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Abstract

The purpose of GridSolve is to create the middleware
necessary to provide a seamless bridge between the sim-
ple, standard programming interfaces and desktop sys-
tems that dominate the work of computational scientists
and the rich supply of services supported by the emerging
Grid architecture, so that the users of the former can eas-
ily access and reap the benefits (shared processing, stor-
age, software, data resources, etc.) of using the latter. In
addition to supporting a diverse set of hardware, such
as desktop computers, clusters, and massively parallel
computers, Grid middleware may need to interact with the
software managing those systems, such as Condor,
LAPACK for Clusters (LFC), and batch queues. Further-
more, user requests may be characterized in different
ways (parameter sweep, task graph, etc.), each with dif-
ferent requirements. This diversity has led us to imple-
ment scheduling in different layers of GridSolve with the
understanding that a strategy for scheduling and resource
allocation is an essential part of realizing the vision of
transparent Grid computing. In this paper we discuss
some of these scheduling mechanisms and some of the
possible interactions with external systems such as LFC
and Condor.
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1 Introduction

The emergence of Grid computing as the prototype of a
next-generation cyber infrastructure for science has gen-
erated high expectations for its potential as an accelerator
of discovery. However, it has also raised questions about
whether and how the broad population of research profes-
sionals, who must be the foundation of such productivity,
can be motivated to adopt this new and more complex
infrastructure. The rise of the new era of scientific mode-
ling and simulation has, after all, been precipitous, and
many science and engineering professionals have only
recently become comfortable with the relatively simple
world of the uniprocessor workstations and desktop sci-
entific computing tools. In that world, software packages
such as Matlab and Mathematica represent general-pur-
pose scientific computing environments that enable users
(totaling more than a million worldwide) to solve a wide
variety of problems through flexible user interfaces that
can model in a natural way the mathematical aspects of
many different problem domains. Moreover, the ongoing,
exponential increase in the computing resources supplied
by the typical workstation makes these scientific comput-
ing environments more and more powerful, and thereby
tends to reduce the need for the kind of resource sharing
that represents a major strength of Grid computing. Cer-
tainly, there are various forces now urging collaboration
across disciplines and distances, and the burgeoning Grid
community, which aims to facilitate such collaboration,
has made significant progress in mitigating the well-
known complexities of building, operating, and using dis-
tributed computing environments. However, it 18 unreal-
istic to expect the transition of research professionals to
the Grid to be anything but halting and slow if it means
abandoning the scientific computing environments that
they rightfully view as a major source of their productivity.
The GridSolve project addresses this difficult problem
directly. The purpose of GridSolve is to create the mid-
dleware necessary to provide a seamless bridge between
the simple, standard programming interfaces and desktop
systems that dominate the work of computational scien-
tists and the rich supply of services supported by the
emerging Grid architecture, so that the users of the former
can easily access and reap the benefits (shared processing,
storage, software, data resources, etc.) of using the latter.
This vision of the broad community of scientists, engi-
neers, research professionals and students, working with
the powerful and flexible tool set provided by their famil-
iar desktop computing environment, and yet able to easily
draw on the vast, shared resources of the Grid for unique
or exceptional resource needs, or to collaborate inten-
sively with colleagues in other organizations and loca-
tions, is the vision that GridSolve is designed to realize.
To that end, GridSolve employs NetSolve (Amold et al.
2002) as one of its primary enabling technologies. Net-
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Fig. 1 Overview of NetSolve.

Solve is a client-agent—server system which provides
remote access to hardware and software resources through
a variety of client interfaces.

A NetSolve system consists of three entities, as illus-
trated in Figure 1.

« The “client”, which needs to execute some remote pro-
cedure call. In addition to C and Fortran programs, the
NetSolve client may be an interactive problem solving
environment (PSE) such as Matlab or Mathematica.

