
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:1481–1493

The design and implementation
of the parallel out-of-core
ScaLAPACK LU, QR, and
Cholesky factorization routines

Eduardo D’Azevedo1,∗ and Jack Dongarra2

1Computer Science and Mathematics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831–6367, U.S.A.
2Computer Science and Mathematics Division, Oak Ridge National
Laboratory. Department of Computer Science, University of
Tennessee, Knoxville, Tennessee 37996-1301, U.S.A.

SUMMARY

This paper describes the design and implementation of three core factorization routines—LU, QR, and
Cholesky—included in the out-of-core extension of ScaLAPACK. These routines allow the factorization
and solution of a dense system that is too large to fit entirely in physical memory. The full matrix is stored
on disk and the factorization routines transfer sub-matrice panels into memory. The ‘left-looking’ column-
oriented variant of the factorization algorithm is implemented to reduce the disk I/O traffic. The routines
are implemented using a portable I/O interface and utilize high-performance ScaLAPACK factorization
routines as in-core computational kernels.

We present the details of the implementation for the out-of-core ScaLAPACK factorization routines, as
well as performance and scalability results on a Beowulf Linux cluster. Copyright 2000 John Wiley &
Sons, Ltd.

KEY WORDS: linear solver; out-of-core solver; LU factorization; numerical library

∗Correspondence to: Eduardo D’Azevedo, Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831–6367, U.S.A.

Contract/grant sponsor: National Science Foundation; contract/grant number: ASC-9005933
Contract/grant sponsor: Defense Advanced Research Projects Agency; contract/grant number: DAAL03-91-C-0047
Contract/grant sponsor: Office of Scientific Computing, U.S. Department of Energy; contract/grant number: DE-AC05-
00OR22725
Contract/grant sponsor: National Science Foundation Science and Technology Center Cooperative Agreement; contract/grant
number: CCR-8809615
Contract/grant sponsor: U.S. Government; contract/grant number: DE-AC05-00OR22725

Received 1998
Copyright 2000 John Wiley & Sons, Ltd. Revised 26 July 2000



1482 E. D’AZEVEDO AND J. DONGARRA

1. INTRODUCTION

This paper describes the design and implementation of three core factorization routines—LU, QR
and Cholesky—included in the out-of-core extensions of ScaLAPACK. These routines allow the
factorization and solution of a dense linear system that is too large to fit entirely in physical
memory.

Although current computers have unprecedented memory capacity, out-of-core solvers are still
needed to tackle even larger applications. A Linux PC is commonly equipped with 512 Mbytes of
memory and is capable of performing over 500 Mflops s−1. Even on a large problem that occupies all
available memory, the in-core solution of dense linear problems typically takes less than 30 minutes.
On a Beowulf network of workstations (NOW) with 50 processors, it may need about two hours
to solve a dense complex system of order 40 000. This suggests that the processing power of such
high-performance machines is under-utilized and much larger systems can be tackled before run time
becomes prohibitively large. Therefore, it is natural to develop parallel out-of-core solvers to tackle
large dense linear systems. Large dense problems arise from the modeling effect of RF heating of
plasmas in fusion applications [1–3] and modeling high-resolution three-dimensional wave scattering
problems using the boundary element formulation [4–7]. Although a fast multipole formulation (FMM)
may be an efficient alternative in some cases [8], a dense matrix formulation is still necessary in
complicated geometry or when an FMM version is not available.

This development effort has the objective of producing portable software that achieves high
performance on distributed memory multiprocessors, shared memory multiprocessors, and NOW. The
software has been portered to run on IBM SP, Compaq Alpha cluster, SGI multiprocessors, and
Beowulf Linux clusters. The implementation is based on modular software building blocks such as
the PBLAS [9–11] (parallel basic linear algebra subprograms), and the BLACS [12,13] (basic linear
algebra communication subprograms). Proven and highly efficient ScaLAPACK factorization routines
are used for in-core computations.

