
A COMPARISON OF PARALLEL SOLVERS FOR DIAGONALLYDOMINANT AND GENERAL NARROW-BANDED LINEARSYSTEMSPETER ARBENZy , ANDREW CLEARYz , JACK DONGARRAx , AND MARKUS HEGLAND{Abstract. We investigate and compare stable parallel algorithms for solving diagonally domi-nant and general narrow-banded linear systems of equations. Narrow-banded means that the band-width is very small compared with the matrix order and is typically between 1 and 100. The solverscompared are the banded system solvers of ScaLAPACK [11] and those investigated by Arbenz andHegland [3, 6]. For the diagonally dominant case, the algorithms are analogs of the well-knowntridiagonal cyclic reduction algorithm, while the inspiration for the general case is the lesser-knownbidiagonal cyclic reduction, which allows a clean parallel implementation of partial pivoting. Thesedivide-and-conquer type algorithms complement �ne-grained algorithms which perform well only forwide-banded matrices, with each family of algorithms having a range of problem sizes for which itis superior. We present theoretical analyses as well as numerical experiments conducted on the IntelParagon.Key words. narrow-banded linear systems, stable factorization, parallel solution, cyclic reduc-tion, ScaLAPACK1. Introduction. In this paper we compare implementations of direct parallelmethods for solving banded systems of linear equationsAx = b: (1.1)The n-by-n matrix A is assumed to have lower half-bandwidth kl and upper half-bandwidth ku, meaning that kl and ku are the smallest integers that implyaij 6= 0 =) �kl � j � i � ku:We assume that the matrix A has a narrow band, such that kl + ku � n. Linearsystems with wide band can be solved e�ciently by methods similar to full systemsolvers. In particular, parallel algorithms using two-dimensional mappings (such asthe torus-wrap mapping) and Gaussian eliminationwith partial pivoting have achievedreasonable success [16, 10, 18]. The parallelism of these algorithms is the same as thatof dense matrix algorithms applied to matrices of size minfkl; kug, independent of n,from which it is obvious that small bandwidths severely limit the usefulness of thesealgorithms, even for large n.Parallel algorithms for the solution of banded linear systems with small band-width have been considered by many authors, both because they serve as a canonicalform of recursive equations, as well as having direct applications. The latter includethe solution of eigenvalue problems with inverse iteration [17], spline interpolationand smoothing [9], and the solution of boundary value problems for ordinary dif-ferential equations using �nite di�erence or �nite element methods [27]. For theseyInstitute of Scienti�c Computing, Swiss Federal Institute of Technology (ETH), 8092 Zurich,Switzerland (arbenz@inf.ethz.ch)zCenter for Applied Scienti�c Computing, Lawrence Livermore National Laboratory, P.O. Box808, L-561, Livermore CA 94551, U.S.A. (acleary@llnl.gov)xDepartment of Computer Science, University of Tennessee, Knoxville TN 37996-1301, U.S.A.(dongarra@cs.utk.edu){Computer Sciences Laboratory, RSISE, Australian National University, Canberra ACT 0200,Australia (Markus.Hegland@anu.edu.au)



2 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDone-dimensional applications, bandwidths typically vary between 2 and 30. The dis-cretisation of partial di�erential equations leads to applications with slightly largerbandwidths, for example, the computation of uid ow in a long narrow pipe. In thiscase, the number of grid points orthogonal to the ow direction is much smaller thanthe number of grid points along the ow and this results in a matrix with bandwidthrelatively small compared to the total size of the problem. There is a tradeo� forthese type of problems between band solvers and general sparse techniques, in thatthe band solver assumes that all of the entries within the band are nonzero, whichthey are not, and thus performs unnecessary computation, but its data structures aremuch simpler and there is no indirect addressing as in general sparse methods.In section 2 we review an algorithm for the class of nonsymmetric narrow-bandedmatrices that can be factored stably without pivoting, such as diagonally dominantmatrices or M-matrices. This algorithm has been discussed in detail in [3, 11] wherethe performance of implementations of this algorithm on distributed memory mul-ticomputers like the Intel Paragon [3] or the IBM SP/2 [11] is analyzed as well.Johnsson [23] considered the same algorithm and its implementation on the ThinkingMachine CM-2 which required a di�erent model for the complexity of the interproces-sor communication. Related algorithms have been presented in [26, 15, 14, 7, 12, 28]for shared memory multiprocessors with a small number of processors. The algorithmthat we consider here can be interpreted as a generalization of cyclic reduction (CR), ormore usefully, as Gaussian elimination applied to a symmetrically permuted system ofequations (PAPT )Px = Pb. The latter interpretation has important consequences,such as it implies that the algorithm is backward stable [5]. It can also be used to showthat the permutation necessarily causes Gaussian elimination to generate �ll-in whichin turn increases the computational complexity as well as the memory requirementsof the algorithm.In section 3 we consider algorithms for solving (1.1) for arbitrary (narrow-) bandedmatrices A that may require pivoting for stability reasons. This algorithm was pro-posed and thoroughly discussed in [6]. It can be interpreted as a generalization ofthe well-known (block) tridiagonal cyclic reduction to (block) bidiagonal matrices,and again, it is also equivalent to Gaussian elimination applied to a permuted (non-symmetrically for the general case) system of equations (PAQT )Qx = Pb. Blockbidiagonal cyclic reduction for the solution of banded linear