» The “server” executes functions on behalf of the clients.
The server hardware can range in complexity from a
uniprocessor to an MPP system and the functions exe-
cuted by the server can be arbitrarily complex. Server
administrators can straightforwardly add their own
function services without affecting the rest of the Net-
Solve system.

» The “agent” is the focal point of the NetSolve system.
It maintains a list of all available servers and performs
resource selection for client requests as well as ensur-
ing load balancing of the servers.

In practice, from the user’s perspective the mechanisms
employed by NetSolve make the remote procedure call
fairly transparent. However, behind the scenes, a typical
call to NetSolve involves several steps, as follows.

1. The client queries the agent for an appropriate
server that can execute the desired function.

2. The agent returns a list of available servers, ranked
in order of suitability.

3. The client attempts to contact a server from the list,
starting with the first and moving down through
the list. The client then sends the input data to the
server.

4. Finally, the server executes the function on behalf
of the client and returns the results.

In addition to providing the middleware necessary to
perform the brokered remote procedure call, GridSolve
aims to provide mechanisms to interface with other exist-
ing Grid services. This can be done by having a client that
knows how to communicate with various Grid services
or by having servers that act as proxies to those Grid
services. NetSolve provides some support for the proxy
server approach, while the client-side approach would be
supported by the emerging GridRPC standard API (Sey-
mour et al. 2002). We briefly discuss these two approaches
here.

Normally the GridSolve server executes the actual serv-
ice request itself, but in some cases 1t can act as a proxy to
other services such as Condor. The primary benefit is that
the client-to-server communication protocol is identical,
so the client does not need to be aware of every possible
back-end service. A server proxy also allows aggregation
and scheduling of resources, such as the machines in a
cluster, on one GridSolve server. We discuss this in more
detail in Section 2.4.

The GridRPC API represents ongoing work to standard-
ize and implement a portable and simple remote procedure
call (RPC) mechanism for Grid computing. This stand-
ardization effort is being pursued through the Global Grid
Forum Research Group on Programming Models (http://
www.gridforum.org/7_APM/APS.htm). The initial work on
GridRPC reported in Seymour et al. (2002) shows that
client access to existing Grid computing systems such as
NetSolve and Ninf (Nakada, Sato, and Sekiguchi (1999)
can be unified via a common API, a task that has proven
to be problematic in the past. In its current form, the C
API provided by GridRPC allows the source code of cli-
ent programs to be compatible with different Grid serv-
ices, provided that service implements a GridRPC API.

The combination of these technologies will allow Grid-
Solve to provide seamless client access to a diverse set of
Grid services. Since GridSolve encompasses NetSolve
and to avoid confusion, we hereafter only use the term
GridSolve.

2 Scheduling in GridSolve

In this section we discuss several approaches to schedul-
ing that have been implemented in the GridSolve 2.0 dis-
tribution.



for all servers S; that can provide the desired service
T1(S;) = estimated amount of time for computation on §;
T>(S;) = estimated time for communicating input and output data
T(S;) = T1(S;) + Ix(S;) estimated total time using §;
select the server S,, which has the minimum time, where T(S,)= min T'(S;)Vi

Fig.2 Minimum Completion Time algorithm.

2.1 Agent-Based Scheduling

In agent-based scheduling, the agent uses knowledge of
the requested service, information about the parameters
of the service request from the client, and the current
state of the resources to score the possible servers and
return the servers in sorted order.

When a service is started, the server informs the agent
about services that it provides and the computational
complexity of those services. This complexity is expressed
using two integer constants a and b and is evaluated as
aN”, where N is the size of the problem. At startup, the
server notifies the agent about its computational speed
(approximate MFlops from a simple benchmark) and it
continually updates the agent with information about its
workload. The bandwidth and latency of communication
between the server and the agent are also monitored, and
are used as an estimate of the communication capacity
between the client and server. When an agent receives a
request for a service with a particular problem size, it uses
the problem complexity and the server status information
to estimate the time to completion on each server provid-
ing that service. It orders the servers in terms of time to
completion, and then returns the list of servers to the cli-
ent. The client then sends the service request to the fastest
server. If that fails for some reason, the client can submit
the service request to the next fastest service, thus provid-
ing a basic level of fault tolerance. This scheduling heu-
ristic, summarized in Figure 2, is known as Minimum
Completion Time and it works well in many practical
cases. Each service request should be assigned to the server
that would complete the service in the minimum time,
assuming that the currently known loads on the servers
will remain constant during the execution.

