
EXPERIENCES WITH WINDOWS 95/NT AS A CLUSTER COMPUTING PLATFORM
FOR PARALLEL COMPUTING.

MARKUS FISCHER �
AND JACK DONGARRA y

Abstract. The increasing number of clusters built by commercial, o� the shelf hardware shows a new trend in scienti�c
computing. Within this movement is the propagation towards Windows NT (tm) as an operating system on PCs. The
UNIX environment and Windows NT di�er in terms of administrative issues as well as programming techniques. In this
paper, we describe the modi�cation of PVM (Parallel Virtual Machine) to interoperate with WIN32 (Windows NT 4.0 and
Windows 95). PVM provides the functionality to accumulate the computing power of an NT cluster environment. Our
migration from UNIX to the WIN32 architecture not only shows where porting existing software is easy and where more generic
modules have to be designed, but also the limitations. PVM for UNIX and WIN32 environments is freely available at netlib:
http://www.netlib.org/pvm3/index.html

Keywords: Heterogeneity, Message Passing, Cluster Computing, Networking, Windows NT

1. Introduction. Cluster computing on networks of workstations has been thoroughly researched on
various UNIX-type architectures in the recent years. However, the familiar environment is about to change.
Clusters built from commercial, o� the shelf systems running Linux or Windows NT are joining the platform
of scienti�c computing and are considered to be a new trend in supercomputing. Besides the inexpense of
the hardware, its compatibility is a major advantage.

A major change can also be seen in the performance of commodity interconnects. New network technologies
like Myrinet [2] or SCI [3] that connect single units to large scaling clusters o�er communication latency and
throughput previously known only on high-end, massively parallel systems.

PVM has been available for the WIN32 (Windows NT 4.0 and Windows 95) platform for approximately two
years. In that time, the inverse relationship between price and performance of Intel based architectures has
grown signi�cantly. Thus it is not surprising to see an increased interest in clustering WIN32 machines using
PVM as the distributed communication interface. Our statistics show that the download numbers of the
WIN32 version make one third of the total downloads. NT is even being considered as an up-and-coming
front-end standard. However, the WIN32 environment is not as practical for a cluster approach as one might
think.

PVM has been the �rst message passing interface on top of Windows NT starting with PVM version 3.3.11
in May 1996. At this time MPI exists as well on Windows NT [5]. Di�erent two these public domain
versions, commercial software of PVM and MPI is also available. Calypso [7] is another possible solution
for providing a parallel processing environment on Windows NT networks. Calypso, however, can only run
within a homogeneous NT environment. PVM, on the other hand, runs in a heterogeneous environment
across multiple platforms, which allows a virtual machine to consist of a variety of systems ranging from
laptop's to Supercomputers. Besides di�erent message passing implementation details, all projects have thus
far originated from the UNIX world and have had to cope with Windows NT as a new environment. This
migration can not be expected to be straight forward. Changing only the system calls does not work and
several topics related to network computing have to be modi�ed;

� security issues,
� the installation of additional services/daemons,
� interprocess communication, external data exchange
� dynamic process control for local or remote systems.

The subject of this paper is to evaluate the approach and feasibility of cluster computing on Windows NT.

The paper is organized as follows. First we will give an overview of the PVM system followed by the
description of our implementation. This will lead to a more general discussion about migrating from UNIX

�University of California, San Diego, CA 92093
yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

2

to WIN32. Finally, after providing a small guide to our software package, we conclude our experience.

2. The PVM System. PVM (Parallel Virtual Machine) is a de facto standard message passing in-
terface. It is an integrated set of software tools and libraries that emulate a general-purpose,
exible,
heterogeneous, and concurrent computing framework on interconnected computers of varied architectures.
The overall objective of the PVM system is to enable such a collection of computers to be used cooperatively
for concurrent or parallel computation.