systems was introducedby Hegland [19].In section 4 we compare the ScaLAPACK implementations [11] of the two algo-rithms above with the implementations by Arbenz [3] and Arbenz and Hegland [6],respectively, by means of numerical experiments conducted on the Intel Paragon.ScaLAPACK is a software package with a diverse user community. Each subroutineshould have an easily intelligible calling sequence (interface) and work with easilymanageable data distributions. These constraints may reduce the performance ofthe code. The other two codes are experimental. They have been optimized for lowcommunication overhead. The number of messages sent among processors and themarshaling process has been minimized for the task of solving a system of equations.The code does, for instance, not split the LU factorization from the forward elimi-nation which prohibits the solution of a sequence of systems of equations with equalsystem matrix (without factoring the system matrix over and over again). Our com-parisons shall give an answer to the question how much performance the ScaLAPACKalgorithms may have lost through the constraint to be user friendly. We further con-tinue a discussion started in [5] on the overhead introduced by partial pivoting. Is



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 3it necessary to have a pivoting as well as a non-pivoting algorithm for nonsymmetricband systems in ScaLAPACK? In LAPACK [2], for instance, there are only pivotingsubroutine for solving dense and banded systems of equations, respectively.2. Parallel Gaussian elimination for the diagonally dominant case. Inthis section we assume that the matrix A = [aij]i;j=1;:::;n in (1.1) is diagonally domi-nant, i.e., that jaiij > nXj=1j 6=i jaijj; i = 1; : : : ; n:Then the system of equations can be solved by Gaussian elimination without pivotingin the following three steps:1. Factorization into A = LU .2. Solution of Lz = y (forward elimination)3. Solution of Ux = z (backward substitution)The lower and upper triangular Gauss factors L and U are banded with bandwidthskl and ku, respectively, where kl and ku are the half-bandwidths of A. The numberof oating point operations 'n for solving the banded system (1.1) with r right-handsides by Gaussian elimination is (see also e.g. [17])'n = (2ku+1)kln + (2kl+2ku�1)rn+ O((k+r)k2); k := maxfkl; kug: (2.1)For solving (1.1) in parallel on a p processor multicomputer we partition thematrix A, the solution vector x and the right-hand hand side b according to0BBBBBBB@A1 BU1BL1 C1 DU2DL2 A2 BU2. . . . . . . . .BLp�1 Cp�1 DUpDLp Ap1CCCCCCCA0BBBBBBB@ x1�1x2...�p�1xp 1CCCCCCCA = 0BBBBBBB@ b1�1b2...�p�1bp 1CCCCCCCA ; (2.2)where Ai 2 Rni�ni ; Ci 2 Rk�k; xi; bi 2 Rni; �i; �i 2 Rk; andPpi=1 ni+(p�1)k = n.This block tridiagonal partition is feasible only if ni > k. This condition restricts thedegree of parallelism, i.e. the maximal number of processor p that can be exploited forparallel execution, p < (n+k)=(2k). The structure of A and its submatrices is depictedin Fig. 2.1(a) for the case p = 4. In ScaLAPACK [11, 8], the local portions of A oneach processor are stored in the LAPACK scheme as depicted in Fig. 2.2. This inputscheme requires a preliminary step of moving the triangular block DLi from processori�1 to processor i. This transfer of the block can be overlapped with computationand has a negligible e�ect on the overall performance of the algorithm [11]. The inputformat used by Arbenz does not require this initial data movement.
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(a) (b)Fig. 2.1. Non-zero structure (shaded area) of (a) the original and (b) the block odd-evenpermuted band matrix with kl > ku.Fig. 2.2. Storage scheme of the band matrix. The thick lines frame the local portions of A.We now execute the �rst step of block-cyclic reduction [22]. This is best regardedas block Gaussian elimination of the block odd-even permuted A,266666666666666664 A1 BU1A2 DL2 BU2. . . . . . . . .Ap�1 . . . BUp�1Ap DLpBL1 DU2 C1BL2 . . . C2. . . . . . . . .BLp�1 DUp Cp�1

3777777777777777752666666666666664 x1x2...xp�1xp�1�2...�p�13777777777777775 = 2666666666666664 b1b2...bp�1bp�1�2...�p�13777777777777775 : (2.3)The structure of this matrix is depicted in Fig. 2.1(b). We write (2.3) in the form� Â BUBL C � �x�� = �b�� ; (2.4)where the respective submatrices and subvectors are indicated by the lines in equa-tion (2.3). If LR = Â is the ordinary LU factorization of Â then� Â BUBL C � = � L 0BLR�1 I� �R L�1BU0 S � ; S = C �BLÂ�1BU : (2.5)The matrices BLi R�1i , L�1i BUi , DUi R�1i , and L�1i DLi overwrite BLi , BUi , DUi , andDUi , respectively. As DUi , and DLi , su�er from �ll-in, cf. Fig. 2.3, additional memory
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Fig. 2.3. Fill-in produced by block Gaussian elimination. The bright-shaded areas indicateoriginal nonzeros, the dark-shaded areas indicate the (potential) �ll-in.space for (kl + ku)n oating point numbers has to be provided. The overall memoryrequirement of the parallel algorithm is about twice as high as that of the sequentialalgorithm. The blocks BLi R�1i and L�1i BUi keep the structure of BLi and BUi and canbe stored at their original places, cf. Fig. 2.2.The Schur complement S of Â in A is a diagonally dominant (p�1)-by-(p�1)block tridiagonal matrix whereby the blocks are k-by-k,S = 0BBBBBB@T1 U2V2 T2 U3. . . . . . . . .. . . . . . Up�1Vp�1 Tp�11CCCCCCA ; (2.6)where Ti = Ci �BLi A�1i BUi �DUi+1A�1i+1DLi+1= Ci � (BLi R�1i )(L�1i BUi )� (DUi+1R�1i+1)(L�1i+1DLi+1);Ui = �(DUi R�1i )(L�1i BUi ); Vi = �(BLi R�1i )(L�1i DLi ):As indicated in Fig. 2.3 these blocks are not full if kl < k or ku < k. This is takeninto account in the ScaLAPACK implementation but not in the implementation byArbenz where the block-tridiagonal CR solver treats the k-by-k blocks as full blocks.Using the factorization (2.5), (2.4) gets�R L�1BUS � �x�� = � LBLR�1 I��1 �b�� = � L�1�BLR�1L�1 I� �b�� =: �c� ; (2.7)where the sections ci and �i of the vectors c and � are given byci = L�1i bi; i = �i � BLi R�1i ci �DUi+1R�1i+1ci+1:Up to this point of the algorithm, no interprocessor communication is necessary,as each processor independently factors its diagonal block of Â, Ai = LiRi, and