To evaluate the effectiveness of this form of load balanc-
ing, we submit 16 DGEMM (matrix multiply) requests to a
GridSolve grid with a varying number of active servers.
The servers run on a cluster of dual processor 933 MHz
Pentium 3 machines and the agent and client run else-
where on the network. As Figure 3 illustrates, when more

servers are present the GridSolve agent can balance the
load among the available servers resulting in lower over-
all execution time. The scalability is not perfect since
adding servers only reduces the total computational cost,
not the communication cost.

However, the Minimum Completion Time heuristic
does not try to maximize the throughput when servers are
allowed to run multiple services and there are many more
requested services than available servers. Since an esti-
mate of the execution time for currently executing serv-
ice is available, this knowledge could be used to schedule
new service requests more intelligently. Some explora-
tions of alternative scheduling heuristics using historical
execution trace information in are described in Caniou
and Jeannot (2004).

2.2 Request Sequencing

As the size of data sets increases, the ability to specify the
flow of data becomes more important. It would be ineffi-
cient to force intermediate results to be transmitted back
and forth between the client and servers when those results
will not be used again on the client and are needed at the
server during the future steps of the computation. Our aim
in “request sequencing” is to decrease network traffic
between client and server components in order to decrease
overall request response time. Our design ensures that (i)
no unnecessary data are transmitted and (i1) all necessary
data are transferred. This is accomplished by performing
a data flow analysis of the input and output parameters of
every request in the sequence to produce a directed acy-
clic graph (DAG) that represents the tasks and their exe-
cution dependences. This DAG is then sent to a server in
the system where it is scheduled for execution.

In the current version of request sequencing, the Grid-
Solve agent assigns the entire sequence to a single server.
The server is selected based on the sum of the predicted
run times of all the tasks. We execute a node if all its
inputs are available and there are no conflicts with its out-
put parameters. Because the only mode of execution we
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Fig. 3 GridSolve load balancing with agent-based scheduling.

currently support is using a single GridSolve server, Grid-
Solve is prevented from exploiting any parallelism inher-
ent in the task graph. However, distributing independent
tasks to different machines makes the scheduling and data
management more important (and complicated) than in
the single server scenario. This limitation would also be a
problem when no single server has all the software required
to execute the entire sequence. Therefore, we will need to
extend the GridSolve scheduling and execution infrastruc-
ture to make more efficient use of the available resources
when executing a sequenced request.

As a simple demonstration to show the effectiveness of
request sequencing, we submit a sequence of three Grid-
Solve requests, each dependent on the results of the pre-
vious request: DGEMM = DLACPY = DGEMM. DGEMM i8
a matrix multiply routine and DLACPY copies a matrix.
Because of the sequential nature of this task graph, even
when multiple servers are available, the tasks cannot exe-

Number of Machines in the Grid

5 6 ¥ 8

cute in parallel. Using the same machines as in the previous
experiment, submitting this sequence as three individual
requests took 4.43 s on average, while submitting it as
one sequence only took 3.07 s. Of course, if the task graph
contained some inherent parallelism, using a non-sequenced
series of requests would allow us to execute on multiple
machines, possibly closing the performance gap. How-
ever, the difference in performance depends on the amount
of parallelism that we could exploit and the communica-
tion overhead that we would avoid by using request
sequencing.