Earlier out-of-core dense linear algebra efforts are reported in the literature [14–17]. A recent
work [18] describes out-of-core Cholesky factorization using PLAPACK on the CRAY T3E and HP
Exemplar. Our work is built upon the portable ScaLAPACK library and includes the LU, QR, and
Cholesky methods. Since pivoting is required in LU factorization, the current algorithm mainly uses
variable width column panels, whereas [18] is based on decomposition by square submatrices. Our
work improves upon [19] in performing parallel I/O based on an in-core ScaLAPACK block-cyclic
distribution. Moreover, the current implementation has more efficient handling of pivoting by storing
partially pivoted factors on disk and performing an extra pass to permute the factors to final order.
Another optimization technique is the use of variable width panels in the Cholesky factorization; as
the factorization progresses, a wider (shorter) panel can be used in the same amount of memory. This
reduces the number of passes and hence the total volume of I/O required.

One key component of an out-of-core library is an efficient and portable I/O interface. We have
implemented a high-level I/O layer to encapsulate machine or architecture specific characteristics
to achieve good throughput. The I/O layer eases the burden of manipulating out-of-core matrices
by directly supporting the reading and writing ofunalignedsections of ScaLAPACK block-cyclic
distributed matrices.

Section2 describes the design and implementation of the portable I/O library. The implementation
of the ‘left-looking’ column-oriented variant of the LU, QR, and Cholesky factorization is described

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1483

in Section3. Finally, Section4 summarizes the performance on a Beowulf Linux cluster built with
common off-the-shelf components.

2. I/O LIBRARY

This section describes the overall design of the I/O library, including both the high-level user interface
and the low-level implementation details needed to achieve good performance.

2.1. Low-level details

Each out-of-core matrix is associated with a device unit number (between 1 and 99), much like
the familiar Fortran I/O subsystem. Each I/O operation is record-oriented, where each record
is conceptually anMMB× NNB ScaLAPACK block-cyclic distributed matrix. Moreover, if this
record/matrix is distributed with (MB, NB) as the block size on aMP× NQ processor grid, then
mod(MMB, MB∗ MP) = 0 and mod(NNB, NB∗ NQ) = 0, i.e.MMB(andNNB) are exact multiples of
MB∗MP(andNB∗NQ). Data to be transferred are first copied or assembled into an internal temporary
buffer (record). This arrangement reduces the number oflseek() system calls and encourages large
contiguous block transfers, but incurs some overhead in memory-to-memory copies. All processors
are involved in each record transfer. Individually, each processor writes out an (MMB/MP) by (NNB/NQ)
matrix block.MMBandNNBcan be adjusted to achieve good I/O performance with large contiguous
block transfers or to match RAID disk stripe sizes. A drawback of this arrangement is that I/O on
narrow block rows or block columns will involve only processors aligned on the same row or column
of the processor grid, and thus may not obtain full bandwidth from the I/O subsystem. An optimal
block size for I/O transfer may not be equally efficient for in-core computations. For example, on the
Intel Paragon,MB(or NB) can be as small as 8 for good efficiency but requires at least 64 kbytes of I/O
transfers to achieve good performance to the parallel file system. Atwo-dimensional cyclically-shifted
block layoutthat achieves good load balance, even when operating on narrow block rows or block
columns, was proposed in MIOS (matrix input-output subroutines) used in SOLAR [22]. However, this
scheme is more complex to implement (SOLAR does not yet use this scheme). Moreover, another data
redistribution is required to maintain compatibility with in-core ScaLAPACK software. A large data
redistribution would incur a large message volume and a substantial performance penalty, especially in
a NOW environment.

