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Abstract

With increasing numbers of processors on current machi-
nes, the probability for node or link failures is also increas-
ing. Therefore, application-level fault tolerance is becom-
ing more of an important issue for both end-users and the
institutions running the machines. In this paper we present
the semantics of a fault-tolerant version of the message
passing interface (MPI), the de-facto standard for commu-
nication in scientific applications, which gives applications
the possibility to recover from a node or link error and con-
tinue execution in a well-defined way. We present the
architecture of fault-tolerant MPI, an implementation of
MPI using the semantics presented above as well as
benchmark results with various applications. An example
of a fault-tolerant parallel equation solver, performance
results as well as the time for recovering from a process
failure are furthermore detailed.
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1 Introduction

Today, end-users and application developers of high
performance computing systems have access to larger
machines and more processors than ever before. Systems
such as the Earth Simulator, the ASCI-Q machines or the
IBM Blue Gene consist of thousands or even tens of thou-
sands of processors. Machines comprising 100,000 proc-
essors are expected for the next years.

A critical issue of systems consisting of such large
numbers of processors is the ability of the machine to deal
with process failures. Based on the current experiences
with the high-end machines, it can be concluded, that a
100,000-processor machine will experience a processor
failure every few minutes (Geist and Engelmann, 2005).
While on earlier massively parallel processing systems
(MPPs) crashing nodes often led to a crash of the whole
system, current architectures are more robust. Typically,
the applications utilizing the failed processor will have to
abort, the machine, as an entity is however not affected by
the failure. This robustness has been the result of improve-
ments in the hardware as well as on the level of system
software.

Current parallel programming paradigms for high per-
formance computing systems mainly rely on message
passing, in particular the message passing interface (MPI;
MPI Forum, 1995) specification. Shared memory con-
cepts (e.g. OpenMP) or parallel programming languages
(e.g. UPC, CoArrayFortran) offer a simpler programming
paradigm for applications in parallel environments; how-
ever, they either lack the scalability to tens of thousands
of processors, or do not offer a feasible framework for
complex, irregular applications. The message passing par-
adigm, on the other hand, provides a means to write
highly scalable algorithms, abstracting and hiding many
architectural decisions from the application developers.

However, the current MPI specification does not deal
with the case where one or more process failures occur dur-
ing run-time. MPI provides two options for handling fail-
ures. The first option, which is also the default mode of
MPI, is to immediately abort the application. The second
option is just slightly more flexible, handing the control
back to the user application without guaranteeing that any
further communication can occur. The latter mode’s pur-
pose is to mainly give an application the option to per-
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form local operations before exiting, e.g. closing all files
or writing a local check-point.

Summarizing the findings of the previous paragraphs,
there is a discrepancy between the capabilities of current
high performance computing systems and the most widely
used parallel programming paradigm. While the robust-
ness of machines is improving (hardware, network, oper-
ating systems, file systems), the MPI specification does
not leave room for fully exploiting the capabilities of the
current architectures. When considering machines with tens
of thousand of processors, the only currently available
fault tolerance handling technique, check-point/restart,
has performance and conceptual limitations. In fact, one
of the main reasons many research groups prefer the par-
allel virtual machine (PVM; Geist et al., 1995) communi-
cation library to MPI is its capability to handle process
failures.

Therefore, we present in this paper the results of work
conducted during the last four years, which produced:

* a specification proposing extensions to the MPI for
handling process fault tolerance;

e an implementation of this specification based on the
HARNESS framework (Beck et al., 1999);

* numerous application scenarios showing the feasibility
of the specification for scientific, high performance
computing.

The rest of the document is organized as follows. In
Section 2 we present a summary of the fault-tolerant (FT)
MPI specification as well as the architecture of the library
and some implementation details. In Section 3 we com-
pare the point-to-point performance of FT-MPI to those
achieved with some popular public-domain MPI libraries.
In Section 4 we use the Parallel Spectral Transform Shal-
low Water Model benchmark to further examine the
overall performance of FT-MPI for numeric applications
including the impacts of resource allocation via VAMPIR
tracing of message transfers. In Section 5 we describe two
applications that exploit the fault-tolerant features offered
by FT-MPI: a master—slave framework and a precondi-
tioned conjugate gradient solver. Finally, in Section 6 we
summarize the paper and present the ongoing work.