2.3 Task Farming in Gridsolve

“Task farming” represents an important class of distrib-
uted computing applications, where multiple independent
tasks are executed to solve a particular problem. Many
algorithms fit into this framework, for example, parame-



Using standard non-blocking GridSolve API
requestsl = netslnb{’igsort{)’,sizel, ptrl,sortl);
requests2 = netslnb(’igsort()’,size2, ptr2,sortl);

requests200 = netslnb(’igsort()’,size200, ptr200,sorted200);
for each request probe for completion with netslpr()
for each request wait for results using netslwt()

Using task farming API

int sizearray[200];

void *ptrarray[200];

void *sortedarray[200];
sizearray[0] = sizel;
ptrarray[0] = ptrl;
sortedarray[0] = sortedl;

statusarray = netsl_farm("i=0,199","igsort()",
ns_int_array(sizearray,"$i"), ns_ptr_array(ptrarray,"$i"),

ns_ptr_array (sortedarray, "$1"));

Fig. 4 Task farming example. An integer quicksort routine is implemented using standard non-blocking calls (top)
and then converted to using the task farming interface (bottom).

ter-space searches, Monte Carlo simulations and genome
sequence matching. This class of applications is highly
suited to Grid computing; however, scheduling task
farming applications efficiently can be difficult since the
resources in a Grid may be highly variable and the tasks
may take different amounts of time.

Without using a special task farming API, a naive
algorithm could be implemented by using the standard
GridSolve interface and letting the GridSolve agent handle
the scheduling. A user would make a series of non-block-
ing requests, probe to see if the requests have completed,
and then wait to retrieve the results from completed
requests. However, this leads to problems with regard to
scheduling, especially if the number of tasks is much larger
than the number of servers. Alternatively, the user could
try to handle the details of scheduling, but this solution
requires a knowledge of the system that is not easily
available to the user, and it ignores the GridSolve goal of
ease-of-use.

In order to provide an efficient and easy to use inter-
face to task farming, GridSolve implements a special APIL.

In the farming interface, the user converts the parameters
for requests into an arrays of parameters, indexed by an
iterator string. Figure 4 shows an example of the task farm-
ing interface. The task farming API only adds four calls to
GridSolve: three calls for constructing arrays of different
data types, and one call for the actual farming. More
details about the API can be found in the Users Guide
to GridSolve (Arnold et al. 2002).

One problem with the current task farming API is that it
only returns when the all the tasks have been completed.
That is, it does not allow the user to obtain results when a
subset of the tasks have been completed, so the user can-
not visualize, guide or cancel during the execution. These
are things that we are working to address in the current
development version of GridSolve.

2.4 Server-Based Scheduling

Part of the GridSolve philosophy is to provide easy and
transparent interfaces to access and reuse existing soft-
ware solutions. In line with this, GridSolve provides mech-



GridSolve
Client

Upload data Download Solution

Submit problem

Download data

Upload Solution

GridSolve
Server

GridSolve
Server

#————_—‘

{ GridSolve-LFC Server\

JE ¢, ... .

U UL

\ Cluster 7

h-———--f

Fig. 5 GridSolve with LFC.

anisms to provide interfaces to alternative scheduling and
execution systems.

In the server-based approach to scheduling, GridSolve
creates server-proxies to delegate the scheduling to
specialized scheduling and execution services such as
batch systems, Condor or LAPACK for Clusters (LFC).
The GridSolve agent sees the server-proxy as a single
server entity, even though the server-proxy can represent
a large number of actual resources, and so the proxy han-
dles the scheduling for these resources, rather than the
GridSolve agent.

The GridSolve agent can decide to send the service
request to a server-proxy based on several factors (e.g. the
proxy can register itself with the agent as a virtual server
with a large amount of processing power). The server-proxy
will delegate the request to the specialized service (e.g.
Condor), which schedules and executes the request. The
server-proxy then returns the results back to the client.