6 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDcomputes the blocks BLi R�1i , L�1i BUi , DUi R�1i , L�1i DLi , and L�1i bi. Each processorforms its portions of the reduced system S� =  ,��DUi R�1i L�1i DLi �DUi R�1i L�1i BUi�BLi R�1i L�1i DLi Ci � BLi R�1i L�1i BUi � 2 R2k�2k and � �DUi R�1i ci�i �BLi R�1i ci� 2 R2k:Standard theory in Gaussian elimination shows that the reduced system is diagonallydominant. One option is to solve the reduced system on a single processor. This maybe reasonable on shared memory multiprocessors with small processor numbers [25,p.124], but complexity analysis reveals that this quickly dominates total computationtime on multicomputers with many processors. An attractive parallel alternative forsolving the system S� =  is block cyclic reduction [4]. Implementationally, thereduction step described above is repeated until the reduced system becomes a densek-by-k system, which is trivially solved on a single processor. Since the order of theremaining system is halved in each reduction step, blog2(p�1)c steps are needed. Notethat the degree of parallelism is also halved in each step.In order to understand how we proceed with CR we take another look at howthe (2p�1)-by-(2p�1) block tridiagonal matrix A in (2.2) is distributed over the pprocessors. Processor i, i < p, holds the 2-by-2 diagonal block �Ai BUiBLi Ci � togetherwith the block DUi above it and the block DLi to the left of it. To obtain a similarsituation with the reduced system we want the 2-by-2 diagonal blocks �Ti�1 UiVi Ti�of S in (2.6) together with the block Ui�1 above and Vi�1 to the left to reside onprocessor i, i = 2; 4; : : : which then allows to proceed with these reduced number ofprocessors as earlier. To that end the odd-numbered processor i has to send someof its portion of S to the neighboring processors i�1 and i+1. The even-numberedprocessors will then continue to compute the even-numbered portions of �. Havingdone so the odd-numbered processors receive �i�1 and �i+1 from their neighboringprocessors which allows them to compute their portion �i of � provided they knowthe i-th block row of S. This is easily attained if in the beginning of this CR stepnot only the odd-numbered but all processors send the needed information to theirneighbors.Finally, if the vectors �i; 1 � i < p; are known, each processor can compute itssection of x, x1 = R�11 (c1 � L�1i BU1 �1);xi = R�1i (ci � L�1i DL1 �i�1 � L�1i BUi �i); 1 < i < p;xp = R�1p (cp � L�1p DLp �p�1): (2.8)Notice that the even-numbered processors have to receive �i�1 from their direct neigh-bors. In the back substitution phase (2.8) each processor can again proceed indepen-dently without interprocessor communication.The parallel complexity of the above divide-and-conquer algorithm as imple-mented by Arbenz [4, 3] is'AHn;p � 2kl(4ku+1)np + (4kl+4ku + 1)rnp+�323 k3 + 9k2r + 4ts + 4k(k + r)tw� blog2(p � 1)c: (2.9)



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 7In the ScaLAPACK implementation, the factorization phase is separated from theforward substitution phase. This allows a user to solve several systems of equationswithout the need to factor the system matrix over and over again. In the implementa-tion by Arbenz, several systems can be solved simultaneously but only in connectionwith the matrix factorization. The close coupling of factorization and forward substi-tution reduces communication at the expense of exibility of the code. In the ScaLA-PACK solver the number of messages sent is higher while overall message volume andoperation count remain the same,'ScaLAPACKn;p � 2kl(4ku+1)np + (4kl+4ku + 1)rnp+�323 k3 + 9k2r + 6ts + 4k(k + r)tw� blog2(p � 1)c: (2.10)The complexity for solving a system with an already factored matrix consists of theterms in (2.10) containing r, the number of right-hand sides. In (2.9) and (2.10) wehave assumed that the time for the transmission of a message of length n oatingpoint numbers from one to another processor is independent of the processor distanceand can be represented in the form [24]ts + ntw:ts denotes the startup time relative to the time of a oating point operation, i.e.the number of ops that can be executed during the startup time. tw denotes thenumber of oating point operations that can be executed during the transmissionof one word, here a (8-Byte) oating point number. Notice that ts is much largerthan tw. On the Intel Paragon, for instance, the transmission of m bytes takes about0:11+5:9�10�5m msec. The bandwidth between applications is thus about 68 MB/s.Comparing with the 10 Mop/s performance for the LINPACK benchmark we getts�1100 and tw�4:7 if oating point numbers are stored in 8 bytes of memory. Onthe SP/2 or the SGI/Cray T3D the characteristic numbers ts and tw are even bigger.Dividing (2.1) by (2.9) and by (2.10), respectively, the speedups becomeSAHn;p = 'n'AHn;p ; SScaLAPACKn;p = 'n'ScaLAPACKn;p ; (2.11)The processor number for which highest speedup is observed is O(n=k) [4]. Speedupand e�ciency are relatively small, however, due to the high redundancy of the parallelalgorithm. Redundancy is the ratio of the serial complexity of the parallel algorithmand the serial algorithm, i.e. it indicates the parallelization overhead with respect tooating point operations. If r is small, say r= 1, then the redundancy is about 4 ifkl = ku and even higher otherwise [5]. If r is bigger, then the redundancy tends to2. In Fig 2.4 speedup is plotted versus processor number for three di�erent problemsizes as predicted by (2.11). The Paragon values for ts = 1000 and tw = 4:7 havebeen chosen. Because there are fewer messages sent in the Arbenz/Hegland imple-mentation than in the ScaLAPACK implementation, the former can be expected toyield slightly higher speedups. However, the gain in exibility with the ScaLAPACKroutine certainly justi�es the small performance loss. Notice however that the formu-lae given for 'AHn;p and for 'ScaLAPACKn;p must be considered very approximative. Theassumption that all oating point operations take the same amount of time is com-pletely unrealistic on modern RISC processors. Also, the numbers tw and ts are crude