1.1 RELATED WORK

The methods supported by various projects can be split
into two classes: those supporting check-point/roll-back
technologies, and those using replication techniques. The
first method attempted to make MPI applications fault-
tolerant through the use of check-pointing and roll-back.
Co-Check MPI (Stellner, 1996) from the Technical Uni-
versity of Munich was the first MPI implementation built
that used the Condor library for check-pointing an entire

MPI application. Another system that also uses check-
pointing but at a much lower level is StarFish MPI
(Agbaria and Friedman, 1999). Unlike Co-Check MPI,
Starfish MPI uses its own distributed system to provide
built in check-pointing. LAM/MPI also supports system
level check-pointing (Sankaran et al., 2003) with auto-
matic roll-back of applications. Like Co-Check MPI,
LAM/MPI is synchronous and completely transparent to
the application, but relies on a third-party library to per-
form the actual check-point, which is currently the Berke-
ley Lab BLCR kernel-level process check-point library.
The interaction between the check-point library and
LAM/MPI is through a well-defined check-point/restart
interface that in theory allows any check-point library to
be used, further allowing LAM/MPI to be easily upgraded
as newer check-point libraries become available.

MPICH-V (Bosilca et al., 2002) from Universite de
Paris Sud, France is a mix of uncoordinated check-point-
ing and distributed message logging. The message log-
ging is pessimistic, meaning that it guarantees a consistent
state can be reached from any local set of process check-
points at the cost of increased message logging. MPICH-
V uses multiple message storage (observers) known as
channel memories (CMs) to provide message logging.
Process-level check-pointing is handled by multiple serv-
ers known as check-point servers (CSs). The distributed
nature of the check-pointing and message logging allows
the system to scale, depending on the number of spare
nodes available to act as CM and CS servers.

LA-MPI (Graham et al., 2002) is a fault-tolerant ver-
sion of MPI from the Los Alamos National Laboratory.
Its main target is not to handle process failures, but to
provide reliable message delivery between processes in
presence of bus, networking cards, and wire-transmission
errors. To achieve this goal, the communication layer is
split into two parts; a memory and message management
layer, and a send and receive layer. The first is responsi-
ble for choosing a different route in case the send and
receive layer reports an error, while the message manage-
ment layer is retransmitting lost packets.

MPLI/FT (Batchu et al., 2001) provides fault tolerance
by introducing a central co-coordinator and/or replicating
MPI processes. Using these techniques, the library can
detect erroneous messages by introducing a voting algo-
rithm among the replicas and then can survive process
failures. The drawback, however, is increased resource
requirements and partial performance degradation.

FT-MPI, in common with non-message-logging check-
point systems (such as LAM/MPI), can have much lower
(or zero) overheads in terms of communications when no
errors occur. These benefits do however have conse-
quences. An application using FT-MPI has to be designed
to take advantage of its fault-tolerant features, as shown
in the next section, although this extra work can be trivial
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depending on the structure of the application. If an appli-
cation needs a high level of fault tolerance where node
loss would equal data loss, then the application has to be
designed to perform some level of user-directed check-
pointing. Application level check-pointing using domain-
specific knowledge can potentially produce much smaller
check-points than system-level check-point libraries. An
additional advantage of FT-MPI over many systems is
that failure recovery can be performed at the user level
and the entire application does not need to be rescheduled
as with most process level check-pointing systems.

2 FT-MPI and HARNESS

In this section we present the extended semantics used by
FT-MPI, the architecture of the library, and some details
of the implementation. Furthermore, we present tools
that support the application developer while using FT-
MPL

2.1 FT-MPI SEMANTICS

Implementing fault tolerance typically consists of three
steps: failure detection, notification, and recovery. The
FT-MPI specification does not make any assumptions
about the first two steps except that the run-time environ-
ment discovers failures. In addition, all remaining proc-
esses in the parallel job are notified about these events.

The notification of failed processes is passed to the
MPI application through the use of a special error code
(MPI_ERROR_OTHER). As soon as an application proc-
ess has received the notification of a death event through
this error code, its general state is changed from no fail-
ures to failure recognized. While in this state, the process
is only allowed to execute certain actions. These actions
are dependent upon various parameters and are detailed
later in the document.

The recovery procedure consists of two steps: recover-
ing the MPI library and the run-time environment, and
recovering the application. The latter is considered to be
the responsibility of the application.

The FT-MPI specification answers the following ques-
tions.

1. What are the necessary steps and options to start
the recovery procedure and therefore change the
state of the processes back to no failure?

2. What is the status of the MPI objects after recov-
ery?

3. What is the status of ongoing communication and
messages during and after recovery?

The first question is handled by the recovery mode, the
second by the communicator mode, and the third by the

message mode and the collective communication mode.
Each of the modes are described below.