The I/O library supports both a ‘shared’ and ‘distributed’ organization of disk layout. In a
‘distributed’ layout, each processor opens a unique file on its local disk (e.g. ‘/tmp’ partition on
workstations) to be associated with the matrix. This is most applicable on a NOW environment or
where a parallel file system is not available. On systems where a shared parallel file system is available
(such asMASYNCmode for PFS on Intel Paragon), all processors open a common shared file. Each
processor can independently performlseek/read/write requests to this common file. Physically,
the ‘shared’ layout can be the concatenation of the many ‘distributed’ files. Another organization is
to ‘interlace’ contributions from individual processors into each record on the shared file. This may
lead to better pre-fetch caching by the operating system, but requires anlseek() operation by each
processor, even on reading sequential records. On the Paragon,lseek() is an expensive operation

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



1484 E. D’AZEVEDO AND J. DONGARRA

Table I. Descriptor for in-core ScaLAPACK matrix.

Symbolic
DESC() name Scope Definition

1 DTYPE A Global The descriptor type DTYPEA = 1.
2 CTXT A Global The BLACS context handle, indicating the

BLACS process grid over which the global
matrix A is distributed. The context itself
is global, but the handle (the integer value)
may vary.

3 M A Global The number of rows in the global array A.
4 N A Global The number of columns in the global array A.
5 MB A Global The blocking factor used to distribute

the rows of the array.
6 NB A Global The blocking factor used to distribute

the columns of the array.
7 RSRCA Global The process row over which the first row

of the array A is distributed.
8 CSRCA Global The process column over which the first

column of the array A is distributed.
9 LLD A Local The leading dimension of the local

array. LLD A ≥MAX(1, LOCp(M A)).

since it generates a message to the I/O nodes. Note that most implementations of NFS (Networked File
System) do not correctly support multiple concurrent read/write requests to a shared file.

Unlike MIOS in SOLAR, only a synchronous I/O interface is provided for reasons of portability
and simplicity of implementation. The current I/O library is written in C and uses standard POSIX
I/O operations. System-dependent routines, such as NX-specificgopen() or eseek() system calls,
may be required to access files over 2 Gbytes. Asynchronous I/O that overlaps computation and I/O is
most effective only when processing time for I/O and computation are closely matched. Asynchronous
I/O provides little benefits in cases where in-core computation or disk I/O dominates overall time.
Asynchronous pre-fetch reads or delayed buffered writes also require dedicating scarce memory for
I/O buffers. Having less memory available for the factorization may increase the number of passes
over the matrix and increase overall I/O volume.

2.2. User Interface

To maintain ease of use and compatibility with existing ScaLAPACK software, a new ScaLAPACK
array descriptor has been introduced. This out-of-core descriptor (DTYPE = 601 ) extends the
existing descriptor for dense matrices (DTYPE = 1) to encapsulate and hide implementation-specific
information such as the I/O device associated with an out-of-core matrix and the layout of the data on
disk.

The in-core ScaLAPACK calls for performing a Cholesky factorization may consist of:

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1485

Table II. Descriptor for out-of-core matrix.

Symbolic
DESC() name Scope Definition

1 DTYPE A Global The descriptor type DTYPEA = 601
for an out-of-core matrix.

2 CTXT A Global The BLACS context handle, indicating the
MP× NQBLACS process grid over
which the global matrix A is distributed.
The context itself is global,
but the handle (the integer value) may vary.

3 M A Global The number of rows in the global array A.
4 N A Global The number of columns in the global array A.
5 MB A Global The blocking factor used to distribute

the rows of theMMB× NNBsubmatrix.
6 NB A Global The blocking factor used to distribute

the columns of theMMB× NNBsubmatrix.
7 RSRCA Global The process row over which the first row

of the array A is distributed.
8 CSRCA Global The process column over which the first

column of the array A is distributed.
9 LLD A Local The conceptual leading dimension of the global

array. Usually this is taken to beM .
10 IODEV A Global The I/O unit device number associated with

the out-of-core matrix A.
11 SIZEA Local The amount of local in-core memory available for

the factorization of A.