2.4.1 LAPACK for Clusters The integration of LFC
(Chen et al. 2003) into the GridSolve system gives the
GridSolve system the ability to access clusters more effi-
ciently. Tt allows the GridSolve user to access LFC soft-
ware, which attempts to optimally use the resources of the
cluster, via C and Matlab programming interfaces.

The LEC software developed at the University of Ten-
nessee, Knoxville, exposes a serial, single processor user
interface, but delivers computing power achievable by
running the same problem in parallel on a set of resources
of a cluster. It allows the user to call LFC routines from a
serial environment, addresses computational time and space
complexity issues and maps the problem into a parallel
environment if it is possible to execute the problem in less
time in parallel.

Figure 5 illustrates how the GridSolve system utilizes
cluster resources through LFC. One of the machines in
the cluster is chosen to be the specialized GridSolve-LFC
server-proxy. When this specialized server is started, it
runs a benchmark on the cluster and reports the computa-
tional power and workload information to the GridSolve
agent. At present, we use the sum of KFlops of all the
machines of the cluster to represent the computational
power of the cluster, but this can be refined to make the
GridSolve scheduler more intelligent. The LFC server-
proxy also updates the GridSolve agent with changes in
workload and communication costs on the cluster at reg-
ular intervals.

The GridSolve user, who wants to solve a problem,
prepares the input data and uploads the data into a remote
network storage using the Internet Backplane Protocol



(IBP; Bassi et al. 2003) API. IBP is middleware for man-
aging and using remote storage. Handles for accessing the
uploaded data are returned from IBP to the user. The
GridSolve user then submits the problem to the GridSolve
system. The GridSolve agent uses the problem size and
complexity of the problem to determine the computa-
tional cost of the problem. It chooses the best available
server for solving the problem based on the available serv-
ers. and their computational power, workload and com-
munication costs. If the problem request is sent to the
GridSolve-LFC specialized server, it makes a LFC routine
call to schedule the problem on the best subset of resources
of the cluster, The details of parallelizing the user’s prob-
lem, selecting the parallel algorithm to be used, resource
discovery, selection, allocation, downloading the data
from the IBP depot using the IBP handles, and mapping
the data onto the working cluster of processors are han-
dled by the LFC software. LFC executes the desired serv-
ice and writes the solution into the IBP network storage
depot. The user downloads the solution from the network
storage using IBP handles.

GridSolve users can use C and Matlab programming
interfaces to submit problems to the GridSolve-LFC spe-
cialized server. In future, these interfaces will be extended
to include Fortran, Mathematica and Octave.

2.4.2 Condor and Condor-G Condor (Thain and Livny
2003) provides a high-throughput environment for running
compute-intensive jobs. Condor includes a job queuing
mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management. Condor-G (Frey
et al. 2002) is an implementation of Condor which is inter-
operable with resources in a Globus (Foster and Kessel-
man 1997) environment.

A server-proxy has been developed to enable a Grid-
Solve client to send a service request to a resource pool that
is managed by Condor or Condor-G. The server-proxy must
be part of the Condor pool itself. The server-proxy takes the
service-request, creates files containing the input parame-
ters, and creates a Condor command file which will execute
the desired service. The command file is submitted to the
Condor job manager, which handles the details of schedul-
ing and executing the service-request on the appropriate set
of resources in the Condor pool. In the case of Condor-G,
a Globus job manager must be specified by the proxy.

Figure 6 shows the interaction between GridSolve and
Condor-G. In the figure, a GridSolve server-proxy, which
is part of the Condor pool, makes all the services on that
server available as remote Grid services. The GridSolve
client user does not need to have Globus certificates to
access those services. However, the service provider needs
to enable the server-proxy to execute service requests on
the Globus resources by providing the server-proxy with
valid Globus credentials (e.g. the service provide can issue
a grid-proxy-init for the proxy-server). The server-proxy
can grant or deny client access by using standard GridSolve
access control mechanisms that use Kerberos. When a
job is submitted to Condor-G server, a temporary submit
description file similar to the following will be prepared
by the server as shown in Figure 7.