2.1.1 FT-MPI Recovery modes The recovery mode
defines how the recovery procedure can be started. Cur-
rently, three options are defined:

* an automatic recovery mode, where the recovery pro-
cedure is started automatically by the MPI library as
soon as a failure event has been recognized;

* a manual recovery mode, where the application has to
start the recovery procedure through the usage of a
specific MPI function;

* a recovery mode, where the recovery procedure does
not have to be initiated at all. However, any communi-
cation to failed processes will raise an error.

The most common mode used to date is the manual
recovery mode. In this mode once the user’s application
has detected an error via the MPI_ERROR_OTHER
return code they would start the recovery by calling MPI_
COMM_DUP with both the values set to MPI._ COMM _
WORLD. In other MPI implementations this has no real
meaning, but within FT-MPI it tells the library that the
system level recovery can begin. The call is collective
across all surviving MPI processes. Once completed, the
returned new MPI_COMM_WORLD would be valid as
discussed below.

It is possible to mix both the manual and automatic
methods through the use MPI error handler routines.
‘When FT-MPI wants to return the MPI_ERROR_OTHER
code on detection of a node failure, it can instead trig-
ger a handler routine which contains the MPI_COMM_
DUP call. This method is not completely automatic as
it still requires the users application to install an error
handler.

2.1.2 FT-MPI Communicator and MPI Object states
The status of MPI objects after the recovery operation is
dependent upon whether they contain some global infor-
mation or not. For MPI-1, the only objects containing glo-
bal information are groups and communicators. These
objects are invalidated during the recovery procedure.
The objects available after MPI_Init, which are the com-
municators MPI_COMM_WORLD and MPI_COMM_
SELF, are rebuilt by the library automatically.
Communicators and groups can have different formats
after recovery operation. Failed processes may be replaced
as in FTMPI_COMM_MODE_REBUILD. In cases where
the failed processes are not replaced, the user still has
two choices: the position of the failed process can be left
empty in groups and communicators (FTMPI_COMM _
MODE_BLANK) or the groups and communicators can
shrink such that no gap is left (FTMPI_COMM_MODE _
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SHRINK). For both modes, a precise description of all
MPI-1 functions are given in the FT-MPI specification.

2.1.3 FT-MPI Communication and Message Queue
Handling Two modes are currently defined in the spec-
ification for how point-to-point messages and message
queues are handled during and after failures. In the first
mode, all messages in transit are canceled by the system.
This mode is mainly useful for applications, which on
error roll back to the last consistent state in the applica-
tion. As an example, if an error occurs in iteration 423 and
the last consistent state of the application is from iteration
400, than all ongoing messages from iteration 423 would
just confuse the application after the roll-back. The pre-
conditioned conjugate gradient solver shown in Section 5
details the usage of this communication mode.

The second mode completes the transfer of all mes-
sages after the recovery operation, with the exception
of the messages to and from the failed processes. All
unmatched messages on queues are also kept so that non
matched messages prior to a failure can latter be rematched
after the failure. The exception to this is unmatched mes-
sages from failed processes, which are removed during
the recovery operation. This mode requires that applica-
tions keep detailed information on the state of each proc-
ess’s message transfers, minimizing the rollback required.

Similar modes are available for collective operations,
which can either be executed in an atomic or a non-
atomic fashion. The master—slave example presented in
Section 5 is an example of an application where no roll-
back is necessary in case a process failure occurs.

2.2 ARCHITECTURE OF FT-MPI AND
HARNESS

FT-MPI was built from the ground up as an independent
MPI implementation as part of the Department of Energy
Heterogeneous Adaptable Reconfigurable Networked
SyStems (HARNESS) project (Beck et al., 1999). One of
the aims of HARNESS was to provide a framework for
distributed computing much like PVM (Geist et al,,
1995). A major difference between PVM and HARNESS
is the former’s monolithic structure verses the latter’s
dynamic plug-in modularity. To provide users of HAR-
NESS instant application support, both a PVM and a MPI
plug-in were envisaged. As the HARNESS system itself
was both dynamic and fault-tolerant (no single points of
failure), it became possible to build a MPI plug-in with
added capabilities such as dynamic process management
and fault tolerance.

Figure 1 illustrates the overall structure of a user-level
application running under the FT-MPI plug-in of the
HARNESS system. In the following subsections we
briefly outline the design of FT-MPI and its interaction
with various HARNESS system components.

