
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2003; 15:207–222 (DOI: 10.1002/cpe.657)

Automatic translation of
Fortran to JVM bytecode

Keith Seymour∗,† and Jack Dongarra

Department of Computer Science, University of Tennessee, Knoxville,
Knoxville, TN 37996, U.S.A.

SUMMARY

This paper reports on the design of a Fortran-to-Java translator whose target language is the instruction
set of the Java Virtual Machine. The goal of the translator is to generate Java implementations of legacy
Fortran numerical codes in a consistent and reliable fashion. The benefits of directly generating bytecode
are twofold. First, compared with generating Java source code, it provides a much more straightforward
and efficient mechanism for translating Fortran GOTO statements. Second, it provides a framework for
pursuing various compiler optimizations, which could be beneficial not only to our project, but to the Java
community as a whole. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: Fortran; Java; JVM; bytecode; numerical libraries

1. INTRODUCTION

The Java programming language [1] has grown drastically in popularity in recent years, in industry as
well as in academia. The properties of Java, such as portability, memory management, and security
make it an attractive programming environment for a wide range of applications. Despite some
properties that would make Java seem less attractive to programmers in the high-performance and
scientific computing community (such as the lack of a complex primitive data type and the lack
of operator overloading), interest in using Java for scientific and engineering applications has also
increased, as evidenced by the number of mathematical libraries [2–6] and scientific and engineering
applications [7,8] developed in Java over the past few years.

The primary by-product of our earlier work on the Fortran-to-Java translator has been one such
mathematical library—JLAPACK [9]. The JLAPACK library provides application programming
interfaces (APIs) to numerical libraries from Java programs. The numerical libraries will be distributed
as class files produced by a Fortran-to-Java translator, f2j. The first version of f2j was used to translate

∗Correspondence to: Keith Seymour, Department of Computer Science, University of Tennessee, Knoxville, Knoxville,
TN 37996, U.S.A.
†E-mail: seymour@cs.utk.edu

Received 31 August 2001
Copyright c© 2003 John Wiley & Sons, Ltd. Revised 21 January 2002

208 K. SEYMOUR AND J. DONGARRA

the BLAS [10–12] and LAPACK [13] numerical libraries from their Fortran 77 reference source code
to Java source code and was subsequently distributed as a library of class files. These libraries are
established, reliable and widely used linear algebra packages and are, therefore a reasonable first
testbed for f2j. This report describes an extension to the f2j compiler that allows the generation of
class files directly from Fortran source code.

2. MOTIVATION

First we describe the motivation behind writing a Fortran-to-Java translator and then describe why we
have chosen to extend the code generator to directly emit bytecode.

The original goal of f2j was to facilitate the translation of legacy Fortran numerical libraries to Java,
with LAPACK and BLAS being the primary libraries of interest. Given the goal of producing a Java
implementation of LAPACK, there are three options:

1. wrap the native routines in Java interfaces;
2. rewrite the routines in Java from scratch;
3. develop a tool to automate the translation.

We avoided the first method because we wanted the Java version of LAPACK to be used by applets
as well as applications, thus requiring a pure Java implementation. The second option would have
required hand-translating, testing and debugging hundreds of routines. Given the large amount of code
in LAPACK, the second option could be very time-consuming and error-prone. We chose the third
option because it allows us to generate pure Java code in a consistent and reliable way from the
original Fortran source. In addition, after pursuing the third option, we have a tool which could be
applied successfully to other numerical libraries and eventually to a wide range of Fortran code.

There are two primary factors motivating the development of a bytecode generator for f2j—handling
GOTO statements and exploring code optimization techniques.

The handling of Fortran GOTO statements has been a difficult problem due to Java’s lack of a
goto statement. As described in [9], we can use Java’s labeled break and continue statements to
translate certain types of Fortran GOTOs, but there are still some branches that do not correspond to a
break or continue statement. For these GOTOs, the technique we have been using is to generate
‘placeholders’ in the Java source code. The placeholders are method calls which specify the target of
the GOTO statement. For example, the Fortran statement

GO TO 100

would be translated to the following Java method call:

Dummy.go_to("Progunit",100);

whereas the corresponding label becomes:

Dummy.label("Progunit",100);

The first argument is the name of the current program unit and the second argument is the branch
target or label number. Once the resulting Java source code is compiled with javac, we use a GOTO

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 209

translation tool to parse the bytecode and identify the placeholders, which are then emitted as JVM
branch instructions. This is discussed in greater detail in [9].