2.1. Available Architectures and Network Layers. PVM is available for 40+ di�erent archi-
tectures combining Unix workstations, shared memory machines, and MPP's to one single parallel virtual
machine. The WIN32 architecture was added to PVM in Version 3.4 after developing a compatible version
to its predecessor. WIN32 is becoming popular and more important from day to day. This can also be seen
in the amount of available hardware platforms. Following Intel and Alpha, SGI will support an Windows
NT platform for their systems as well. Even though commercial processors achieve the same performance as
processors on supercomputers at lower costs [6], the trend on local systems is the migration to SMP machines.
As a matter of fact, the scheduling mechanism within Windows NT is being optimized for eight processors
in the next versions. Multithreaded programming can then make use of the potential resources but can not
perform distributed computing. Windows applications have existed for several years and the bene�ts that
come with PVM are obvious. Using existing equipment and operating systems, PVM's application could be
to

� solve large industry problems like parallelized combinatorical optimization algorithms (Job Schedul-
ing , Cutting Stock) in your o�ce

� use computers in High Schools for teaching purposes.
� combine built-in and compiler optimized functions with parallel processing power.
� route scienti�c data to standard front ends with special hardware (3D Graphic cards)

PVM's most powerful feature is that it provides the message passing interface that makes an application
think its running on a single machine. Another advantage within the dynamic concept is that PVM is easily

PVM - Parallel Virtual Machine

Unix
Workstations

Alpha’sMPP’s
Windows

95/NT

32-bit generation

Fig. 2.1. The PVM Model

extendible to take advantage of other network architectures that are providing lower latency and higher
bandwidth than conventional interconnects. UNIX extensions exist on Parastation [8] and SCI [4] to take
advantage of the underlying network. SCI is also available on NT based on our implementation. A port of
PVM on top of Easynet and BIP [9] is planned as well. Basically, a trend can be seen in eliminating the
protocol stack when communicating with remote processes. The new network layers have in common that
they o�er mechanisms for bypassing the OS kernel, where convential protocols (using sockets for example)
spend signi�cant time. Such mechanisms reduce latency to 20-50 � and increases bandwidth to 30 MB/s at
the user level.

2.2. The WIN32 Implementation of PVM. Although Windows 9x and Windows NT are members
of the WIN32 architecture, restrictions apply to the number of available WIN32 API calls for Windows
9x. While Windows 95 is designed to provide downgrade compatibility, NT is considered a real multiuser,
multitasking operating system. As a matter of fact, only NT o�ers SMP capability. A further step towards

3

an WIN32 operating system is the separate process / address space in NT. This results in better performance
and fault tolerance, whereas processes under Windows 9x only run in a virtual dos machine.

In prior versions of Windows, direct access to the hardware was possible which caused undesired shutdowns
when con
icts arose. Windows NT is more stable since function calls are passed to device drivers, which
access the hardware. This di�erence is kept transparent to the programmer. However, programming under
security issues (which we will discuss later) as well as impersonation requires the use of di�erent API calls.
In this context, impersonation means the validation of new processes under a di�erent account. As opposed
to UNIX, this is not an easy task. Windows 95 allows only one user to be logged in at one time. Therefore,
it does not provide a function which lets the system di�erentiate access privileges, though every process
actually has administrative privileges. However, it is possible to allow multiple users to run their parallel
applications on NT as well as on 9x. In general, one can say that WIN32 provides API calls that only work
on one of the operating systems. Basically, Windows 9x only provides a subset of available WIN32 API calls.
Because of this di�erent functionality, the PVM code itself switches to the operating system being executed
on. One major drawback with WIN32 is unavailable remote process creation. Unlike UNIX, basic services
are missing in the standard WIN32 implementations. For remote startup, the PVM package provides an
rshd compliant service that allows remote process startups after con�guration. However, a username and the
matching password have to be provided during service con�guration, since both parameters have to be passed
when calling an impersonating function. In this context, one might say that NT is not providing a friendly
environment for distributed computation. However, future versions of WIN32 will provide mechanisms to
allow remote computation more easily while also allowing users to see remote desktops, which is not supported
yet either. Thus, it is not allowed to start up a GUI application on remote, since the application would pop
up on a di�erent user's desktop, which would likely be immediately killed.