2.3 FT-MPI ARCHITECTURE

As shown in Figure 1, the FT-MPI system itself is built in
a layered fashion. The uppermost layer handles the MPI-
1.2 specification API and MPI objects. The next layer
handles data conversion/marshaling (if needed), attribute
and record storage, and various lists. Details of the highly
tuned buffer management and derived data type handling
can be found in Fagg et al. (2001). FT-MPI also imple-
ments a number of tuned MPI collective routines, which
are further discussed in Vadhiyar et al. (2001). The lowest
layer consists of the FT-MPI run-time library (FTRTL),
which is responsible for interacting with the OS via the
HARNESS user-level libraries (HLIBs). The FTRTL
layer provides the facilities that allow for dynamic proc-
ess management, system-level naming of MPI tasks, and
message handling during the entire fault to recovery
cycle. The HLIB layer interacts with the HARNESS sys-
tem during startup, fault to recovery cycle, and shutdown
phases of execution. The HLIB also provides the inter-
faces to the dynamic process management and redirection
of application 10. SNIPE2v, a highly modified non-block-
ing asynchronous event driven version of the SNIPE
(Fagg et al., 1999) library, provides the internode com-
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munication of MPI message headers and data. SNIPE2v
uses callbacks during the transmission of data so that the
underlying network can control segmentation and conver-
sion of complex data types and potentially overlap both.
To simplify the design of the FTRTL, SNIPE only deliv-
ers whole messages atomically to the upper layers. Dur-
ing a recovery from failure, the non-event driven SNIPE
library uses per channel flow control messages to indicate
the current state of message handling (such as accepting
connections, flushing messages, or in-recovery status).

It is important to note that the FTRTL shown in Figure 1
can receive notification of failures from both the point-to-
point communications libraries as well as from the HAR-
NESS layer. In the case of communication errors, the noti-
fication is usually started when the communication library
detects a point-to-point message not being delivered to a
failed party rather than the failed parties’ OS layer detect-
ing the failure. The FTRTL is responsible for notifying all
tasks of errors as they occur by injecting notify messages
into the send message queues ahead of user-level mes-
sages.

2.3.1 OS Support and the HARNESS G_HCORE
The General HARNESS CORE (G_HCORE) is a dae-
mon that provides a very lightweight infrastructure from
which to build distributed systems. The capabilities of
the G_HCORE are exploited via remote procedure calls
(RPCs) as provided by the user-level library (HLIB). The
core provides a number of very simple services that can
be dynamically added to (Beck et al., 1999). The simplest
service is the ability to load additional code in the form
of a dynamic library (shared object) known as a plug-in
and to make this available to either a remote process or
directly to the core itself. Once the code is loaded it can
be invoked using a number of different techniques such
as the following.

¢ Direct invocation: the core calls the code as a function,
or a program uses the core as a runtime library to load
the function, which it then calls directly itself.

e Indirect invocation: the core loads the function and
then handles requests to the function on behalf of the
calling program, or it sets the function up as a separate
service and advertises how to access the function.

An application built for HARNESS might not interact
with the host OS directly but could instead install plug-
ins that provide the required functionality. The handling
of different OS capabilities would then be left to the
plug-in developers, as is the case with FT-MPL

2.3.2 G_HCORE Services for FT-MPI Services re-
quired by FT-MPI break down into two main catego-
ries.

¢ Spawn and notify service. This service is provided by a
plug-in that allows remote processes to be initiated and
then monitored. The service notifies other interested
processes when a failure or exit of the invoked process
occurs. The notify message is either sent directly to all
other MPI tasks or via the FT-MPI Notifier daecmon,
which can provide additional diagnostic information if
required.

* Naming services. These allocate unique identifiers in
the distributed environment for tasks, daemons and
services (which are uniquely addressable). The name
service also provides temporary internal system (not
application) state storage for use during MPI applica-
tion startup and recovery, via a comprehensive record
facility.

Currently, FT-MPI can be executed in one of two
modes. The first mode is as a plug-in when executing as
part of a HARNESS distributed virtual machine. A sec-
ond mode is in a slightly lighter weight configuration
with the spawn—notify service as a standalone daemon.
This latter configuration loses the benefits of any other
available HARNESS plug-ins, but is better suited for
clusters that only execute MPI jobs. No matter which con-
figuration is used, one name-service daemon, plus one
either of the GHCORE daemon or one startup daemon per
node, is needed for execution.