*
* initialize descriptor for matrix A
*

CALL DESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,LDA,INFO)
*
* perform Cholesky factorization
*

CALL PDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

where the array descriptorDESCAis an integer array of length 9 whose entries are described by TableI.
The out-of-core version is very similar:

*
* initialize extended descriptor for out-of-core matrix A
*

CALL PFDESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTXT,IODEV,
‘Distributed’,MMB,NNB,ASIZE, ‘/tmp/a.data’//CHAR(0),INFO)

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



1486 E. D’AZEVEDO AND J. DONGARRA

*
* perform out-of-core Cholesky factorization
*

CALL PFDPOTRF(UPLO,N,A,IA,JA,DESCA,INFO)

where the array descriptorDESCAis an integer array of length 11 whose entries are described by
TableII .

HereASIZE is the amount of in-core buffer storage available in array ‘A’ associated with the out-
of-core matrix. A‘Distributed’ layout is prescribed and the file‘/tmp/a.data’ is used on
unit deviceIODEV. Each I/O record is anMMBby NNBScaLAPACK block-cyclic distributed matrix.

The out-of-core matrices can also be manipulated by read/write calls. For example,

CALL ZLAREAD(IODEV, M,N, IA,JA, B, IB,JB, DESCB, INFO)

reads in anM by N sub-matrix starting at position(IA,JA) into an in-core ScaLAPACK matrix
B(IB:IB+M-1,JB:JB+N-1) . Best performance is achieved with data transfer exactly aligned to
the local processor and block boundary; otherwise redistribution by message passing may be required
for unaligned non-local data transfer to matrixB.

3. LEFT-LOOKING ALGORITHM

The three factorization algorithms, LU, QR, and Cholesky, use a similar ‘left-looking’ organization
of computation. The left-looking variant is first described as a particular choice in a block-partitioned
algorithm in Section3.1.

The actual implementation of the left-looking factorization uses two full in-core column panels (call
these X, Y; see Figure1). Panel X isNNBcolumns wide and panel Y occupies the remaining memory
but should be at leastNNBcolumns wide. Panel X acts as a buffer to hold and apply previously
computed factors to panel Y. Once all updates are performed, panel Y is factored using an in-core
ScaLAPACK algorithm. The results in panel Y are then written to disk.

The following subsections describe in more detail the implementation of LU, QR, and Cholesky
factorization.

3.1. Partitioned factorization

The ‘left-looking’ and ‘right-looking’ variants of LU factorization can be described as particular
choices in a partitioned factorization. The reader can easily generalize the following for a QR or
Cholesky factorization.

Let anm× n matrixA be factored intoPA = LU whereP is a permutation matrix, andL andU

are the lower and upper triangular factors. We treat matrixA as a block-partitioned matrix

A =
(

A11 A12
A21 A22

)

whereA11 is a squarek × k sub-matrix.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1487

Panel X Panel Y

Figure 1. The algorithm requires two in-core panels.

1. The assumption is that the firstk columns are already factored

P1

(
A11
A21

)
=

(
L11
L21

)
(U11) (1)

where

A11= L11U11, A21= L21U11 (2)

If k ≤ n0 is small enough, a fast non-recursive algorithm such as ScaLAPACKPxGETRFmay
be used directly to perform the factorization; otherwise, the factors may be obtained recursively
by the same algorithm.

2. Apply the permutation to the unmodified sub-matrix(
Ã12

Ã22

)
= P1

(
A12
A22

)
(3)

3. ComputeU12 by solving the triangular system

L11U12= Ã12 (4)

4. Perform update tõA22

Ã22← Ã22− L21U12 (5)

5. Recursively factor the remaining matrix

P2Ã22= L22U22 (6)

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



1488 E. D’AZEVEDO AND J. DONGARRA

6. Final factorization is

P2P1

(
A11 A12
A21 A22

)
=

(
L11 0
L̃21 L22

)(
U11 0
U12 U22

)
, L̃21 = P2L21 (7)

Note that the above is the recursively-partitioned LU factorization proposed by Toledo [20] if k

is chosen to ben/2. A right-looking variant results ifk = n0 is always chosen where most of the
computation is the updating of

Ã22← Ã22− L21U12

A left-looking variant results ifk = n− n0.
The in-core ScaLAPACK factorization routines for LU, QR, and Cholesky factorization, use a right-

looking variant for good load balancing [21]. Other work has shown [19,15] that, for an out-of-core
factorization, a left-looking variant generates less I/O volume compared to the right-looking variant.
Toledo and Gustavson [22] shows that the recursively-partitioned algorithm (k = n/2) may be more
efficient than the left-looking variant when a very large matrix is factored with minimal in-core storage.