processes

ti
m

e

B
lo

ck
ed

"spawn"

provide socket
port

connect
to local daemon

"pvm_addhost"

no entry for hoster:

message to hoster

reminder for

"spawn"

connect
to local daemon

"pvm_reg_hoster"
enroll as hoster

send out
reminder message

rsh / rexec
new hosts

slave_config

host table update

host startup result

pvm-console

master pvmd daemon

hoster process

slave pvmd daemon

Fig. 2.2. PVM Startup Protocol

2.2.1. Process Control. Like the original PVM, this version uses the concept of daemon processes
for the setup of the virtual machine. The main functions of these daemons are to start or delete new tasks,
to route messages between tasks, and to establish direct connections for better performance [1]. Di�erent
from the UNIX version is the need for a separate hoster process, which is responsible for starting up slave
daemons on other hosts. Invisible to the user, the host process is started automatically and runs as a task of

4

the virtual machine. Since PVM is designed to run accross multiple platforms, a common startup mechanism
is required. Originating from UNIX the rsh call �res up remote daemons. Since PVM does not di�erentiate
between hosts and architectures, a rsh call is also placed to add WIN32 hosts. To overcome the security
problems involved with the installation of a rsh daemon it is also possible to perform a manual startup. Fig.
2.2 gives an overview of the startup of pvmd clients. It also portrays the processes involved when creating
a virtual machine.

2.2.2. The Communication Layer. Messages between processes are exchanged usingWindowsWinSock-
ets, which o�er TCP and UDP on top of the IP layer. The speci�cation is close to the BSD standard, however
it is not possible to handle sockets as �le or stream descriptors. It di�ers also from the standard by initializing
and closing a socket structure, where the version of the socket layer must be speci�ed. However, WinSockets
allow communication across the WIN32 architecture and a faster TCP connection can be established as well.
Using a heterogeneous system with di�erent architectures requires encoding and decoding of messages if mes-
sages are sent to a di�erent platform. The WIN32 version o�ers its own XDR en- / decoding possibilities.
Like the existing PVM, message bu�ers can be created in three di�erent manners: PvmDataInPlace (fastest
method, only pointer to the message data is stored and packed for message transfer without encoding),
PvmDataRaw (a copy of the data is made, sent out without encoding), PvmDataDefault (a encoded copy is
sent out).

Messages sent between one architecture type should use PvmDataRaw or, even better, PvmDataInPlace, if
possible. XDR en- /decoding is expensive and slows down the performance (dependent on CPU power).

pvm hoster

group server
pvm

User task

User task

TCP

TCP

TCPTCP

TCP

UDP

UDPUDP

TCP

User task

pvm daemons

connection
User task

Network

Hardware Driver

Network (Hardware) Interface

Protocol Stack (TCP/IP)

Windows Socket DLL

WinSock Compliant Application

Fig. 2.3. Communication and Layout of PVM

2.2.3. Security Aspects. WIN32 o�ers su�cient security only for Windows NT. Security can be set
to objects, where objects range from sockets, processes, �les, pipes, or standard IO. This modi�cation is
done by the Security Identi�er (SID), which exists for every user and in which the privileges of the speci�c
users are set. In PVM, an important security aspect is a secure �le system so that users can deny access to
their �les.

Unlike NTFS, Windows 95 does not o�er a �le system that restricts access. The FAT is readable for
everyone. A process which would like to enroll into the virtual machine reads a socket address out of the
%PVM_TMP%\pvmd.username �le. Since this �le is readable for every process, di�erent users can get access
to the pvmd daemon. For security reasons, it is therefore recommended to run NT as the operating system.

3. Using WIN32 as a Platform for Cluster Computing. When originating from the UNIX en-
vironment, a developer's �rst option is to look at the Windows NT POSIX subsystem. However, it only
supports POSIX 1003.1, which was the only POSIX version standardized when Windows NT was created.
Since then, there has been little demand for extending this subsystem because most applications have been
converted to Win32. The 1003.1 system is of limited interest for fully featured applications because it does
not include many capabilities (such as those in 1003.2, network support, etc.). Full featured applications
that run under the Windows NT POSIX subsystem do not have access to Windows NT features available to

5

Win32 applications, such as memory-mapped �les, networking, and graphics. Applications such as VI, LS,
and GREP are the main targets for the Windows NT POSIX subsystem.