2.4 FT-MPI SYSTEM LEVEL RECOVERY
ALGORITHM AND COSTS

The recovery method employed by FT-MPI is based on
the construction of a consistent global state at a dynami-
cally allocated leader node. The global state contains
only the system-level information needed by FT-MPI to
decide the MPI_COMM_WORLD communicator mem-
bership from which all other communicators are deri-
ved. This consists of ordered lists of Global IDentifiers
(HARNESS GIDs) and communication channel connec-
tion information (such as TCP IP addresses and port
numbers). The global state is not the application level
state, which is discussed later in Section 5.

After the state is constructed at the leader node, it is
distributed to all other nodes (peons) via an atomic broad-
cast operation based on a multiphase commit algorithm.

The recovery is designed to handle multiple recursive
errors, including the failure of the leader node responsible
for constructing the global state. Under this condition, an
election state is entered where every node votes for them-
selves, and the first voter wins the election via an atomic
swap operation on a leader record held by the HARNESS
name service. Any other faults cause the leader node to
restart the construction of the global state from the begin-
ning. This process continues until the state is either com-
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pletely lost (when all nodes already holding the previous
verified state fail) or when everyone agrees with the
atomic broadcast of the pending global state.

The cost of performing a system-level recovery is as
follows.

e Synchronizing state and detecting faults: O(2N) mes-
sages.

* Respawning failed nodes and rechecking state and
faults: O(2N) messages.

* Broadcasting the new pending global state, verifying
reception: O(3N) messages.

* Broadcasting the acceptance of global state: O(N) mes-
sages.

The total cost of recovery from detection to acceptance
of a new global state is O(8N) messages. The results
detailed later in Section 5.2 currently use a linear topol-
ogy for these messages leading to O(8N) cost, which is
not acceptable for larger systems. Currently under test is a
mixed fault-tolerant tree and ring topology, which
together with the combining of several fault detection and
broadcast stages will reduce the recovery cost to approxi-
mately O(3N) + O(3log,N). This new method has also
been designed for use in wide-area high-latency Grid-
type environments.

3 Point-to-point Benchmark Results

In this section we would like to compare the point-to-
point performance of FT-MPI with the performance
achieved with the most widely used, non-fault-tolerant
MPI implementations. These are MPICH (Gropp et al.,
1996) using version 1.2.5 as well as the new beta-release
of version 2 and LAM/MPI (Burns and Daoud, 1995) ver-
sion 7. All tests were performed on a PC cluster consist-
ing of 32 nodes, running a Linux 2.4 Kernel, each having
two 2.4 GHz Pentium IV Xeon processors. The nodes are
interconnected using Intel Gigabit Ethernet (82544EI)
network cards.

For determining the communication latency and the
achievable bandwidth, we used the latency test suite
(Gabriel et al., 2003). The zero-byte latency measured in
this test revealed LAM7 to have the best short-message
performance, achieving a latency of 41.2 us, followed by
MPICH-2 with 43.6 us. FT-MPI had in this test a latency
of 44.5 s, while MPICH 1.2.5 followed with 45.5 ps.

Figure 2 shows the achieved bandwidth with all com-
munication libraries for large messages. FT-MPI achieved
the highest bandwidth with a maximum of 66.5 MB/s.
LAM7 and MPICH 2 have comparable results with 65.5
and 64.6 MB/s, respectively. The bandwidth achieved
with MPICH 1.2.5 is slightly worse, having a maximum
of 59.6 MB/s.

4 Performance Results with the Shallow
Water Code Benchmark

While FT-MPI extends the syntax of the MPI specifica-
tion, we expect that many of the end-users will use FT-
MPI in the conventional, non-fault-tolerant way. There-
fore, we evaluate in this section the performance of FT-
MPI using the Parallel Spectral Transform Shallow Water
Model (PSTSWM; Worley and Toonen, 1995) bench-
mark, and compare the performance results of FT-MPI
with the results achieved with MPICH 1.2.5 and MPICH
2. LAM/MPI 7 is not included in this evaluation, since
PSTSWM makes use of some optional Fortran MPI data
types, which are currently not supported by LAM/MPIL.

Included in the distribution of PSTSWM version 6.7.2
are several test cases and test data. Presenting the results
achieved with all of these test cases would exceed the
scope and the length of this paper, therefore we have
picked three test cases, which we found representative
from the problem size and performance behavior. All
tests were executed with 32 processes using 16 nodes on
the same PC cluster described in the previous section.