The post-processing has worked acceptably except that the multi-stage process is cumbersome and
something that many users find confusing. In fact, it is so easy to forget to run the GOTO translation
tool that we implemented the Dummy methods such that they warn the user when GOTO translation
has not been performed. The first argument to the Dummy method is used to inform the user which
program unit has not been transformed. The GOTO translation process has remained separate from f2j
for two reasons. First, we wanted to allow the users to modify the resulting Java source before GOTO
translation. Second, since the GOTO translation requires Java compilation before the patching, we kept
the process separate from f2j to allow for users to choose their own Java compiler and flags.

Since the JVM instruction set includes an unconditional branch instruction, generating the bytecode
directly does not require any tricky manipulation or post-processing. This greatly simplifies and speeds
the translation process.

Another benefit to generating bytecode is that it allows us to explore various optimization techniques
since we can directly control how the stack is used, which instructions are generated, and in which
order. We plan to employ traditional compiler optimizations such as loop unrolling and code motion,
for which well-understood optimization techniques exist [14], as well as exploring alternate techniques
which may be specific to Java. The application of such techniques to Java source code compilers is
complicated by Java’s precise exception and multithreading semantics [15].

While there are several Java assembler formats available which would make debugging a bit easier
(one popular example being Jasmin [16]), we chose to generate the bytecode directly in order to
minimize the dependence on external packages. The benefit to the user is that there is one fewer
package to install and the benefit to us (the developers) is that we do not depend on ongoing support
for any external packages.

The development of the bytecode generator has not rendered obsolete the prior Java source code
generator. In some cases, it may be desirable to modify the translated source code, which is much easier
when the target language is Java source code. Therefore, we have designed the bytecode generator to
coexist with the previous code generator without interference, providing the user with the choice of
target language.

3. IMPLEMENTATION

The f2j compiler operates in four stages, as described below and illustrated in Figure 1.

3.1. Lexical analysis and parsing

In this stage the lexer separates the Fortran source code into tokens and the parser builds a complete
AST (abstract syntax tree) and symbol tables for each program unit. Subsequent compilation stages
obtain all information about the program structure from the AST built during parsing.

3.2. Optimizing the use of scalar wrappers

In Fortran, values are passed to functions and subroutines by reference. This implies that if a Fortran
subroutine modifies one of its parameters, then that modification also takes effect in the calling routine.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

210 K. SEYMOUR AND J. DONGARRA

Lexical/Syntactic
Analysis

Code
Generation

Intermediate
Stages

Abstract
Syntax
Tree

Annotated
AST

javac

JVM
Bytecode

Java
Source

GOTO
Translation

Transformed
Bytecode

Java Virtual
Machine

F77 Source

f2j

Bytecode

Figure 1. Stages of translation.

However, Java uses pass-by-value, which implies that any modifications would not take effect in the
caller. In order to simulate pass-by-reference in Java, we must wrap the scalar in an object. Then instead
of passing the integer value, we would pass the object wrapper whose scalar field may be modified in
the subroutine.

During the scalar ‘optimization’ phase, f2j determines which parameters of each subroutine
absolutely need to be wrapped. The rest are passed as Java primitive data types (int, double, etc) in
order to improve access times and save memory. The determination is made as follows.

A variable must be wrapped if:

1. the variable is an argument to this function and it is on the left side of an assignment statement
in this program unit;

2. the variable is an argument to this function and it is an argument to a READ statement;
3. the variable is passed to a function or subroutine that modifies it.

The last rule implies that every function or subroutine that the current program unit depends on must
be checked before this unit can be completely verified. f2j resolves the dependencies before continuing
to check the current unit. Of course, the assumption is that there are no cycles in the dependency graph.

3.3. Type assignment

This stage is not ‘typechecking’ in the semantic analysis sense. In this stage, f2j performs a traversal of
the AST and assigns type information to each node, propagating information up the tree. For example,

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 211

f2j looks at both sides of an addition operation and assigns the widest type to the addition node and so
on up the tree. This information helps the code generator emit the appropriate type-specific opcodes
and type casts when necessary. Such type casts are not as common when generating Java source, but
explicit casts are necessary when making a narrowing conversion.

3.4. Code generation

Code generation is by far the largest and most complicated stage in the translator. In this stage, f2j
traverses the AST, generating code as it traverses through the tree. The code generator depends on the
information determined in all the prior steps to generate correct code. Currently, Java source code and
JVM bytecode are generated during the same pass (over the AST) because using separate passes would
have resulted in a lot of duplicated code and made maintenance more difficult.