Fig. 6 GridSolve with Condor-G.



executable = homes/user/GridSolve/bin/i686_pc_linux_gnu/service-lapack_subset
globusscheduler = machine03.cs.utk.edu/jobmanager

universe = globus
output = condor.out
error = condor.error

arguments = 0 /homes/user/GridSolve/bin/i686._pc._linux_gnu

queue

Fig. 7 GridSolve’s Condor-G submit file.

The globusscheduler command is dependent on
the scheduling software available on remote resource.
This required command should be changed based on the
Grid resource intended for execution of the job. The Con-
dor-G job is then submitted to the Globus universe. The
GridSolve server issues condor_submit to submit the
job for execution on Globus resources. After the job is
finished on remote machines, the server-proxy will col-
lect the results and send them back to the client.

Similar to GridSolve’s request sequencing, Condor
(Thain and Livny 2003) has a metascheduler called DAG-
Man (Directed Acyclic Graph Manager; http://www.cs.
wisc.edu/condor/dagman), which can be used to facilitate
data flow between requests. The user creates a DAGMan
input file which describes the dependences and other infor-
mation about the requests and submits it to Condor for
scheduling. While GridSolve has the capability to submit
single jobs to Condor, it would be useful to extend this
capability to allow submitting sequenced requests. Since
GridSolve already builds a DAG internally (in its own for-
mat) it should be feasible for GridSolve to create a DAG-
Man input file and submit the entire sequence. This would
provide the various GridSolve clients with an easy way to
submit sequenced requests to resources managed by Condor.

3 Extensions to GridSolve

Over time, many enhancements have been made to Grid-
Solve to extend its functionality or to address various lim-
itations including task farming, request sequencing, and
security. However, some desirable enhancements cannot
be easily implemented within the current GridSolve frame-
work. Thus, our ongoing work on GridSolve involves rede-
signing the framework from the ground up to address some
of these new requirements.

Based on our experience developing GridSolve, we
have identified several requirements that are not adequately

addressed in the current GridSolve system. These new
requirements, coupled with the requirements for the orig-
inal GridSolve system, will form the basis for the next
generation of GridSelve.

The overall goal is to address three general problems:
ease of use, interoperability, and scalability. Improving ease
of use primarily refers to improving the process of integrat-
ing user code and libraries into a GridSolve server. Inter-
operability encompasses several facets, including better
handling of different network topologies, better support
for parallel libraries and parallel architectures, and better
interaction with other Grid computing systems such as
Globus (Foster and Kesselman 1997) and Ninf (Nakada,
Sato, and Sekiguchi 1999). Scalability in the context used
here means that system performance does not degrade as
a result of adding components or increasing the number
of requested services in the GridSolve system.

In this section we describe some of the specific solu-
tions to the general problems discussed above.

3.1 Network Address Translators

As the rapid growth of the Internet began depleting the
supply of IP addresses, it became evident that some imme-
diate action would be required to avoid complete IP
address depletion. The IP Network Address Translator
(NAT; Egevang and Francis 1994) is a short-term solu-
tion to this problem. Network address translation presents
the same external IP address for all machines within a pri-
vate subnet, allowing reuse of the same IP addresses on
different subnets, thus reducing the overall need for unique
IP addresses.

As beneficial as NATs may be in alleviating the demand
for TP addresses, they pose many significant problems to
developers of distributed applications such as GridSolve
(Moore 2002). Some of the problems as they pertain to
GridSolve are that IP addresses may not be unique, IP



address-to-host bindings may not be stable, hosts behind
the NAT may not be contactable from outside, and NATS
may increase network failures.