Figure 3 presents the results achieved for these three
test cases. FT-MPI significantly outperformed MPICH
1.2.5 and MPICH-2 in these test cases. The reason turned
out to be the process placement strategy of FT-MPI. FT-
MPI distributes the processes block-wise, if the number
of used processes does not match the number of available
nodes. Thus, ranks 0 and 1 are located on the first node,
ranks 2 and 3 on the second node, and so on. In contrast,
both versions of MPICH distribute the processes in a
cyclic manner, e.g. ranks 0 and 16 are on node 0, 1 and 17
on node 1.

Figure 4 shows a snapshot of the PSTSWM bench-
mark presenting the communication volume between
each pair of nodes. This analysis reveals why the process
distribution of FT-MPI could improve the performance
compared to the other MPI libraries. The communication
volume and the number of messages exchanged between
neighboring processes (e.g. between rank 0 and rank 1)
in this application is significantly higher than the overall
data exchanged between other process pairs. Since the
communication between processes within the same node
is considerably faster than the communication between
processes on different nodes, a larger number of mes-
sages could benefit from the faster communication inside
a node using the block-wise process distribution.

In a second test, we forced FT-MPI to use a cyclic
process distribution similar to MPICH. The results
achieved in these tests are labeled as FT-MPI cyclic in
Figure 3. In these measurements, FT-MPI and MPICH-2
are usually equally fast, but MPICH 1.2.5 remains slower
than the other two MPI libraries. The overall conclusion
of the last two sections are that the performance of FT-
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Fig.2 Achieved bandwidths with FT-MPI, LAM 7, MPICH 1.2.5 and MPICH 2.

MPI is comparable to the current state-of-the-art public-
Shallow Water Code (PSTSWM) P P

of the fault-tolerant features of the library. In this section,
we would like to present the relevant parts of fault-toler-
10 - . ant master—slave applications as well as a fault-tolerant
version of a parallel equation solver.

32 processes, 16 nodes domain MPI libraries. The extensions in the specification
50 T T do not introduce a performance penalty per se in a non-
MPICH 1.2. 5 — B
C e fault-tolerant application.
M I —
T = i R T FT- MPI cyclic ——
2 1 [ B 5 Examples of Fault-tolerant
£ 30t — I I i Applications
g Hand in hand with the development of FT-MPI, we also
£ 0L R | developed some example applications showing the usage
g
@

Problems FAULT-TOLERANT MASTER-SLAVE
APPLICATION
Fig. 3 Comparing the execution times for the
PSTSWM benchmark for MPICH 1.2.5, MPICH 2, FT-MPI For many applications using a master—slave approach,
and FT-MPI using cyclic process distribution. fault tolerance can be achieved easily by adding a simple
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Fig. 4 Analysis of PSTSWM using VAMPIR. This figure shows the amount of data exchanged between each pair of

processes during a typical run.

state model in the master process. The basic design fol-
lows that when a worker process dies, the master redis-
tributes the work currently assigned to this process. When
a master dies, the framework either restarts the work to
be completed or aborts, depending on the respawn options
available (i.e. if it can guarantee that the master remains
rank zero or not).

The state model, as applied in our example, is shown
in Figure 5.

The master maintains for every process their current
state. This can be one of the following states.

e AVAILABLE: process is alive and no work has been
assigned to him.

e WORKING: process is alive and work has been
assigned to him.

» RECEIVED: process is alive and the result of its work
has been received.

e FINISHED: process is alive and it has been notified
that no more work will be sent to him.

* SEND FAILED: send operation to this process failed.

e RECV FAILED: the recv operation to this process
failed.
* DEAD: this process is marked as dead.

Under regular conditions, the state of each process is
changing from AVAILABLE to WORKING to RECEIVED
and back to AVAILABLE. When an error occurs when
distributing the work to the slaves, the state of the
receiver process is changed to SEND FAILED. The send
operation to this process could have failed for two rea-
sons: first, the receiving process died, and secondly
another process has failed. In both cases, all MPI opera-
tions called after the notification of the death-event of a
process will return the specific MPI error code MPI_
ERROR_OTHER. In the first case, the process is either
marked as DEAD for the BLANK and SHRINK commu-
nicator mode or respawned and marked as AVAILABLE
for the REBUILD mode. In the second case, the send
operation has to be repeated, and the state of this process
is then reset to its previous value. The situation is similar
if an error occurs on the receive operation.
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Fig. 5 Transition-state diagram of the fault-tolerant master—slave code.