3.2. LU factorization

The out-of-core LU factorizationPFxGETRFinvolves the following operations.

1. If no updates are required in factorizing the first panel, all available storage is used as one panel:

(i) LAREAD: read in part of original matrix
(ii) PxGETRF: ScaLAPACK in-core factorization(

L11
L21

)
(U11)← P1

(
A11
A21

)

(iii) LAWRITE: write out factors

Otherwise, partition storage into panels X and Y.
2. We compute updates into panel Y by reading in the previous factors (NNBcolumns at a time)

into panel X. Let panel Y hold(A12, A22)
t :

(i) LAREAD: read in part of factor into panel X
(ii) LAPIV : physically exchange rows in panel Y to match permuted ordering in panel X

(
Ã12

Ã22

)
← P1

(
A12
A22

)

(iii) PxTRSM: triangular solve to compute upper triangular factor

U12← L−1
11 Ã12

(iv) PxGEMM: update remaining lower part of panel Y

Ã22← Ã22− L21U12

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1489

3. Once all previous updates are performed, we apply in-core ScaLAPACKPxGETRFto compute
LU factors in panel Y

L22U22← P2Ã22

The results are then written back out to disk.
4. A final extra pass over the computed lower triangularL matrix may be required to rearrange the

factors in the final permutation order

L̃12← P2L12

Note that althoughPFxGETRFcan accept a general rectangular matrix, a column-oriented algorithm
is used. The pivot vector is held in memory and not written out to disk. During the factorization,
factored panels are stored on disk with only partially or ‘incompletely’ pivoted row data, whereas
factored panels were stored in original unpivoted form in [19] and repivoted ‘on-the-fly’. The current
scheme is more complex to implement but reduces the number of row exchanges required.

3.3. QR factorization

The out-of-core QR factorizationPFxGEQRFinvolves the following operations.

1. If no updates are required in factorizing the first panel, all available memory is used as one panel:

(i) LAREAD: read in part of original matrix
(ii) PxGEQRF: in-core factorization

Q1

(
R11
0

)
←

(
A11
A21

)

(iii) LAWRITE: write out factors.

Otherwise, partition storage into panels X and Y.
2. We compute updates into panel Y by bringing in previous factorsNNBcolumns at a time into

panel X:

(i) LAREAD: read in part of factor into panel X
(ii) PxORMQR: apply Householder transformation to panel Y(

R21

Ã22

)
← Qt

1

(
A12
A22

)

3. Once all previous updates are performed, we apply in-core ScaLAPACKPxGEQRFto compute
QR factors in panel Y

Q2R22← Ã22

The results are then written back out to disk.

Note that to be compatible with the encoding of the Householder transformation in theTAU(*)
vector as used in ScaLAPACK routines, a column-oriented algorithm is used even for rectangular
matrices. TheTAU(*) vector is held in memory and is not written out to disk.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



1490 E. D’AZEVEDO AND J. DONGARRA

3.4. Cholesky factorization

The out-of-core Cholesky factorizationPxPOTRFfactors a symmetric matrix intoA = LLt without
pivoting. The algorithm involves the following operations.

1. If no updates are required in factorizing the first panel, all available memory is used as one panel:

(i) LAREAD: read in part of original matrix
(ii) PxPOTRF: ScaLAPACK in-core factorization

L11← A11

(iii) PxTRSM: modify remaining column

L21← A21L
−t
11

(iv) LAWRITE: write out factors.

Otherwise, partition storage into panels X and Y. We exploit symmetry by operating on only the
lower triangular part of matrixA in panel Y. Thus for the same amount of storage, the width of
panel Y increases as the factorization proceeds.