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Fig. 2.4. Speedups vs. processor numbers for various problem-sizes as predicted by (2.11).Drawn lines indicate the Arbenz/Hegland implementation, dashed lines the ScaLAPACK implemen-tation.estimates of the reality. However, the saw-teeth caused by the term blog2(p� 1)c areclearly visible in timings [3]. The numerical experiments of section 4 will give a morerealistic comparison of the implementations and will tell more on the value of theabove complexity measures.3. Parallel Gaussian elimination with partial pivoting. In this section wetreat the case where A is not diagonally dominant. Then the LU factorization maynot exist or its computation may be unstable. Thus, it is advisable to use partialpivoting with elimination in this case. The corresponding factorization is PA = LUwhere P is the row permutation matrix. Pivoting requires additionally about klncomparisons and n row interchanges. More importantly, the bandwidth of U can getas large as kl + ku. (L looses its bandedness but has still only kl + 1 nonzeros percolumn and can therefore be stored at its original place.) The wider the band of Uthe higher the number of arithmetic operations and our previous upper bound for theoating point operations increases in the worst case to'ppn = (2kl+ 2ku+1)kln + (4kl+2ku+1)rn+ O((k+r)k2); k := kl + ku; (3.1)where again r is the number of right-hand sides. This bound is obtained by countingthe ops for solving a banded system with lower and upper half-bandwidth kl andkl + ku, respectively, without pivoting. The overhead introduced by pivoting, whichmay be as big as (kl+ku+1)=(ku+1), is inevitable if stability of the LU factorizationcannot be guaranteed. Therefore the methods for solving banded systems in packageslike LAPACK incorporate partial pivoting and accept the overhead. (This is actuallya de�ciency of LAPACK which has been eliminated in ScaLAPACK: the memoryspace wasted is simply too big. Further, back-substitution can be implemented faster



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 9if it is known that there are no row interchanges.) Note that this overhead is particularfor banded and sparse linear systems, it does not occur with dense matrices!
(a) (b)Fig. 3.1. Non-zero structure (shaded area) of (a) the original and (b) the block column permutedband matrix with kl > ku.The partition (2.2) is not suited for the parallel solution of (1.1) if partial pivotingis to be applied. In order that pivoting can take place independently in block columnsthey must not have elements in the same row. Therefore, the separators have to bek := kl + ku columns wide, cf. Fig. 3.1(a). As discussed in detail in [6] we considerthe matrix A as a cyclic band matrix by moving the last kl rows to the top. Then wepartition this matrix into a cyclic lower block bidiagonal matrix,0BBBBBBB@A1 D1B1 C1D2 A2. . . . . .Dp ApBp Cp1CCCCCCCA0BBBBBBB@x1�1x2...xp�p1CCCCCCCA = 0BBBBBBB@b1�1b2...bp�p1CCCCCCCA ; (3.2)where Ai 2 Rmi�ni ; Ci 2 Rk�k; xi; bi 2 Rni; �i; �i 2 Rk; k := kl + ku; andPpi=1mi = n, mi = ni + k. If ni > 0 for all i, then the degree of parallelism is p [6].For solving Ax = b in parallel we apply a generalization of cyclic reduction thatpermits pivoting [19]. We again discuss the �rst step more closely. The later steps aresimilar except the matrix blocks are square. We �rst (formally) apply a block odd-even permutation to the columns of the matrix in (3.2). For simplicity of expositionwe consider the case p = 4. Then, the permuted system becomes266666666664 A1 D1B1 C1A2 D2B2 C2A3 D3B3 C3A4 D4B4 C4 3777777777750BBBBBBBB@x1...x4�1...�41CCCCCCCCA = 0BBBBBBB@b1�1b2...b4�41CCCCCCCA : (3.3)



10 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDThe structure of the matrix in (3.3) is depicted in Fig. 3.1(b). Notice that the permu-tation that moves the last rows to the top was done for pedagogical reasons: it makesthe diagonal blocks Ai and Ci square and the �rst elimination step gets formallyequal with e the successive ones. A di�erent point of view (which leads to the samefactorisation) could allow the �rst and the last diagonal blocks to be non-square.The local matrices are stored in the LAPACK storage scheme for non-diagonallydominant matrices [2, 8]: in addition to the kl + ku + 1 rows that store the originalportions of the matrix, an additional kl+ ku rows have to be provided for storing the�ll-in. In the ScaLAPACK algorithm processor i stores the blocks Ai, Bi, Ci, Di+1.In the Arbenz/Hegland implementation processor i stores Ai, Bi, Ci, and Di. It isassumed that DTi is stored in an extra k-by-ni array. The ScaLAPACK algorithmconstructs this situation by an initial communication step that consumes a negligiblefraction of the overall computing time, as in the discussion in the previous section. Inboth algorithms, the blocks Bp, Cp, and D1 do not really appear but are incorporatedinto Ap.Let Pi �AiBi� = Li � RiOk�ni� ; 1 � i � p; (3.4)be the LU factorizations of the blocks on the left of (3.3), and letL�1i Pi �Omi�kCi � = �XiTi � ; L�1i Pi � DiOk�k� = �YiVi� ; L�1i Pi �bi�i� = �cii� :(3.5)Then, we can rewrite (3.3) in the form
(a) (b)Fig. 3.2. Fill-in produced by GE with partial pivoting. Here p = 4.