The second option UNIX programmers normally consider is using third-party, UNIX-like libraries to let their
UNIX code compile as a Win32 executable. Several commercial (and at least one public domain) libraries do
this. This is an option for some applications. The advantage of these porting libraries is that they minimize
the initial porting e�ort. The main disadvantage for a competitive software product is that a native Win32
port of an application will generally be faster and will inevitably have more functionality. It can be awkward
for the application to step outside of its UNIX shell if it needs to make Win32 calls to get more power from
Windows NT.

The third option is porting UNIX applications directly to Win32. Using ANSI C/C++ libraries and com-
mercial C compiler libraries, many of the traditional system calls UNIX applications rely on are available in
Win32 applications.

3.1. Di�erent Views of NT Clusters. Parallel computing on systems running a UNIX-like operating
system brought along the ease of accessing di�erent machines remotely. Access in this case means sharing
computing resources as well as data storage. However, WIN32 is more likely a client server architecture in
terms of �le distribution except it does not o�er remote activities at all. Besides o�ering remote computation,
X Servers o�er output routing of graphical applications running remotely to the machine where the user is
actually interactively connected. Not only is this not possible across UNIX and NT, it is not even possible
within the NT environment! The rsh-service provided by the PVM package adds an essential UNIX utility
to WIN32. During installation, the user can choose between three installation types.

First is a single node type where PVM is installed on each drive of potential hosts. This requires entries to the
registry as well as �le storage on several hosts. The single node type, however, is not easy to maintain, since
remote access is di�cult. A registry for PVM ROOT would look like PVM ROOT=c:\pvm\pvm3.4 for ex-
ample. Second is a server type where PVM is installed on one sharable drive. This means that the executables
must also be accessible from remote machines. This is fairly easy since WIN32 provides this sharing mecha-
nism. Note that this access is granted to the �le system only, not to computing resources. With this server
type, a client type can be set up such that clients point their registry entries to the �le location on the server.
During startup, �les would be transfered via the network. This type re
ects the NFS installation known
from UNIX. Clients would then have a PVM ROOT entry of PVM ROOT=\\servername\c\pvm\pvm3.4.
Finally, a multiple Server type has to be used, when distributed applications are in di�erent domains and a
trust relationship is not set up for security reasons.

3.2. Extending current programming methods to more dynamic modules. Besides con�gura-
tion management, the WIN32 architecture di�ers from UNIX-like environments in various ways when using
it as a programming platform. Programming not only a�ects the call of di�erent API's, but the modi�cation
of program layout is a�ected as well, since most of the known POSIX functions are not provided. Within
the PVM on WIN32 project, �rst steps were made in porting an existing software package. This allows
distributed computation to a di�erent environment which further allows us to work on a more general spec-
i�cation of interfaces to an open, extendible environment. Portability is especially essential for HARNESS,
our next, even more
exible, environment [11].

When choosing NT as a cluster computing platform, the following modules have to be redesigned or ported
from UNIX:

WIN32 API Calls vs ANSI C
. The work involved in porting code is a question of how operating system-speci�c the existing application
is. Basically, WIN32 provides a C Runtime library which covers most of existing application's code. But
several functions or features are not available in WIN32 or have a di�erent interface. Advanced programming
using signals, for example, is not available under WIN32. Here, methods would have to be developed to use
structured exception handling (SEH). Fortunately, threaded programming using pthreads is easily portable.
Di�erent API's have to be called for accessing or creating �les under security. IO functionality is mimicked
under WIN32 as long as the application is console-based. However, error handling has to be redesigned when
the application is multithreaded. There are several other WIN32 API calls which are new when coming from

6

the UNIX site. Most of them are closely related to the operating system (like writing services, developing
device drivers, creating several
avors of pipes) but they also deal with the versatile ways of con�guring a
machine. Depending on the purpose of a cluster (public pool, dedicated computing platform), one could
lower security while restricting the environment to allow word processing only. Since there are many issues
about migration that cannot be generalized, web sites or databases will help most in �nding an individual
solution (see [10] for example).

Security Issues
. Security in PVM is based on a secure �le system. Convenient commands like chmod() are not available
under WIN32. Whereas UNIX provides three classes of privileges (root, groups and user), WIN32 provides
a variety of di�erent privileges. Using a security model, such privileges can be assigned to handle objects. In
this context, security can be set for �le handling while restricting access to other users, even administrators.
In this way, the security model in WIN32 is much better than in UNIX, however it is more di�cult to
program.