To address these issues we have developed a new com-
munications framework for GridSolve. To avoid prob-
lems related to potential duplication of IP addresses, the
GridSolve components will be identified by a globally
unique identifier specified by the user or generated ran-
domly. In a sense, the component identifier is a network
address that is layered on top of the real network address
such that a component identifier is sufficient to uniquely
identify and locate any GridSolve component, even if the
real network addresses are not unique. This is somewhat
similar to a machine having an IP address layered on top
of its MAC address in that the protocol to obtain the MAC
address corresponding to a given IP address is abstracted
in a lower layer. Since NATSs may introduce more frequent
network failures, we have implemented a mechanism that
allows a client to submit a problem, break the connection,
and reconnect later at a more convenient time to retrieve
the results.

An important aspect to making this new communica-
tions model work is the proxy, which is a component that
allows servers to exist behind a NAT. Since a server can-
not accept unsolicited connections from outside the pri-
vate network, it must first register with a proxy. The proxy
acts on behalf of the component behind the NAT by estab-
lishing connections with other components or by accepting
incoming connections. The component behind the NAT
keeps the connection with the proxy open as long as pos-
sible since it can only be contacted by other components
while it has a control connection established with the proxy.
To maintain good performance, the proxy only examines
the header of the connections that it forwards and it uses a
simple table-based lookup to determine where to forward
each connection. Furthermore, to prevent the proxy from
being abused, authentication may be required.

3.2 Scheduling Enhancements

The next generation of GridSolve will retain the familiar
agent-based and server-based scheduling of resources, but
in many cases the client has the most accurate knowledge
about how to select the best resource. Therefore, we are
implementing an infrastructure that allows filtering and
scheduling to be optionally performed by the client.

In the current GridSolve system, the only user-provided
filter that affects the selection of resources is the problem
name. Given the problem name, the GridSolve agent fil-
ters to select the servers that can solve that problem, then
chooses the “best” server. However, the notion of which
server is best is entirely determined by the agent. In the
next generation of GridSolve, we are extending this behav-
ior. We allow the user to provide constraints on the filtering

and selection process. These selection constraints imply
that the user has some knowledge of which characteristics
will lead to a better solution to the problem (most likely in
terms of speed), for example, a minimum memory require-
ment. Also, we will allow the user to have access to the
complete list of resources and their characteristics so that
the client can implement comprehensive scheduling algo-
rithms in addition to simple filtering.

To make this functionality useful, the GridSolve servers
should provide as much information as possible to the
agent, in turn providing a flexible environment to the client
for its request. To make the best selection for the chent, the
agent uses this information stored in the form of resource
attributes and performs the filtering on behalf of the client.
Furthermore, we allow the service providers (that 1s, those
organizations that provide GridSolve servers) to specify
constraints on the clients that can access that service. For
example, an organization may want to restrict access to a
certain group of collaborators. This information is also spec-
ified in the resource attributes of the service.

Since the GridSolve agent currently maintains infor-
mation about all resources in the entire system, it can
be viewed as the main performance bottleneck as more
resources are added. The natural approach to this problem
is to use multiple agents such that the load on each agent
is reduced. However, this distributed approach leads to
some interesting scheduling issues since each agent might
only store information about its local domain. While each
agent may prefer to schedule jobs within its domain, it
may actually be more efficient to send the job to another
agent if the computational and network communication
requirements warrant. Thus, some agent-to-agent com-
munication will certainly be required when using multi-
ple agents.

3.3 Interface Definition Language Improvements

One of the original design goals of GridSolve was to elim-
inate the need for client-side stubs for each procedure in
an RPC environment. However, this design decision tends
to push the complexity to the servers. Integrating new soft-
ware into GridSolve requires writing a complex server
side interface definition (problem description file), which
specifies the parameters, data types, and calling sequence.
Despite several attempts to create a user-friendly tool to
generate the problem description files, it can still be a dif-
ficult and error-prone process.

Therefore, we have implemented a simple technique
for adding additional services to a running server. The
interface definition format itself has been greatly simpli-
fied and the services are compiled as external executa-
bles with interfaces to the server described in a standard
format. The server re-examines its own configuration
and installed services periodically or when it receives



the appropriate signal. In this way it becomes aware of
any additional services that are installed without recompi-
lation or restarting.