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 112664L�11 P1 L�12 P2 L�13 P3 L�14 P43775266666666664 A1 D1B1 C1A2 D2B2 C2A3 D3B3 C3A4 D4B4 C4 377777777775= 266666666664 R1 X1 Y1O T1 V1R2 Y2 X2O V2 T2R3 Y3 X3O V3 T3R4 Y4 X4O V4 T4 377777777775= P 266666666664 R1 X1 Y1R2 Y2 X2R3 Y3 X3R4 Y4 X4T1 V1V2 T2V3 T3V4 T4 377777777775 (3.6)P denotes odd-even permutation of the rows. The structure of the second and thirdmatrix in (3.6) is depicted in Fig. 3.2(a) and 3.2(b), respectively. The last equationshows that again we end up with a reduced systemS� = 0BBB@T1 V1V2 T2. . . . . .Vp Tp1CCCA � =  (3.7)with the same cyclic block bidiagonal structure as the original matrix A in (3.2).The reduced system can be treated as before by dp=2e processors. This procedureis discussed in detail by Arbenz and Hegland [6].Finally, if the vectors �i; 1 � i < p; are known, each processor can compute itssection of x, x1 = R�11 (c1 �X1�1 � Y1�p); (3.8)xi = R�1i (ci � Yi�i�1 �Xi�i); 1 < i � p: (3.9)The back substitution phase does not need interprocessor communication.The parallel complexity of this algorithm is'pp;AHn;p � (4k2 + (6k � 1)r)np + �233 k3 + 12k2r + 2ts + 3k2tw� blog2(p)c: (3.10)



12 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDin the Arbenz/Hegland implementation [6] and'pp;ScaLAPACKn;p = 'pp;AHn;p + tsblog2(p)c: (3.11)in the ScaLAPACK implementation. We treat the blocks in S as full k-by-k blocks,as their non-zero pattern is not predictable due to the pivoting process. The speedupsfor these algorithms areSpp;AHn;p = 'ppn'pp;AHn;p Spp;ScaLAPACKn;p = 'ppn'pp;ScaLAPACKn;p : (3.12)In general, the redundancy of the pivoting algorithm is only about 2 for small numbers
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PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 13Remark 2. In (3.4) instead of the LU factorization a QR factorization couldbe computed [6, 20]. This doubles the computational e�ort but enhances stability.Similar ideas are pursued by Amestoy et al.[1] for the parallel computation of the QRfactorization of large sparse matrices.4. Numerical experiments on the Intel Paragon. We compared the algo-rithms described in the previous two sections by means of three test-problems. Thematrix A has all ones within the band and the number � � 1 on the diagonal. Theproblem sizes were (n; kl; ku) = (100000; 10; 10), (n; kl; ku) = (20000; 10; 10), and(n; kl; ku) = (100000; 50; 50). The condition numbers grow very large as � tends toone. Estimates of them obtained by Higham's algorithm [21, p.295] are listed inTab. 4.1 for various values of �. The right-hand sides were chosen such that the solu-n (kl; ku) � = 100 � = 10 � = 5 � = 2 � = 1:0120000 (10,10) 1.3 9.0 4.2e+4 3.3e+6 2.9e+6100000 (10,10) 1.3 9.0 4.3e+5 3.6e+6 3.8e+6100000 (50,50) 2.9 1.8e+5 6.0e+6 1.8e+7 4.7e+8Table 4.1Estimated condition numbers for systems of equations solved in the above tables.tion was (1; : : : ; n)T which enabled us to compute the error in the computed solution.We compiled a program for each problem size, adjusting the arrays to just the neededsize. When compiling we chose the highest optimization level and turned o� IEEEarithmetic. IEEE arithmetic turned on lead to erratic non-reproducible executiontimes [4].We begin with the discussion of the diagonally dominant case (� = 100). InTab. 4.2 the execution times are listed for all problem sizes. For the ScaLAPACK andthe Arbenz/Hegland (AH) implementation the one-processors times are quite close.The di�erence in this part of the code is that the AH implementation calls the level-2BLAS based LAPACK routine dgbtf2 for the triangular factorization, whereas inthe ScaLAPACK implementation the level-3 BLAS based routine dgbtrf is called.The latter is advantageous with the wider bandwidth k = 50, while dgbtf2 performs(slightly) better with the narrow band.The two implementations show a noteworthy di�erence in their two-processorperformance. The ScaLAPACK implementation performs about as fast as on oneprocessor which is to be expected. The AH implementation however looses about20%. We attribute this loss in performance to the zeroing of auxiliary arrays that arewill be used to store the �ll-in (`spikes'). This is done unnecessarily in the preparationphase of the algorithm.In ScaLAPACK, for forward elimination and backward substitution the level-2 BLAS dtbtrs is called. In the AH implementation this routine is expanded inorder to avoid unnecessary checks if rows have been exchanged in the factorizationphase. This avoids the evaluation of if-statements. In the AH implementation theabove mentioned auxiliary arrays are stored as `lying' blocks to further improve thescalability and to better exploit the RISC architecture of the underlying hardware [13].The speedups of the AH implementation relative to the 2-processor performance isvery close to ideal up to at least 64 processors. The ScaLAPACK implementation doesnot scale so well. For large processor numbers the di�erence in execution times is about2/3 which correlates with the ratio of messages sent in the two implementations.As indicated by (2.10) the speedups for the medium size problem are best. The