2. We compute updates into panel Y by bringing in previous factorsNNBcolumns at a time into
panel X:

(i) LAREAD: read in part of lower triangular factor into panel X
(ii) PxSYRK: symmetric update to diagonal block of panel Y
(iii) PxGEMM: update remaining columns in panel Y.

3. Once all previous updates are performed, we perform a right-looking in-core factorization of
panel Y. Loop over each block column (widthNB) in panel Y:

(i) factor diagonal block on one processor usingPxPOTRF
(ii) update same block column usingPxTRSM
(iii) symmetric update of diagonal block usingPxSYRK
(iv) update remaining columns in panel Y usingPxGEMM.

Finally the computed factors are written out to disk.

Although, only the lower triangular portion of matrix A is used in the computation, the code still
requires disk storage for the full matrix to be compatible with ScaLAPACK. ScaLAPACK routine
PxPOTRFaccepts only a square matrix distributed with square sub-blocks,MB=NB.

4. NUMERICAL RESULTS

Since electromagnetic scattering and fusion applications usecomplex*16 LU solver most heavily,
we focus our attention on numerical experiments on LU factorization. Thecomplex*16 version of

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1491

Table III. Performance of in-core ScaLAPACK computations.

M P ×Q Fact (s) Solve (s) Mflops CPU−1

LU 4500 7× 8 74.8 2.4 58.0
LU 16 000 7× 8 1266.4 9.6 154.0

LL ′ 4500 7× 8 77.8 1.8 27.9
LL ′ 7000 7× 8 203.3 3.3 40.2
LL ′ 10 000 8× 7 417.0 6.0 57.1
LL ′ 16 000 7× 8 824.8 12.5 118.2

QR 4500 7× 8 95.3 21.4 91.1
QR 7000 7× 8 255.2 48.8 128.0
QR 10 000 8× 7 622.0 83.6 153.1

the prototype code† was tested on theTORC II ‡ Beowulf Linux cluster. Each node consists of a dual
Pentium II at 450 Mhz with 512 Mbytes and a local 8 Gbytes IDE disk running Redhat Linux 6.2 with
smp kernel.MPIBLACSwas used with LAM/MPI§ version 6.3 with a single 100 Mbit s−1 ethernet
connection per node. Two MPI tasks per node were spawned to fully utilize both processors. A
single CPU can achieve about 320 Mflops s−1 in ZGEMM operations with optimized BLAS libraries
produced by ATLAS¶. The experiments were performed withMB=NB=50, NRHS=10for solution with
10 vectors, and 10 000 000 words (160 Mbytes) per task was allocated to the out-of-core software. The
out-of-core arrays were stored on the local disk using the’DISTRIBUTED’ option.

As in [18], we report performance in Mflops s−1 CPU−1. TableIII shows the performance of in-
core ScaLAPACK solvers. The results show that performance increases with problem size to about
154 Mflops s−1 CPU−1. Note that the lower performance for Cholesky (LL ′) is due to the high
proportion of work performed in triangular solves (PxTRSM).

TableIV shows the performance of out-of-core ScaLAPACK on various problem sizes and processor
grid configurations. Note that if sufficient in-core storage is available, the library will by-pass the panel
algorithm and revert to the in-core ScaLAPACK routines. The ‘fact’ time is the total elapsed time
(including I/O) to perform out-of-core factorization; the ‘solve’ time is the total elapsed time (including
I/O) for solution with 10 vectors. The ‘read’ and ‘write’ times are the total accumulated elapsed time
spent in I/O routines on processor 0. As observed in [18], the performance for the out-of-core solver
(190 Mflops s−1 CPU−1) is higher than that for the in-core solver since most of the computation is
performed in large blocks. On the largest problem (N = 80 000) that took 35.6 h to perform the LU

†Available fromhttp://www.netlib.org/scalapack/prototype .
‡http://www.epm.ornl.gov/torc/ . Special thanks to Stephen Scott for arranging dedicated use of this cluster.
§http://www.mpi.nd.edu/lam .
¶http://www.netlib.org/atlas/index.html .