The application can detect and handle failure events
using two different methods, either the return code of
every MPI function is checked, or the application makes
use of MPI error handlers. The second method gives users
the possibility to register a function with the MPI library,
which is called, in case an error occurs. Thus, existing
source code does not have to be extended by introduced
detailed error-checking for each MPI function used.

The following extract of the source code of the master
shows the most relevant pieces of the major working
loop, including the registration of the error-handler as
well as usage of the different states for each process. The
transition state diagram is implemented in the routine .

/* Register error handler */

if ( master ) {
MPI_Errhandler_create(recover, &errh) ;
MPI_Errhandler_set ( comm, errh);

}

/* major master work loop */
do {

/* Distribute work */
for( proc=1; proc<maxproc; pProc++)
if( statel[proc] == AVAILABLE ) {
MPI_Send(workid[proc], ....);
advance_state (proc) ;

for( proc=1; proc<maxproc; proc++) {
/* Collect results */
if( statel[proc] == WORKING ) {
MPI_Recv(workid[proc]l, ....);
advance_state (proc) ;

}

/* Perform global calculation */

if( statel[proc] == RECEIVED ) {
workperformed += workid[proc];
advance_state (proc) ;

} while (all work is done) ;
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The recovery algorithm invoked in case an error
occurs consists of the following steps.

1. Re-instantiation of the MPI library and the run-
time environment by calling a specific, predefined
MPI function.

2. Determining how many processes have died and
who has died.

3. Set the state of the failed processes to DEAD for
the BLANK and SHRINK mode, respectively to
AVAILABLE for the REBUILD mode.

4. Set the state of the communication partner in the
Send or Recv operation when the error was
detected to SEND_FAILED respectively RECV_
FAILED.

5. Mark the piece of work, which was currently
assigned to the failed processes as “not done”.

The second point in the list is closely related to the
problem of how a process can determine whether it has
been part of the initial set of processes or whether it is a
respawned processes. FT-MPI offers the user two possi-
bilities to solve this issue. The first method, which is the
fast solution, involves specific FT-MPI constants and
attributes. In case a processes is a replacement for a
failed process, the return value of MPI_Init will be set to
a specific new FT-MPI constant (MPI_INIT_
RESTARTED_PROCS). All surviving processes will
have two additional MPI attributes set: the value of
FTMPI_NUMFAILED_PROCS indicates how many
processes have failed, while the value of FTMPI_ERR_
FAILED is an error-code whose error-string contains
the list of processes that have failed since the last error.
This method is considered to be fast, since it does not
involve any additional communication to determine these
values.

The second possibility is that the application introduces
a static variable. By comparing the value of this variable
to the value on the other processes, the application can
detect whether everyone has been newly started (in
which case all processes will have the pre-initialized value)
or whether a subset of processes have a different value,
since each process modifies the value of this variable after
the initial check. This second approach is more complex
but is fully portable and can also be used with any other
non-fault-tolerant MPI library.

5.2 A FAULT-TOLERANT
PRECONDITIONED CONJUGATE
GRADIENT SOLVER

In this section we would like to give an example of how
fault tolerance can be achieved for a tightly coupled
application, which is not using the master—slave para-

digm. As an example, we implemented a parallel precon-
ditioned conjugate gradient equation solver (PCG) in a
fault-tolerant manner. The parallel application has been
extended by two major points.

* M processes have been dedicated in the application to
serve as in-memory check-point servers. Every 100
iterations, all processes calculate, using several MPI_
Reduce operations a check-point of each relevant vec-
tor, which is then stored on the dedicated check-point
processes.

e In case some of the processes die, the data of the
respawned processes are recalculated using the local
data on all other processes and the check-pointed vec-
tor. The matrix is not check-pointed in this application,
since it is constant and not changing. Therefore, the
respawned processes reread the matrix from the origi-
nal input file.

The recovery algorithm makes use of the longjmp
function of the C-standard. In the event that the return
code of an MPI function indicates that an error has
occurred, all processes jump to the recovery section in
the code, perform the necessary operations, and continue
the computation from the last consistent state of the
application. The relevant section with respect to the
recovery algorithm is shown in the source code below.

/* Mark entry point for recovery */
j = setjmp ( env );

1/* Execute recovery if necessary */

if ( state == RECOVER) {
MPI_Comm_dup ( comm, &newcomm ) ;
comm = newcomm;

/* do other operations */
recover_data ( my_vector,.., &num_iter );

/* reset state-variable */
state = OK;
}

/* major calculation loop */
do {

rc = MPI_Send ( ...)

if ( rc == MPI_ERR_OTHER ) {
state = RECOVER;
longjmp ( env, state );

} while ( norm < errtol );
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Table 1

Execution time for a 120-process FT-MPI CG application under various levels of burst failures.