4. GENERATING BYTECODE

This section elaborates on the design and implementation of the final stage of the translator, the code
generator.

4.1. Design

In this section, we briefly mention some of the design considerations made during the development
of f2j.

4.1.1. General

Each Fortran program unit is generated as a separate Java class containing a single static method.
For example, the Fortran subroutine DGEMM would be translated to a Java class named Dgemm
containing only a single method named dgemm.

All arrays are laid out in memory in column-major fashion, with multi-dimensional Fortran arrays
being translated as linearized one-dimensional Java arrays.

4.1.2. GOTO statements

Java source code does not provide a GOTO statement. Thus, we must perform some post-processing
on the class files that were generated from Java source (using javac or an equivalent Java compiler)
in order to correctly generate the GOTO statements. However, Fortran GOTO statements are easily
translated to JVM bytecode since there exists a goto opcode.

4.1.3. Variables

All variables are emitted as static class variables and initialized in a special class initialization method
named <clinit>, which is only required when directly generating bytecode. When writing Java
source code, javac generates <clinit>. Since the variables are declared as static class variables,

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

212 K. SEYMOUR AND J. DONGARRA

any SAVE statements in the Fortran source may be ignored since essentially all variables are already
saved. This was originally done for simplicity so that the code generator could emit all variables at
the same time and in the same manner. However, such convenience usually comes at a price and in
this case, it is performance that suffers. We find that the JVM instruction to load a static class variable
takes longer than the instruction to load a local variable, thus decreasing the overall performance of the
generated code.

As mentioned in Section 3, all variables are emitted as primitives unless f2j determines that they
must be wrapped in objects.

4.1.4. DATA statements

The initialization performed by DATA statements is emitted as part of the special method named
<clinit>. This works well under the current assumption that all variables are all emitted as static
class variables.

4.1.5. Intrinsic functions

Some Fortran intrinsic functions may be translated directly to a corresponding method in the Java core
API. For example, many mathematical functions such as ABS, SQRT and LOG have direct analogues
in the java.lang.Math package. However, many intrinsics do not directly correspond to any
existing Java method and, in these cases, we have implemented the intrinsics in Java. The intrinsics we
implemented in Java include DIM, LOG10 and hyperbolic trigonometric functions. It is worth noting
that the code used to implement these unsupported intrinsics could have been inlined in the bytecode.
However, there are several reasons for not inlining. First, as there is an upper bound on the code size
of a Java method, it is prudent to avoid code expansion where possible. Also, modern JIT compilers
are likely to inline these small methods where appropriate. Finally, implementing these unsupported
intrinsics in Java simplifies the implementation and maintenance of the code generator.

4.1.6. Common blocks

Each common block in the Fortran source is emitted in a separate class file, containing all the variables
of the original common block as static variables. If multiple declarations of the same common block
exist in the Fortran source, f2j merges the variable names from each declaration into one name.

Tables I and II show examples of the code generated for common blocks. All variables in a common
block are wrapped in objects because it may be difficult to determine whether one of the variables is
used in a pass-by-reference context when program units are translated separately.

4.1.7. EQUIVALENCE statements

Generally, EQUIVALENCE statements are difficult to translate since Java does not allow overlapping
memory regions. However, f2j can handle a limited form of EQUIVALENCE as long as the variables
being equivalenced do not differ in type and are not offset from each other. This restriction implies that
any two arrays being equivalenced must specify indices of 1. However, it is allowable to equivalence
arrays of different dimensions (e.g. a one-dimensional integer array to a two-dimensional integer array),

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 213

Table I. Common block example.

Fortran source Bytecode (disassembled with D-Java [17])

PROGRAM CTEST public final class ctest_cblk extends Object
INTEGER A,B,C >> ACC_SUPER bit set <<
COMMON /CBLK/A,B,C {
... public static org.netlib.util.intW a;

public static org.netlib.util.intW b;
public static org.netlib.util.intW c;

...

Table II. Common block example with merged variable names.

Fortran source Bytecode (disassembled with D-Java [17])

PROGRAM CTEST2 public final class ctest2_cblk extends Object
INTEGER A,B,C >> ACC_SUPER bit set <<
COMMON /CBLK/A,B,C {
... public static org.netlib.util.intW x_a;
SUBROUTINE SUB() public static org.netlib.util.intW y_b;
INTEGER X,Y,Z public static org.netlib.util.intW z_c;
COMMON /CBLK/X,Y,Z ...
...

as all arrays are linearized to one dimension and the access is basically the same regardless of the
number of dimensions.