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



1492 E. D’AZEVEDO AND J. DONGARRA

Table IV. Results of out-of-core computations.

M P ×Q Fact (s) Solve (s) Read (s) Write (s) Mflop CPU−1

LU 16 000 4× 4 3670.0 180.1 276.3 141.4 186.0
QR 16 000 4× 4 8139.5 549.0 234.1 115.7 167.7
LL ′ 16 000 4× 4 2815.8 222.7 259.9 103.6 121.2
LU 32 000 4× 4 28 850.2 508.2 1303.7 614.8 189.3

LU 16 000 4× 8 1866.9 123.4 114.2 48.4 182.8
QR 16 000 4× 8 3520.3 506.1 149.6 57.2 193.9
LL ′ 16 000 4× 8 1878.5 100.1 126.8 51.8 90.9
LU 32 000 4× 8 15 730.4 312.8 634.1 316.6 173.6
LU 40 000 4× 8 32 420.1 442.5 1100.3 494.8 164.5

LU 20 000 8× 7 2301.4 81.5 23.4 54.2 165.5
QR 20 000 8× 7 3917.0 405.6 41.0 44.3 194.5
LL ′ 20 000 8× 7 2072.3 77.3 42.1 46.1 91.9
LU 32 000 8× 7 8316.7 288.6 310.2 160.0 187.6
LU 45 000 8× 7 22 508.2 481.5 729.5 418.0 192.8
LL ′ 45 000 8× 7 17 946.0 332.9 384.3 191.2 120.9
LU 80 000 8× 7 128 154.9 898.7 2352.1 1275.1 190.2

factorization on 28 nodes (10.6 Gflops s−1), each MPI task created a 1.8 Gbytes‖ local file. The time for
I/O (about 3627s)∗∗ was a small fraction of overall time. This suggests the out-of-core computation on
this machine is compute bound and overlapping computation with asynchronous I/O may not produce
significant benefits.

5. CONCLUSIONS

The out-of-core ScaLAPACK extension provides an easy to use interface similar to the in-core
ScaLAPACK library. The software is portable and achieves high performance even on a Beowulf Linux
PC cluster using off-the-shelf components. The software allows very large problems of several times
total available memory to be solved with high performance.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense
Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research

‖2 Gbytes is the maximum file size under the Linux ext2 file system.
∗∗Effective I/O throughput about 2.8 Mbytes s−1 CPU−1.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493



THE DESIGN AND IMPLEMENTATION OF CORE FACTORIZATION ROUTINES 1493

Office; by the Office of Scientific Computing, U.S. Department of Energy, under Contract DE-AC05-00OR22725;
and by the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-
8809615, and Center for Computational Sciences at Oak Ridge National Laboratory for the use of the computing
facilities. The submitted manuscript has been authored by a contractor of the U.S. Government under contract
DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish
or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

REFERENCES

1. Berry LA, Jaeger EF, Batchelor DB. Wave-induced momentum transport and flow drive in tokamak plasmas.Physics
Review Letters1999;82:1871.

2. Jaeger EF, Berry LA, Batchelor DB. Second-order radio frequency kinetic theory with applications to flow drive and
heating in tokamak plasmas.Physics of Plasmas2000;7:641.

3. Jaeger EF, Berry LA, Batchelor DB. Full-wave calculation of sheared poloidal flow driven by high harmonic ion Bernstein
waves in tokamak plasmas.Physics of Plasmas2000;7(8):3319–3329.

4. Cwik T, van de Geijn R, Patterson J. The application of parallel computation to integral equation models of electromagnetic
scattering.Journal of the Optical Society of America A1994;11(4):1538.

5. Demkowicz L, Karafiat A, Oden JT. Solution of elastic scattering problems in linear acoustics using h-p boundary element
method.Computer Methods in Applied Mechanics and Engineering1992; (101):251.