14 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDDiagonally dominant case on the Intel Paragon(n; kl; ku) (20000; 10; 10) (100000; 10; 10) (100000; 50; 50)p t S " t S " t S "ScaLAPACK implementation1 1110 1.0 4e-10 5543 1.0 5e-9 30750 1.0 |2 1210 .92 4e-10 5572 1.0 4e-9 | | |4 662 1.7 3e-10 2849 1.9 4e-9 25335 1.2 1e-88 398 2.8 2e-10 1489 3.7 3e-9 14347 2.1 8e-916 233 4.8 2e-10 814 6.8 2e-9 7341 4.2 6e-924 172 6.5 2e-10 593 9.3 2e-9 5032 6.1 5e-932 142 7.8 1e-10 482 12 1e-9 3890 7.9 4e-948 118 9.4 1e-10 379 15 1e-9 2763 11 4e-964 109 10 1e-10 312 18 1e-9 2211 14 3e-996 109 10 9e-11 243 23 8e-10 1692 18 3e-9128 65 17 8e-11 168 33 7e-10 1390 22 2e-9Arbenz / Hegland implementation1 1102 1.0 4e-10 5499 1.0 5e-9 32734 1.0 |2 1369 .81 4e-10 6840 .80 4e-9 | | |4 687 1.6 3e-10 3423 1.6 4e-9 22908 1.4 9e-98 347 3.2 2e-10 1716 3.2 3e-9 11475 2.9 7e-916 179 6.2 2e-10 864 6.4 2e-9 5775 5.7 5e-924 126 8.7 2e-10 580 9.5 2e-9 3917 8.4 2e-932 98 11 1e-10 438 12.6 1e-9 2975 11 4e-948 72 15 1e-10 296 18.6 1e-9 2065 16 3e-964 59 19 1e-10 228 24.1 1e-9 1598 21 3e-996 48 23 8e-11 159 34.6 8e-10 1161 28 2e-9128 41 27 7e-11 124 44.3 7e-10 930 35 2e-9Table 4.2Selected execution times t in milliseconds, speedups S = S(p), and error of the two implemen-tations for the three problem sizes. " denotes the 2-norm error of the computed solution.1=p-term that containes the factorization of the Ai and the computations of the `spikes'DUi R�1i and L�1i DLi consumes �ve times as much time as with the small problem sizeand scales very well. This portion is still increased with the large problem size.However, there the solution of the reduced system gets expensive also.We now compare the performance of the ScaLAPACK and the Arbenz-Heglandimplementation of the pivoting algorithm of section 3. Tables 4.3, 4.4, and 4.5 containthe respective numbers, execution time, speedup and 2-norm of the error, for the threeproblem sizes.Relative to the AH implementation the execution times for ScaLAPACK compriseoverhead proportional to the problem size, mainly zeroing elements of work arrays.This is done in the AH implementation during the building of the matrices. Therefore,the comparison in the non-diagonally dominant case should not be based on executiontimes but on speedups. Nevertheless, it should be noted that the computing timeincreases with the di�culty, i.e. with the condition, of the problem. They are ofcourse hard or even impossible to predict as the pivoting procedure is unknown. Atleast the two problems with bandwidth k = kl+ku = 20 can be discussed along similarlines. The AH implementation scales better than ScaLAPACK. Its execution timesfor large processor numbers is about 2/3 of that of the ScaLAPACK implementation



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 15Non-diagonally dominant case on the Intel Paragon. Small problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 1669 1.0 6e-10 1700 1.0 6e-8 2352 1.0 2e-6 2354 1.0 2e-72 1717 1.0 6e-10 1715 1.0 7e-8 1946 1.2 4e-6 1879 1.3 2e-64 867 1.9 4e-10 868 2.0 3e-8 982 2.4 2e-6 948 2.5 7e-78 455 3.7 3e-10 455 3.7 4e-8 514 4.6 1e-6 497 4.7 1e-716 252 6.6 3e-10 254 6.7 3e-8 283 8.3 1e-6 276 8.5 5e-724 184 9.1 3e-10 185 9.2 2e-8 207 11 1e-6 199 12 6e-732 159 11 3e-10 160 11 2e-8 177 13 5e-7 172 14 2e-748 113 15 3e-10 114 15 2e-8 128 18 1e-6 124 19 3e-764 127 13 2e-10 127 13 2e-8 138 17 4e-7 133 18 4e-896 124 14 2e-10 125 14 1e-8 134 18 2e-6 132 18 1e-7128 84 20 2e-10 87 20 1e-8 94 25 2e-7 92 26 1e-7Arbenz / Hegland implementation1 1329 1.0 7e-10 1362 1.0 9e-8 2030 1.0 2e-6 2033 1.0 2e-62 1306 1.0 6e-10 1305 1.0 3e-8 1526 1.3 4e-6 1482 1.4 3e-74 663 2.0 5e-10 662 2.1 5e-8 773 2.6 2e-6 750 2.7 6e-78 342 3.9 4e-10 342 4.0 3e-8 396 5.1 1e-6 386 5.3 3e-716 184 7.2 3e-10 184 7.4 1e-8 211 9.6 1e-6 206 9.9 2e-724 135 9.8 3e-10 135 10.1 1e-8 153 13 5e-7 149 14 1e-732 108 12 3e-10 108 13 2e-8 121 17 2e-7 118 17 1e-748 86 16 3e-10 86 16 1e-8 94 22 1e-6 93 22 1e-764 