To handle the limited EQUIVALENCE, we simply merge the equivalenced variable names into a
single variable, as shown in Table III. Then this single variable is loaded in place of any of the variables
that were previously equivalenced.

4.1.8. I/O statements

While I/O is not the most critical aspect of translating numerical libraries such as LAPACK, we have
found it useful to partially implement Fortran I/O in order to translate the test routines, which read
in the parameters and write out the results. Unformatted WRITE statements are easily implemented
with Java’s println() method, but formatted WRITE statements first require analyzing the
corresponding FORMAT statement and creating a StringBuffer to hold the output before calling
println(). READ is implemented using an external library, EasyIn [18]. File I/O is not yet
implemented.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

214 K. SEYMOUR AND J. DONGARRA

Table III. EQUIVALENCE example.

Fortran source Bytecode (disassembled with D-Java [17])

PROGRAM ETEST public final class Etest extends Object
INTEGER A(100), B(10,10) >> ACC_SUPER bit set <<
EQUIVALENCE (A,B) {
... public static int[] a_b;

...

4.1.9. Passing functions as arguments

Strictly speaking, passing a function name as an argument to another function, as done in Fortran,
is not possible in Java. A Java programmer may pass a class as an argument, but not an individual
method. The closest Java analogue is passing an interface which implements a method with a pre-
determined name. That technique is not really suitable for use with f2j because every generated class
file would be forced to implement the interface, whether it was actually intended to be passed to another
function or not, thus adding extra overhead even if the implementation is simply a call to the translated
Fortran routine. Another option is using inner classes to implement the callback, but this also mandates
generating extra code.

Rather than using interfaces, f2j uses Java’s ‘reflection’ mechanism to determine the appropriate
method to invoke, based on the assumption that f2j always places the generated Fortran routine in the
first method of the class. The caller only needs to pass a new instance of the class corresponding to the
translated Fortran routine.

4.1.10. Other limitations

Aside from the limitations already mentioned (I/O, EQUIVALENCE, etc.), f2j does not currently
support multiple entry points (ENTRY statement), alternate returns, statement label assignment or
complex arithmetic.

Although it is not part of the Fortran 77 specification, some compilers support the RECURSIVE
keyword to signify that recursion is allowed. The Java platform places no artificial restrictions on
recursion, but support for recursive functions is still not completely implemented in f2j. The obstacle
to fully implementing recursion is allowing recursion interferes with the scalar wrapper optimization
phase (see Section 3.2), but only when the recursion is indirect and one of the arguments requires an
object wrapper.

Some of these restrictions are more serious than others. For example, code that relies heavily on
EQUIVALENCE will not likely translate well because such a language construct does not map well
to the Java language. The LAPACK source code only uses EQUIVALENCE in a few cases. In those
cases, the EQUIVALENCE statements are in a form that f2j can handle correctly, as described in
Section 4.1.7.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 215

These limitations did not prevent us from completely translating the double-precision routines in
BLAS and LAPACK. The current release of JLAPACK consists of all 346 double-precision routines
translated from LAPACK and all 33 double-precision routines from BLAS, totaling 137 406 lines of
Java source. Additionally, all of the double-precision BLAS and LAPACK testers have been translated,
totaling over 100 000 lines of Java source. Complex arithmetic is not supported by f2j yet, but
given the existence of several Java libraries [19–21], we expect that the f2j code generator could be
straightforwardly modified to support complex arithmetic using one of these implementations.

4.2. Implementation

The code generator is implemented in two passes. The first pass generates the appropriate instructions
and the second pass calculates the maximum stack depth and fills in any branch targets that were not
known during the first pass. There are backpatching techniques that would allow filling in the branch
targets in one pass [14], but since we are using two passes in any case, we can more easily perform this
task during the second pass.

4.2.1. Instruction generation

First, the code generator traverses the abstract syntax tree, generating Java source code as well as
the JVM opcodes. However, at this point the opcodes have empty operand fields for branch target
addresses because for forward branches, we do not yet know the address of the target instruction
as it has not yet been generated. In such cases, we simply save a pointer to the current node and
update its branch target pointer after generating the nodes in between the current node and the target.
This is useful when the GOTO is ‘implicit’ in the sense that it never appeared as a GOTO in the
original source (i.e. it is used to implement some Fortran control structure such as a DO loop). GOTO
statements which appear explicitly in the Fortran source require slightly different handling since the
branch target is an arbitrary label whose corresponding node we do not have access to at this point.
Also there is no inherent structure as with a DO loop, where the goto always branches to a specific
instruction. Thus, during this phase, we create a table which maps the labels in the original source to
the corresponding instruction addresses. Then, in the next phase, we can easily fill in the branch target
address for any GOTO statement by looking up its branch label.