Check-point Non-fault Burst fault Total extra/ratio
servers/failures time (s) time (s) (s)/(%)

0 6606.9 n/a n/a

1 +7.6 19.5 27.1/0.4
2 +10.0 16.6 26.6/0.4
3 +12.8 16.9 29.7/0.45
4 +15.4 15.9 31.3/0.47
5 +18.2 14.6 32.8/0.5

The code is written such that any symmetric, positive
definite matrix using the Boeing/Harwell format can be
used for simulations. Table 1 gives some results of exe-
cution times for solving a system of linear equations
using the fault-tolerant version of the solver for 120 proc-
esses with various numbers of concurrent failures. The
solver executed 2000 iterations, making a check-point
every 100 iterations, and the failures were forced on the
300th iteration by using the kill system call. The system
of equations was represented by a sparse matrix 1.3 mil-
lion elements square, with 51.4 million non-zero values.

The first column gives the number of check-point serv-
ers used. We also make this the number of concurrent
failures. In other words, a system that has five check-
point servers can also survive five concurrently failing
application processes. The second column shows the appli-
cation execution time when no faults occur. Thus, for the
zero check-point row, this is the time for the non-check-
pointing application. For all other rows this is the addi-
tional time for the application execution, i.e. the check-
point overhead. The third column shows the additional
time for the application to complete when a burst of fail-
ures occur once, i.e. the actual cost of a single exit-recovery
phase. The number of failures is made equal to the number
of check-point servers. (Thus, if we had five check-point
servers we would kill five processes during the applica-
tion run.) The last column shows the difference (or over-
head) between a non-check-pointing application run and
one surviving a single burst of failures with all overheads.

As Table 1 indicates, the additional overhead from
check-pointing varies between 7.6 s for one check-point
server to 18.2 s for five check-point servers. (The applica-
tion performed 20 check-point iterations during the com-
plete run.) The time for the application to recover from a
single process failure was 19.5 s and reduced to 14.6 s for
a burst of five processes failing. The overall overheads
were between 0.4% and 0.5% of the non-check-pointing,
no-failure execution. This is very competitive with other
methods, although it did entail quite detailed tuning of
the check-point methods used. Other applications with

different memory usage patterns may produce very differ-
ent results.

6 Conclusion and Outlook

In this paper we have presented the semantics of a fault-
tolerant version of the MPI. FT-MPI is an implementa-
tion of this specification, supporting the full MPI-1.2
document as well as supporting extended functionality
of a failure-recovery model. FT-MPI is, however, not an
automatic check-point/recovery system. Instead it gives
the application the potential to survive node or link fail-
ures, reorganize its communication and/or communica-
tors, and continue from a well-defined point in the user
application. Defining and implementing a consistent state
in the application is the responsibility of the application
developers.

Results with point-to-point benchmarks as well as with
the PSTSWM benchmark show that the performance
achieved with FT-MPI is comparable to other, non-fault-
tolerant implementations of MPI, in some cases even bet-
ter. The overhead introduced by the fault-tolerant fea-
tures of the libraries are negligible.

Writing fault-tolerant applications usually requires
some modifications to existing parallel applications. A
state model for the development of master—slave applica-
tions has been presented as well as an example for a tightly
coupled application, namely a parallel CG solver. The
usage of error-handlers from the MPI specification greatly
improves the readability and maintainability of fault-tol-
erant applications.

Current work focuses on improving the times for recov-
ering from an error. Although for long-running applica-
tions the current system recovery times are just a marginal
fraction of their overall execution time, we still think that
there is ample room for further improvements in this area.
More work will also be invested in the development of
other templates to show how the fault-tolerant features of
FT-MPI can be used by other classes of high performance
computing applications.
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Since FT-MPI was originally created, the HARNESS
team at the University of Tennessee has become involved
in the Open MPI (Gabriel et al., 2004) project. The
project aims to combine the experience and features of
four previous MPI projects: FT-MPI from the University
of Tennessee, LA-MPI from Los Alamos National Labo-
ratory, LAM/MPI from Indiana University, and PACX-
MPI from the University of Stuttgart. Open MPI is
expected to support both synchronous check-pointing (as
available in LAM/MPI) and process fault tolerance from
FT-MPL
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