72 19 3e-10 73 19 1e-8 79 26 2e-7 78 26 1e-796 64 21 3e-10 64 21 1e-8 68 30 1e-7 68 30 1e-7128 57 23 2e-10 57 24 1e-8 61 33 1e-6 60 34 2e-7Table 4.3Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two imple-mentations for the small problem size (n;kl; ku) = (20000;10;10) with varying �.again reecting the ratio of messages sent. Notice that here the block size of thereduced system but also of the �ll-in blocks (`spikes') are twice as big as in thediagonally dominant case. Therefore, the performance in Mop/s is higher here.This plays a role mainly in the computation of the �ll-in. The redundancy does nothave the high weight that the op count of the previous section indicates. In fact,the pivoting algorithm performs almost as good or sometimes even better than thealgorithm for the diagonally dominant case. This may suggest to always use the formeralgorithm [5]. This consideration is correct with respect to computing time. It musthowever be remembered that the pivoting algorithm requires twice as much memoryspace as the algorithm for the diagonally dominant case. (In the serial algorithmthe ratio is only (2kl + ku)=(kl + ku).) In any case, the overhead for pivoting in thesolution of the reduced system by bidiagonal cyclic reduction is not so big that itjusti�es sacri�cing stability.The picture is di�erent for the largest problem size. Here, ScaLAPACK scalesquite a bit better than the implementation by Arbenz and Hegland. The reductionof the number of messages and marshaling overhead without regard to the messagevolume is counterproductive here. With the wide band, the volume of the messagetimes tw by far outweighs the cumulated startup-times, cf. (3.10). So, for the largest



16 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDprocessor numbers ScaLAPACK is fastest and yields the highest speedups.Non-diagonally dominant case on the Intel Paragon. Intermediate problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 8331 1.0 7e-9 8489 1.0 9e-7 11759 1.0 2e-5 11756 1.0 1e-52 8528 1.0 7e-9 8516 1.0 2e-6 9689 1.2 2e-5 9327 1.3 6e-64 4277 1.9 6e-9 4274 2.0 2e-6 4856 2.4 1e-5 4684 2.5 5e-68 2157 3.9 5e-9 2156 3.9 1e-6 2448 4.8 8e-6 2365 5.0 5e-616 1103 7.6 3e-9 1103 7.7 1e-6 1251 9.4 8e-6 1210 9.7 1e-624 770 11 3e-9 771 11 9e-7 870 14 5e-6 842 14 1e-632 585 14 2e-9 588 14 1e-6 663 18 4e-6 642 18 1e-648 429 19 2e-9 431 20 8e-7 481 24 6e-6 450 26 1e-664 338 25 2e-9 342 25 7e-7 382 31 5e-6 370 32 7e-796 264 32 2e-9 268 32 3e-7 296 40 2e-6 290 42 5e-7128 188 44 1e-9 193 44 4e-7 215 55 2e-6 206 57 8e-7Arbenz / Hegland implementation1 6645 1.0 8e-9 6811 1.0 2e-6 10158 1.0 2e-5 10178 1.0 7e-62 6499 1.0 8e-9 6493 1.0 7e-7 7614 1.3 2e-5 7418 1.4 9e-64 3260 2.0 6e-9 3257 2.1 7e-7 3815 2.7 1e-5 3715 2.7 2e-68 1640 4.1 5e-9 1639 4.2 6e-7 1917 5.3 9e-6 1869 5.4 2e-616 834 8.0 4e-9 833 8.2 1e-6 971 11 5e-6 949 11 2e-624 569 12 3e-9 569 12 5e-7 660 15 5e-6 643 16 1e-632 433 15 3e-9 433 16 5e-7 501 20 4e-6 490 21 2e-648 303 22 2e-9 302 23 4e-7 348 29 4e-6 340 30 1e-664 236 28 2e-9 235 29 6e-7 269 38 5e-6 263 39 4e-796 173 38 2e-9 172 40 2e-7 195 52 2e-6 191 53 6e-7128 139 48 2e-9 139 49 4e-7 155 66 6e-6 153 67 9e-7Table 4.4Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two imple-mentations for the medium problem size (n; kl; ku) = (100000;10;10) with varying �.5. Conclusion. We have shown that the algorithms implemented in ScaLA-PACK are stable and perform reasonably well. The comparison with the implementa-tions of the same algorithms by Arbenz and Hegland that are designed to reduce thenumber of messages that are communicated are faster for very small bandwidth. Thedi�erence is however not too big. The exibility and versatility of the ScaLAPACKjusti�es the loss in performance.Nevertheless, it may be useful to have in ScaLAPACK a routine that combinesthe factorization and solution phase. Appropriate routines would be the `drivers'pddbsv.f for the diagonally dominant case and pdgbsv.f for the non-diagonally dom-inant case. In the present version of ScaLAPACK, the former routine consecutivelycalls pddbtrf.f and pddbtrs.f, the latter calls pdgbtrf.f and pdgbtrs.f, respec-tively. The storage policy could stay the same. So, the exibility in how to apply theroutines remains.We found that the pivoting algorithm does not imply a large computational over-head over the solver for the diagonally dominant systems of equations. We evenobserved shorter solution times in some cases. However, as the pivoting algorithmrequires twice as much memory space it should only be used in uncertain situations.



PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 17Non-diagonally dominant case on the Intel Paragon. Large problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 41089 1.0 | 45619 1.0 | 68553 1.0 | 68737 1.0 |8 24540 1.7 2e-6 24524 1.9 7e-5 30820 2.2 2e-4 27857 2.5 8e-516 12931 3.2 3e-6 12926 3.5 3e-5 16000 4.3 1e-4 14567 4.7 8e-524 9035 4.5 2e-6 9020 5.1 3e-5 11053 6.2 1e-4 10112 6.8 8e-532 7319 5.6 2e-6 7305 6.2 1e-5 8790 7.8 1e-4 8111 8.5 8e-548 5313 7.7 1e-6 5309 8.6 5e-6 6255 11 1e-4 5830 12 8e-564 4670 8.8 2e-6 4665 9.8 6e-6 5345 13 1e-4 5034 14 2e-496 3690 11 1e-6 3680 12 1e-5 4101 17 1e-4 3926 18 2e-5128 3470 12 1e-6 3459 13 1e-5 3744 18 1e-4 3632 19 2e-5Arbenz / Hegland implementation1 36333 1.0 | 40785 1.0 | 64100 1.0 | 64308 1.0 |8 21598 1.7 2e-6 21647 1.9 6e-6 27929 2.3 1e-4 24837 2.6 3e-416 11734 3.1 2e-6 11767 3.5 2e-6 14863 4.3 1e-4 13334 4.8 5e-524 8737 4.2 1e-6 8740 4.7 3e-6 10787 5.9 2e-4 9777 6.6 1e-432 7019 5.2 2e-6 7023 5.8 9e-6 8537 7.5 1e-4 7798 8.2 1e-448 5716 6.4 2e-6 5721 7.1 2e-5 6704 9.6 1e-4 6208 10 8e-564 4858 7.5 1e-6 4855 8.4 5e-6 5575 12 1e-4 5226 12 6e-696 4415 8.2 1e-6 4402 9.3 6e-6 4861 13 2e-4 4648 14 8e-5128 3981 9.1 7e-7 3973 10 1e-5 4301 15 8e-5 4149 16 3e-5Table 4.5Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two im-plementations for the large problem size (n; kl; ku) = (100000;50;50) with varying �. The singleprocessor execution times (in italics) have been estimated.REFERENCES[1] P. R. Amestoy, I. S. Duff, and C. Puglisi, Multifrontal QR factorization in a multiprocessorenvironment, Numer. Linear Algebra Appl., 3 (1996), pp. 275{300.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LA-PACK Users' Guide - Release 2.0, Society for Industrial and Applied Mathemat-ics, Philadelphia, PA, 1994. (Software and guide are available from Netlib at URLhttp://www.netlib.org/lapack/).[3] P. Arbenz, On experiments with a parallel direct solver for diagonally dominant banded linearsystems, in Euro-Par '96, L. Boug�e, P. Fraigniaud, A. Mignotte, and Y. Robert, eds.,Springer, Berlin, 1996, pp. 11{21. (Lecture Notes in Computer Science, 1124).[4] P. Arbenz and W. Gander, A survey of direct parallel algorithms for banded linear systems,Tech. Report 221, ETH Z�urich, Computer Science Department, October 1994. Availableat URL http://www.inf.ethz.ch/publications/.[5] P. Arbenz and M. Hegland, Scalable stable solvers for non-symmetric narrow-banded linearsystems, in Seventh International Parallel ComputingWorkshop (PCW'97), P. Mackerras,ed., Australian National University, Canberra, Australia, 1997, pp. P2{U{1 { P2{U{6.[6] , On the stable parallel solution of general narrow banded linear systems, in High Perfor-mance Algorithms for Structured Matrix Problems, P. Arbenz, M. Paprzycki, A. Sameh,and V. Sarin, eds., Nova Science Publishers, Commack, NY, 1998, pp. 47{73.[7] M. W. Berry and A. Sameh, Multiprocessor schemes for solving block tridiagonal linearsystems, Internat. J. Supercomputer Appl., 2 (1988), pp. 37{57.[8] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Don-garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.Whaley, ScaLAPACK Users' Guide, Society for Industrial and Applied Mathemat-ics, Philadelphia, PA, 1997. (Software and guide are available from Netlib at URL
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