Integrating parallel software has been difficult in some
cases because the problem description file format does
not support it in a general way. Additionally, some paral-
lel software has required using a customized GridSolve
server. Making parallel software easier to integrate into
GridSolve hinges on two issues: the server should sup-
port it in a general way and the interface definition lan-
guage should be extended to allow specifying additional
parameters, such as the number of processors to be used.
We are continuing to work on these issues.

4 Related Work

Several network enabled servers (NESs) provide mecha-
nisms for transparent access to remote resources and
software. Ninf-G (Tanaka et al. 2003) is a reference
implementation of the GridRPC API (Seymour et al.
2002) built on top of the Globus Toolkit. Ninf-G provides
an interface definition language that allows services to be
easily added, and client binding are available in C and
Java. Security, scheduling and resource management are
left up to Globus.

The DIET (Distributed Interactive Engineering Toolbox)
project (Caron et al. 2002) is a client—agent-server RPC
architecture which uses the GridRPC API as its primary
interface. A CORBA Naming Service handles the resource
registration and lookup, and a hierarchy of agents handles
the scheduling of services on the resources. An API is
provided for generating service profiles and adding new
services, and a C client API exists.

NEOS (Dolan et al. 2002) is a network-enabled prob-
lem-solving environment designed as a generic applica-
tion service provider (ASP). Any application that can be
changed to read its inputs from files, and write its output
to a single file can be integrated into NEOS. The NEOS
server acts as an intermediary for all communication. The
client data files go to the NEOS server, which sends the
data to the solver resources, collects the results and then
returns the results to the client. Clients can use email,
web, sockets-based tools, and CORBA interfaces.

Other projects are related to various aspects of Grid-
Solve. For example, task farming style computation is
provided by the Apples Parameter Sweep Template (APST)
project (Casanova et al. 2000), the Condor Master Worker
(MW) project (Linderoth et al. 2000), and the Nimrod-G
project (Abramson, Buyya, and Giddy 2002). Request
sequencing is handled by projects such as Condor DAG-
man (Frey et al. 2002).

However, GridSolve provides a complete solution for
easy access to remote resources and software. It differs
from the other NES implementations by including a tight,

simple integration with a variety of client PSEs (Matlab,
Mathematica, Octave). Interface descriptions for a variety
of standard mathematical libraries is distributed with
GridSolve, and it is easy for additional services to be added.
The ability to use server-proxies to make it easy to lever-
age additional resource management and scheduling envi-
ronments also adds to GridSolve’s strengths.

5 Conclusion

One of the most important aspects of the middleware we
have presented here is the scheduling that maps user
requests to the most appropriate resource. Scheduling
requests in a Grid environment is not trivial and we find
that different forms of scheduling are useful under differ-
ent circumstances. The traditional agent-based scheduling
provides a coarse load balancing among all the available
resources. Server-based scheduling is useful for schedul-
ing tasks on specialized or aggregate resources (such as
clusters and Condor pools) while providing a consistent
interface to the various clients. Request sequencing sched-
ules an entire task graph on one server, which is appropri-
ate when there are many intermediate data that we want to
avoid transferring between the client and server. Task
farming is useful for parameter sweep applications where
a large number of independent, simultaneous requests are
to be scheduled. It is worth noting that these forms of
scheduling are not exclusive and we typically employ a
combination of these approaches within one Grid.

Ongoing work on scheduling in GridSolve involves cli-
ent-based scheduling, which includes filtering based on
client-specified resource selection criteria as well as pro-
viding information to the client to allow full fledged sched-
uling. We are also planning to extend task sequencing to
allow tasks in the DAG to be scheduled on different servers
if there is any parallelism that can be exploited. This would
involve not only scheduling of computational resources,
but could involve scheduling of data storage and transfer
as well.
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