6. Geng P, Oden JT, van de Geijn R. Massively parallel computation for acoustical scattering problems using boundary
element methods.Journal of Sound and Vibration1996;191(1):145.

7. Semeraro BD, Gray LJ. PVM implementation of the symmetric-Galerkin method.Engineering Analysis with Boundary
Elements1997;19(1):67.

8. Fu Y, Klimkowski KJ, Rodin GJ, Berger E, Browne JC, Singer JK, van de Geijn RA, Vemaganti KS. A fast solution
method for three-dimensional many-particle problems of linear elasticity.International Journal of Numerical Methods in
Engineering1998;42:1215.

9. Choi J, Dongarra J, Ostrouchov S, Petitet A, Walker D, Whaley RC. A proposal for a set of parallel basic linear algebra
subprograms.Technical Report CS-95-292, University of Tennessee, Knoxville, TN, May 1995 (also available as LAPACK
Working Note #100).

10. Choi J, Dongarra J, Walker D, PB-BLAS: A set of parallel block basic linear algebra subroutines.Concurrency: Practice
and Experience1996;8:517–535.

11. Petitet A. Algorithmic redistribution methods for block cyclic decompositions.PhD Thesis, University of Tennessee,
Knoxville, Tennessee, 1996 (also available as LAPACK Working Note # 128 and #133).

12. Dongarra J, van de Geijn RA. Two dimensional basic linear algebra communication subprograms.Technical Report CS-
91-138, University of Tennessee, Knoxville, Tennessee, 1991 (also available as LAPACK Working Note #37).

13. Dongarra J, van de Geijn RA. Whaley RC. Two dimensional basic linear algebra communication subprograms.
Environments and Tools for Parallel Scientific Computing, Vol 6. Elsevier Science Publishers B.V., 1993; 31–40.

14. Brunet J-P, Pederson P, Johnsson SL. Load-balanced LU and QR factor and solve routines for scalable processors with
scalable I/O.Proceedings of the 17th IMACS World Congress, 1994.

15. Klimkowski K, van de Geijn RA. Anatomy of a parallel out-of-core dense linear solver.Proceedings of the International
Conference on Parallel Processing, 1995.

16. Scott DS. Out of core dense solvers on Intel parallel supercomputers.Proceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, 1992; 484.

17. Scott DS. Parallel I/O and solving out-of-core systems of linear equations.Proceedings of the 1993 DAGS/PC Symposium,
Darmouth Institute for Advanced Graduate Studies, 1993; 123.

18. Reiley WC, van de Geijn RA. POOCLAPACK: Parallel out-of-core linear algebra package.Technical Report 99-33,
Department of Computer Science, The University of Texas, Austin, Texas, 1999 (also available as PLAPACK Working
Note #10).

19. Dongarra J, Hammarling S, Walker D. Key concepts for parallel out-of-core LU factorization.Computers and Mathematics
with Applications1998;35(7):13–31.

20. Toledo S. Locality of reference in LU decomposition with partial pivoting.Technical Report RC 20344(1/19/96), IBM
Research Division, T. J. Watson Research Center, Yorktown Heights, New York, 1996.

21. Choi J, Dongarra JJ, Ostrouchov LS, Petitet AP, Walker DW, Whaley RC. The design and implementation of the
ScaLAPACK LU, QR, and Cholesky factorization routines.Technical Report ORNL/TM-12470, Oak Ridge National
Laboratory, 1994.

22. Toledo S, Gustavson F. The design and implementation of SOLAR, a portable library for scalable out-of-core linear algebra
computations.IOPADS Fourth Annual Workshop on Parallel and Distributed I/O. ACM Press, 1996; 28–40.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1481–1493


	1 INTRODUCTION
	2 I/O LIBRARY
	2.1 Low-level details
	2.2 User Interface

	3 LEFT-LOOKING ALGORITHM
	3.1 Partitioned factorization
	3.2 LU factorization
	3.3 QR factorization
	3.4 Cholesky factorization

	4 NUMERICAL RESULTS
	5 CONCLUSIONS

