Communication Verification Per-processor data 

HPL  n
2
 n

3
 n

2
 n

2
 p

-1
 

DGEMM n
2
 n

3
 n

2
 1  p

-1
 

STREAM  m m 1  m  p
-1

 

PTRANS  n
2
 n

2
 n

2
 n

2
 p

-1
 

RandomAccess m  m  m  m  p
-1

  

FFT  m  mlog2m  m  mlog2m  p
-1

  

b_eff  1  1  p
2
  1  1  

There are a number of issues to be considered for benchmarks such as HPCC that have scalable 

input data to allow for an arbitrary sized system to be properly stressed by the benchmark run. 

Time to run the entire suite is a major concern for institutions with limited resource allocation 

budgets. Each component of HPCC has been analyzed from the scalability standpoint and Table 

2 shows the major time complexity results. In following, it is assumed that: 

 M is the total size of memory, 

 m is the size of the test vector, 

 n is the size of the test matrix, 

 p is the number of processors, 

 t is the time to run the test. 

Clearly any complexity formula that grows faster than linearly with respect to any of the system 

sizes is a cause of potential problem time scalability issue. Consequently, the following tests 

have to be addressed: 

 HPL because it has computational complexity O(n
3
). 

 DGEMM because it has computational complexity O(n
3
). 

 b_eff because it has communication complexity O(p
2
). 



The computational complexity of HPL of order O(n
3
) may cause excessive running time because 

the time will grow proportionately to a high power of total memory size: 

 

To resolve this problem, we have turned to the past TOP500 data and analyzed the ratio of Rpeak 

to the number of bytes for the factorized matrix for the first entry on all the lists. It turns out that 

there are on average 6±3 Gflop/s for each matrix byte. We can thus conclude that the 

performance rate of HPL remains constant over time (rHPL ~ M), which leads to: 

 

that is much better than (1). 

There seems to be a similar problem with the DGEMM as it has the same computational 

complexity as HPL but fortunately, the n in the formula related to a single process memory size 

rather than the global one and thus there is no scaling problem. 

Lastly, the b_eff test has a different type of problem: its communication complexity is O(p
2
) 

which is already prohibitive today as the number of processes of the largest system in the HPCC 

database is 131072. This complexity comes from the ping-pong component of b_eff that attempts 

to find the weakest link between all nodes and thus, theoretically, needs to look at the possible 

process pairs. The problem was remedied in the reference implementation by adapting the 

runtime of the test to the size of the system tested. 

Conclusions 

No single test can accurately compare the performance of any of today's high-end systems let 

alone any of those envisioned by the HPCS program in the future. Thus, the HPCC suite stresses 

not only the processors, but the memory system and the interconnect. It is a better indicator of 

how a supercomputing system will perform across a spectrum of real-world applications. Now 

that the more comprehensive HPCC suite is available, it could be used in preference to 

comparisons and rankings based on single tests. The real utility of the HPCC benchmarks are 

that architectures can be described with a wider range of metrics than just flop/s from HPL. 

When looking only at HPL performance and the TOP500 list, inexpensive build-your-own 

clusters appear to be much more cost effective than more sophisticated parallel architectures. But 

the tests indicate that even a small percentage of random memory accesses in real applications 

can significantly affect the overall performance of that application on architectures not designed 

to minimize or hide memory latency. The HPCC tests provide users with additional information 

to justify policy and purchasing decisions. We expect to expand and perhaps remove some 

existing benchmark components as we learn more about the collection. 

This work was supported in part by the DARPA, NSF, and DOE through the DARPA HPCS 

program under grant FA8750-04-1-0219 and SCI-0527260. 
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