The Installation of Services/Daemons
. PVM uses rsh for starting up slave hosts. Since the PVM model is transparent to various architectures,
it does not di�er between architectures on startup either. Since WIN32 does not o�er remote computation,
a rshd compliant service had to be developed. During our research, we were surprised that, even with
administrative privileges, impersonating a process is not easy. Processes need to have special privileges,
which involves additional administrative work. In addition, the password has to be provided to impersonate
the new process. ??The password is stored encrypted, however, questions the security when installing this
service.??

IPC and Network
. WIN32 o�ers several mechanisms for IPC. In addition to anonymous pipes, it provides named pipes, which
o�er security even across the network. Named pipes, however, only works under NT. Other mechanisms
are Mailslots or shared memory, which is based on the �le interface yet kept in memory. These functions
are not portable from UNIX but can be encapsulated in a module. Using sockets to communicate via the
network requires additional startup, but as our experience shows, a fault tolerant wrapper is also needed
around the send routines. While still up and running under WIN32, some sockets shutdown under UNIX.
Besides this feature, WinSockets behave like expected and allow interoperability with UNIX without further
complications.

Dynamic Process Control for Local or Remote Systems
. A major disadvantage is the lack of the fork() command. Several advanced UNIX programs use this call
for convenient mechanisms. Some programs, however, follow the setting of new environment variables with
an execute command. WIN32 o�ers several options to create a new task, but the CreateProcess() is most
usable, since it enables setup of environment variables as well as special startup parameters (for debugging
purposes for example). It is also the only command which has the same behavior under 9x or NT. Besides
unimplemented functions in WIN32, it also o�ers calls which are not known from UNIX. One such call is
CreateRemoteThread(), which might be useful for some applications.

Besides migration issues, WIN32 lacks standardization, which increases the amount of time in support.
WIN32 is a highly commercial platform that is towing along a variety of software developers and vendors,
which is causing the most problems when entering the new area.

3.3. Non - compatibility within WIN32. Our experience in migration reveals not only the need for
dynamic modules in a plug-in like manner, but that the modules also have to cope with di�erent compilers.
Code running under Visual C++ might fail when recompiled with Watcom, for example. Even worse,
libraries from di�erent vendors can be used for linking. Therefore, we provide multiple compiler brands since
a limitation to only one compiler would force users to purchase the provided product. Providing only the
source �les with a generic make�le that includes several compiler switches, as our experience shows, will
result in a
ood of help messages because NT o�ers too many methods of installation. But even after a
successful compilation, the software may not work. Administrators may �nd their own method of installation

7

and put too tight of security on a system, which might not even allow the storage of temporary data for
installation.

4. Using PVM. The hassle in providing basic information about how to set environment variables
under WIN32 and the restrictions mentioned above resulted in providing a guided installation. Our product
is using Installshield which is a Back, Next, and Browse-clickable tour to install PVM without any problems.
Users can choose between a local, remote, or server installation. This installation is subdivided again in a
Typical, Common or Administrative type where the latter one also allows the rshd con�guration. Further-
more, di�erent compiler libraries are provided and the registry is modi�ed to start PVM with ease. For
recompiling our examples, make�les are modi�ed during installation, so that the user is ready to go after
clicking the Finish button.

pvm> spawn -> spmd
1 successful
t80001
libpvm [t80001]: token ring done
pvm>

HOST TID FLAG 0x COMMAND
204/H,c c:/pvm/pvm3/bin/WIN32/hoster.exe40001ed

:

c:> pvm hostfile
hoster() 2 to start
0. t80000 rudolph so=""
1. tc0000 thud so=""
Password
3.3.10
t40002
pvm> conf
3 hosts, 2 data formats

pvm> ps

SUN4
SUN4

80000
thud c0000

1000
1000

ed 40000WIN32 1000
HOST DTID ARCH

rudolph

SPEED

Fig. 4.1. PVM Session

4.1. Setting Up a Virtual Machine. The PVM console can be used as a convenient way to interact
with the pvmd. This process can be used to add other hosts to the virtual machine. It will pass a host�le to
the master daemon if provided, as well as allow manual add's. It will also reset the parallel virtual machine
if tasks hang.