4.2.2. Calculating stack depth and branch targets

At this point, the AST has been fully traversed, we have generated the Java source code and we have
built a control flow graph representing the bytecode. Each node may have pointers to other nodes, which
represent the branch targets. Each instruction may or may not have a single branch target depending
on the instruction type‡. For example, an iload instruction has no branch target whereas icmpeq,
being a conditional branch, does have a branch target. Now, as we traverse this graph, we can fill in the
empty branch target offsets by following the pointer to the target node and examining its address.

‡We are conveniently ignoring tableswitchwhich has many branch targets because f2j never actually generates this opcode.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

216 K. SEYMOUR AND J. DONGARRA

Also during this phase, we maintain information about the current stack depth at each node because
the class file format requires specifying the maximum stack depth that will be encountered during
execution of the method. The stack depth at any given node is a function of the stack depth at the
prior node and the characteristics of the current instruction (e.g. iadd would pop two integers off
the stack and push one integer on, for a net difference of one). This also provides a nice opportunity
for sanity checking—for example, if the current instruction branches back to another instruction for
which the stack depth has already been calculated, then we can check whether the expected stack depth
matches the current stack depth. In other words, a given instruction could be the target of multiple other
instructions and the stack depth at all of those instructions must be consistent (otherwise, this indicates
an error in the code generator).

Finally, at this point we have built a complete data structure representing the class file—this includes
constant pool, fields and methods—which we emit in the format dictated by the Java Virtual Machine
Specification [22].

4.3. Differences in code generation

Since we did not want to eliminate the existing code generator (which emits Java source), we designed
the new code generator to emit both Java source and JVM bytecode during the same pass. For the
most part, the bytecode can be generated simultaneously with the Java source code, but there are some
exceptions as follows.

• Obviously, GOTO statements are handled differently in bytecode since we can easily emit a
goto JVM instruction, but we must generate ‘dummy’ method calls in Java source.

• DO loops are emitted as for loops in Java source, with the initial, terminal and incrementation
parameters straightforwardly translated to Java-style loop control expressions. However, when
translating a DO loop directly to bytecode, we follow the sequence outlined in the Fortran 77
specification [23] and calculate the iteration count§ before entering the loop. Then at each
iteration, the iteration count is decremented until it reaches 0, at which point the loop is
terminated.

• Variable declarations are handled a bit differently in bytecode. Each variable must be stored in
the fields table of the current class, but explicit initialization code is only generated for array
and reference data types. When generating bytecode, we must create a special method named
<clinit> into which we place the initialization code. However, with Java source, this is
handled by javac.

• Type casts are much more important when generating bytecode than Java source since each
instruction is type-specific. Thus, in the many instances that we could ‘get away’ with generating
an expression in Java without any explicit casts, we must generate type conversion instructions
in bytecode.

When the code generator needs to toggle between modes—such as to suspend Java source code
generation and begin generating code in bytecode only—we simply set the appropriate global file

§The iteration count is defined as max(int((m2 − m1 + m3)/m3), 0), where m1 is the initial value m2 is the terminal value and
m3 is the incrementation value [23].

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 217

pointer to /dev/null and call the routine as usual. There is no need for any modification to the code
generation routines.

4.4. Resolving calls to external functions

This section describes a technique for resolving calls to functions or subroutines which do not appear
in the original source file. By ‘resolving’, we mean determining the correct calling sequence for the
function call, which depends on its method signature. For example, consider the following Fortran
program segment:

INTEGER X(10)

CALL FUNC1(X(5))
CALL FUNC2(X(5))

[...]
SUBROUTINE FUNC1(A)
INTEGER A

[...]
SUBROUTINE FUNC2(A)
INTEGER A(*)

The first subroutine, FUNC1, expects a scalar argument, while FUNC2 expects an array argument.
These two calls would be generated identically in a standard Fortran compiler, regardless of how
FUNC1 and FUNC2 were defined—the address of the fifth element of X would be passed to the
subroutine in both cases. However, things are not as simple in Java due to the lack of pointers.
To simulate passing array subsections, as necessary for the second call, we actually pass two
arguments—the array reference and an additional integer offset parameter, as shown in the right column
of Table IV.

However the first subroutine expects a scalar, so we should pass only the value¶ of the fifth element,
without any offset parameter, as shown in the left column of Table IV.

Notice that the primary difference between the two calling sequences is that when calling FUNC1, the
array is first dereferenced using the iaload instruction. Also note that the purpose of the arithmetic
expression is to decrement the index by 1 to compensate for the fact that Java has 0-based indexing
whereas Fortran has 1-based indexing.

The only way to determine the correct calling sequence for any given call is to examine the
parameters of the corresponding subroutine or function declaration. This is only possible if the
declaration had been parsed at the same time as the current program unit, meaning that for code
generation to work properly all the source files had to be joined into a big monolithic input file.

This was a serious limitation, especially for large libraries, because a modification to any part of the
code requires re-compiling all of the source. There are at least a couple of ways to solve this problem.
One way would be to obtain the parameter information directly from class files that have already been

¶In this case, assume that FUNC1 does not modify the argument, otherwise things get even more complex. See [9] for a
description of handling that case.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

218 K. SEYMOUR AND J. DONGARRA

Table IV. Differences in argument passing.

Calling FUNC1 Calling FUNC2

getstatic #15 <Field Hello.x:int[]> getstatic #15 <Field Hello.x:int[]>
iconst_5 iconst_5
iconst_1 iconst_1
isub isub
iaload invokestatic #28
invokestatic #22 <Method Func2.func2(int[],int):void>

<Method Func1.func1(int):void>

generated. While this would work well, f2j is written in C and does not have access to nice Java features
like reflection, so it would require a lot of extra code to parse the class files. Instead, we use a more
lightweight procedure in f2j. At compile-time, f2j creates a descriptor file, which is a text file containing
a list of every method generated. Each line of the descriptor file contains the following information.

• Class name—the fully qualified class name which contains the given method.
• Method name—the name of the method itself.
• Method descriptor—this method’s descriptor, which is a string representing the types of all the

arguments as well as the return type.

To resolve a subroutine or function call, we search all the descriptor files for the matching method name
and examine the method descriptor. Based on the method descriptor, we can then correctly generate
the calling sequence. The code generator locates the descriptor files based on colon-separated paths
specified on the command line or in the environment variable F2J SEARCH PATH.

5. EXPERIMENTAL RESULTS

When evaluating the results of our code generator, the two aspects we are most concerned with are
correctness and efficiency of the generated code. Correctness means that the generated code produces
the same numerical results as the native-compiled Fortran code, within a certain degree of tolerance
inherent in performing floating-point calculations on different systems. We also measure efficiency
in terms of the original Fortran code, using the performance of optimized Fortran as the standard by
which we evaluate the efficiency of our code. Optimized Fortran is almost certainly going to represent
an upper-bound on the performance potential of the code that f2j generates.

5.1. Correctness

To date, the BLAS and LAPACK libraries have been the main testbed for f2j. Thus, when evaluating
correctness we are primarily concerned with the results generated by the Java implementation of the
BLAS and LAPACK libraries. Fortunately the original Fortran distributions of these libraries include

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 219

Table V. Number of test cases.

Test category Number of test cases

BLAS Level 1 Unreported
BLAS Level 2 30 409
BLAS Level 3 27 864
LAPACK Linear Solver 316 206
LAPACK Eigenvalue 719 291

Table VI. Performance on the double-precision Linpack benchmark (n = 500).

Raw performance Performance relative
Compilation method Command line (Mflop/s) to optimized Fortran

Optimized Fortran f77 -O3 34.7 1.00
Unoptimized Fortran f77 14.1 0.41
Bytecode f2java 10.9 0.31
Bytecode (-server) f2java 25.9 0.75
Java Source f2java ; javac 10.3 0.30
Java Source (-server) f2java ; javac 27.9 0.80

comprehensive testing routines to verify the numerical results of the computations. To determine the
correctness of the code generated by f2j, we translated all of the double-precision BLAS and LAPACK
test routines to Java and ran them against the Java implementations of the BLAS and LAPACK libraries.
The total number of test cases executed is quite large, as shown in Table V. All the numerical tests
passed within the default thresholds given in the original LAPACK test input files.

5.2. Efficiency

To measure the performance of the code generated by f2j, we translated the Fortran 77 source code
for the Linpack benchmark [24] in several different ways, as shown in Table VI. The first two entries
represent native-compiled Fortran code, both optimized and unoptimized. The third entry represents
the performance of the JVM bytecode generated by f2j. The fourth entry is the same as the third except
that the -server flag was specified when running the benchmark. The last two entries represent the
Java source code generated by f2j (which includes subsequent compilation with javac and GOTO
translation).