Finally the PVM console provides the possibility of a proper shutdown. Tasks can be started within the
console and the 'ps -a' command gives information about running tasks on every machine in the VM.

4.2. Creating and Debugging a PVM Application. Sequential code can be parallelized using
PVM's message passing interface. The algorithm has to be changed so that processes can divide up work
and gather the solution. These functions can be found in the PVM library.

A linking with $(PVM_ROOT)/lib/$(PVM_ARCH)/libpvm3.lib is necessary. When group functionality is needed,
the application also has to link with $(PVM_ROOT)/lib/$(PVM_ARCH)/libgpvm3.lib.

Fortran applications will also run in WIN32. They have to be linked with

$(PVM_ROOT)/libfpvm/$(PVM_ARCH)/libfpvm3.lib. Note, that this is the �rst Fortran interface in a WIN32
message passing interface. Current WIN32 MPI implementations still do not support the Fortran interface.

Debugging is also possible in the WIN32 version. The common way in PVM is to start a new task with

8

the PvmTaskDebug
ag. Under UNIX the task was then started under a debugger. Di�erent from the
existing Unix version, the new task is started on the local or remote machine but waits for the connection
of debugger. Users then have to start their debugger manually on the local machine and then choose the
option for local or remote process attachment.

5. Results. We ran a benchmark program which performs a ping pong-type test between two processes.
Each size of a message was sent out and received 100 times.

PVM Benchmark

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

Msg Sizes in Bytes

M
B

/s

TCP/IP Ethernet

TCP/IP Quad Board (internal)

Shared Memory

Fig. 5.1. PVM Performance

Based on these round trip values, an average round trip time is computed. Every message content was double
checked on the receiver and on the initiator. The tests did not drop any messages and the messages were
received 100 percent correctly. The internal TCP/IP communication achieves very high performance with
up to 12MB/s, especially on multiprocessor boards.

6. Conclusion. As tests have shown, the PVM package on top of Windows NT/95 brings reliable
parallel computing possibilities. Crashed applications do not interfere with the operating system and users
do not have to to be afraid of causing unwanted shutdowns. It is also possible to have multiple, communicating
processes running on one machine as well as share one host for multiple virtual machines. Users can take their
existing PVM application and run it on the new architecture. There is no need for long lasting modi�cations.
Basically, the number of extensions to new interconnects and the number of downloads occuring with WIN32
shows the popularity of PVM as a research platform.

REFERENCES

[1] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam PVM: Parallel Virtual
Machine A Users' Guide and Tutorial for Networked Parallel Computing 1994. Published by MIT Press, Boston.
http://www.netlib.org/pvm3/book/pvm-book.html

[2] Myricom. Myrinet link and routing speicifcation, 1995.
http://www.myri.com/myricom/document.html

[3] IEEE Std for Scalable Coherent Interface (SCI). Inst. of Electircal and Electronical Eng., Inc., New York, NY 10017,
IEEE std 1596-1992,1993.

[4] Markus Fischer, Jens Simon. Embedding SCI into PVM. Proc. of EuroPVM/MPI '97, Cracow, Poland, pp. 183-191,1997.

9

[5] M. Baker, G. Fox.MPI on NT: A preliminary evaluation of the available systems In Workshop PC-NOW, IPPS/SPDP98,
Orlando, USA, 1998.

[6] Alfred Aburto PDS: The Performance Database Server November 26, 1995, Naval Ocean Systems Center, San Diego
http://performance.netlib.org/performance/html/PDStop.html

[7] http://www.eas.asu.edu/ calypso/
[8] J.M. Blum, T.M. Warschko, W.F. Tichy. PULC: ParaStation User-Level Communication. Design and Overview, IPPS

Orlando March 98.
[9] L. Prylli and B. Tourancheau. Bip: a new protocol designed for high performance networking on myrinet. In Workshop

PC-NOW, IPPS/SPDP98, Orlando, USA, 1998.
[10] http://www.experts-exchange.com
[11] A. Geist et al. Harness, the next generation beyond PVM.

http://www.epm.ornl.gov/harness

10