The test machine is a Sun Ultra-5 running Solaris 2.7 with Sun’s J2SE 1.3.0 (with HotSpot enabled).
We used Sun’s f77 5.0 compiler to obtain the results for native-compiled Fortran code.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

220 K. SEYMOUR AND J. DONGARRA

DEC DED DSG SEP SVD
0

50
100
150
200
250
300
350
400
450
500
550

T
im

e
(s

ec
)

Optimized Fortran
Fortran
Java

Figure 2. Elapsed time executing various LAPACK test routines.

As Table VI shows, the bytecode generated by f2j achieves roughly one-third the performance of
optimized Fortran code in ‘client’ mode and over three-quarters of the performance of optimized
Fortran code in ‘server’ mode. Since f2j generates the bytecode and Java source simultaneously, it
is convenient to compare the performance of the directly-generated bytecode to the bytecode resulting
from generating Java source and subsequently compiling using javac. Depending on the JVM used
(and in the case of Hotspot, which JVM flag is specified), in some cases the Java source is faster and
in other cases the directly-generated bytecode is faster.

As another informal benchmark, we compared the time required to run several of the LAPACK
test routines. As Figure 2 shows, the results are similar to the Linpack benchmark results. The code
generated by f2j is close to the performance of unoptimized Fortran, but still lags behind optimized
Fortran speeds.

5.3. The object-oriented approach

At the outset of the f2j project, JVM technology had not matured to the point that it was feasible
from a performance standpoint to make heavy use of object-oriented techniques in linear algebra
code. However, with recent developments in Virtual Machines and JIT compilers, much of the
overhead associated with such techniques has been eliminated. As an example, we compare the
performance of the code automatically generated by f2j with a representative of the object-oriented
approach—HARPOON/JLAPACK [4]. Figure 3 shows the performance of double-precision matrix
multiply, in which the object-oriented approach can exceed the performance of procedural-style code.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

AUTOMATIC TRANSLATION OF FORTRAN TO JVM BYTECODE 221

200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300

N (Matrix Size = N x N)

0

10

20

30

40

50

M
flo

p/
s

f2j
HARPOON

Figure 3. Comparison of f2j-generated DGEMM with the object-oriented version.

The performance difference is due to the cumbersome array indexing expressions in our automatically-
generated code.

The clear conclusion is that we need not fear the performance consequences of using object-oriented
techniques. To a certain extent, it would be feasible to rewrite our code generator in terms of object-
oriented techniques. For example, it would be straightforward to modify our code generator such
that instead of using standard Java arrays, it generates the code in terms of a multidimensional array
package, such as those proposed in [25]. Other techniques, such as recognizing vector operations and
generating the appropriate method call, would require more significant modifications.

6. CONCLUSION

We have demonstrated that it is feasible to automatically convert very large Fortran libraries to
JVM bytecode with reasonable performance. Certainly at this point the performance of the translated
numerical code does not match hand-tuned Java algorithms, but that is not the problem f2j is designed
to address. The f2j project intends to bootstrap the use of Java for numerical and scientific computing
by providing the widest possible range of useful and reliable numerical routines in a pure Java format.
However, having said that, we think there is still a lot of opportunity for improving the performance of
the generated code. Currently the bytecode is generated in a very straightforward manner, without any
optimization. The next stage in the development of the bytecode generator will be the implementation
of a code optimization stage to increase the performance of the generated code. In particular, we would
like to investigate the impact of various compiler optimizations on the performance of the JLAPACK

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

222 K. SEYMOUR AND J. DONGARRA

library routines. These techniques could be beneficial not only to our project, but to the Java community
as a whole.

We also plan to remedy some of f2j’s limitations—complex arithmetic support, better I/O handling
and some syntactic restrictions inherent in our parser. The eventual goal is to have a tool with a
usefulness more general than just translating numerical libraries.

REFERENCES

1. Sun Microsystems Inc. The Java Language Environment. Sun Microsystems, Mountain View, CA, 1995.
2. Hicklin J, Moler C, Webb P, Boisvert RF, Miller B, Pozo R, Remington K. JAMA: A Java Matrix Package.

http://math.nist.gov/javanumerics/jama [June 1999].
3. Stewart GW. JAMPACK: A Java Package for Matrix Computations.

ftp://math.nist.gov/pub/Jampack/Jampack/AboutJampack.html [February 1999].
4. Blount B, Chatterjee S. An evaluation of Java for numerical computing. Scientific Programming 1999; 7(2):97–119.
5. DeriVision Inc. LinJa. http://www.derivision.com/products/index.html [April 2000].
6. DRA Systems. OR-Objects. http://opsresearch.com/OR-Objects/index.html [December 1999].
7. Riley C, Chatterjee S, Biswas R. High-performance Java codes for computational fluid dynamics. Proceedings of the ACM

2001 Java Grande/ISCOPE Conference. ACM, 2001.
8. VanderHeyden W, Dendy E, Padial-Collins N. CartaBlanca—A pure-Java, component-based systems simulation tool for

coupled non-linear physics on unstructured grids. Proceedings of the ACM 2001 Java Grande/ISCOPE Conference. ACM,
2001.

9. Doolin D, Dongarra J, Seymour K. JLAPACK—Compiling LAPACK Fortran to Java. Scientific Programming 1999;
7(2):111–138.

10. Lawson C, Hanson R, Kincaid D, Krogh F. Basic linear algebra subprograms for Fortran usage. ACM Transactions on
Mathematical Software 1979; 5:308–325.

11. Dongarra J, Du Croz J, Hammarling S, Hanson R. An extended set of fortran basic linear algebra subprograms. ACM
Transactions on Mathematical Software 1988; 14(1):1–32.

12. Dongarra J, Du Croz J, Duff I, Hammarling S. A set of level 3 basic linear algebra subprograms. ACM Transactions on
Mathematical Software 1990; 16(1):1–17.

13. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S,
McKenney A, Sorensen D. LAPACK Users’ Guide, Third Edition. SIAM: Philadelphia, PA, 1999.

14. Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools. Addison-Wesley: Reading, MA, 1988.
15. Artigas P, Gupta M, Midkiff S, Moreira J. High performance computing in Java: Language and compiler issues.

Proceedings of the 12th Workshop on Language and Compilers for Parallel Computers. Springer, 1999.
16. Meyer J, Downing T. Java Virtual Machine. O’Reilly & Associates: Sebastopol, CA, 1997.
17. Meyer J. D-Java. http://www.cat.nyu.edu/meyer/jvm/djava [December 1996].
18. van der Linden P. EasyIn. http://www.afu.com/EasyIn.txt [May 1997].
19. Wu P, Midkiff S, Moreira J, Gupta M. Efficient support for complex numbers in Java. Proceedings of the ACM 1999 Java

Grande Conference. ACM Press: New York, NY, 1999.
20. Anderson A. Complex Arithmetic for Java. http://www.almide.demon.co.uk/html/Complex/Complex for Java.html

[March 2001].
21. Brophy J. Design of Class Complex. http://www.vni.com/corner/garage/grande/complex.htm [2001].
22. Lindholm T, Yellin F. The Java Virtual Machine Specification. Addison-Wesley: Berkeley, CA, 1997.
23. American National Standards Institute. American National Standards Institute Programming Language FORTRAN. X3.9-

1978, ANSI, New York, 1978.
24. Dongarra J. Linpack Benchmark. http://www.netlib.org/benchmark/linpackd [October 1992].
25. Moreira J, Midkiff S, Gupta M. A comparison of three approaches to language, compiler, and library support for

multidimensional arrays in Java. Proceedings of the ACM 2001 Java Grande/ISCOPE Conference. ACM Press: New York,
NY, 2001.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:207–222

	1 INTRODUCTION
	2 MOTIVATION
	3 IMPLEMENTATION
	3.1 Lexical analysis and parsing
	3.2 Optimizing the use of scalar wrappers
	3.3 Type assignment
	3.4 Code generation

	4 GENERATING BYTECODE
	4.1 Design
	4.1.1 General
	4.1.2 GOTO statements
	4.1.3 Variables
	4.1.4 DATA statements
	4.1.5 Intrinsic functions
	4.1.6 Common blocks
	4.1.7 EQUIVALENCE statements
	4.1.8 I/O statements
	4.1.9 Passing functions as arguments
	4.1.10 Other limitations

	4.2 Implementation
	4.2.1 Instruction generation
	4.2.2 Calculating stack depth and branch targets

	4.3 Differences in code generation
	4.4 Resolving calls to external functions

	5 EXPERIMENTAL RESULTS
	5.1 Correctness
	5.2 Efficiency
	5.3 The object-oriented approach

	6 CONCLUSION

