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Abstract 

The Chebyshev tau method is examined in detail for a variety of eigenvalue problems arising in hydrodynamic 
stability studies, particularly those of Orr-Sommerfeld type. We concentrate on determining the whole of the 
top end of the spectrum in parameter ranges beyond those often explored. The method employing a Chebyshev 
representation of the fourth derivative operator, D 4, is compared with those involving the second and first 
derivative operators, D 2 and D, respectively. The latter two representations require use of the QZ algorithm in 
the resolution of the singular generalised matrix eigenvalue problem which arises. Physical problems explored 
are those of Poiseuille flow, Couette flow, pressure gradient driven circular pipe flow, and Couette and Poiseuille 
problems for two viscous, immiscible fluids, one overlying the other. 

Keywords: Eigenvalue problems; Orr-Sommerfeld equations; Multilayer flows; Chebyshev polynomials; QZ 
algorithm 

1. Introduction 

There has been much recent attention directed at solving difficult eigenvalue problems for dif- 
ferential equations like the Orr -Sommerfe ld  one, with particular interest in the removal of  spurious 
eigenvalues or calculations in high Reynolds number ranges, cf. [ 1,7,13,14,17-19,22,30]. Equations of  
Orr -Sommerfe ld  type govern the stability of shear and related flows which have important applications 
in many fields. One such field is climate modelling with questions like determining an explanation 
for the origin of  the mid-latitude cyclone which in turn is responsible for producing the high and 
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low pressure regions from which variable weather patterns arise. Another application is to shear flows 
in electrohydrodynamic (EHD) systems which have industrial relevance in the invention of devices 
employing the electroviscous effect or those utilizing charge entrainment, such as EHD clutch de- 
velopment, or EHD high voltage generators. Yet other important mundane applications include the 
prediction of landslides, and flow over an aeroplane wing covered in de-icer. These topics will form 
part of future research. 

The goal of this paper is to describe how to implement in an efficient way a Chebyshev tau-QZ 
algorithm method for finding eigenvalues and eigenfunctions in difficult but practical problems which 
occur in hydrodynamical contexts. We employ a technique which systematically writes the differential 
equations which occur as systems of second order equations in order to utilise the growth properties 
of the Chebyshev matrices which arise. One could argue that there are several other methods of 
finding eigenvalues/eigenfunctions and this is true. Indeed, we mention finite difference discretization 
coupled with a matrix technique such as the QR algorithm. We believe the method advocated here 
is, in general, more accurate and efficient. Other options are to employ a finite difference technique 
followed by inverse Rayleigh iteration, or use of compound matrices; the latter is discussed in, e.g., 
[11,27]. These are two viable options if one is primarily interested in only one eigenvalue. In certain 
hydrodynamic stability problems one may be interested in only one eigenvalue, namely the (dominant) 
one which is likely to contribute the most destabilizing mode in a linear instability analysis. If one can 
show a priori that a particular eigenvalue is the dominant one then a method which tracks a single 
eigenvalue is useful. However, for stability problems where the fluid layer is sheared it is usually not 
possible to show one eigenvalue is dominant. In addition, recent work has demonstrated the necessity 
to calculate many eigenvalues, see, e.g., [3,23]. The Chebyshev tau-QZ algorithm method we describe 
finds all the eigenvalues/eigenfunctions we require in a very efficient manner. Finally, one might wish 
to use a pseudospectral (collocation) technique, see, e.g,, [17]. Again, this is a very viable alternative. 
However, we believe the Chebyshev tau technique is easier to implement for problems in a cylindrical 
or spherical geometry where there are terms like ( m / r ) d / d r  present. Also, the growth properties of 
the Chebyshev tau method are likely to be better. We describe below three versions of the Chebyshev 
tau method which we refer to as D 4, D 2 and D methods due to the order of the highest derivatives 
we discretize. It will be seen that we basically recommend the D 2 alternative because it has better 
growth properties than the D 4 one, whereas it makes more efficient use of the QZ algorithm than the 
D method which requires matrices which are twice as large. 

In order to introduce some of the notation used in the fluid dynamics literature and also to describe 
the Chebyshev tau technique we consider a very elementary, but illuminating, example. Consider the 
equation and boundary conditions, 

L u -  u" + ;~u =O, x E (-1,1) ,  

u ( - 1 )  = u ( 1 )  = 0 ,  
(1.1) 

where the differential operator L is defined as indicated. 
Now write u as a finite series of Chebyshev polynomials 

N+2 

u :  E ukTk(x), 
k=O 

(1.2) 
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although the underlying logic is that (1.2) represent truncations of an infinite series. Due to the 
truncation, the tau method argues that rather than solving (1.1) one instead solves the equation 

Lu = 7-1TN+ 1 + ~-2TN+2, (1.3) 

where rl,  r2 are tau coefficients which may be used to measure the error associated with the truncation 
of (1.1). In an ordinary differential equation setting as opposed to an eigenvalue background, explicit 
use of the tau coefficients as error bounds may be found in [13]. 

To reduce (1.1) to a finite-dimensional problem the inner product with Ti is taken of (1.3) in the 
weighted L 2 ( -  1, 1) space with inner product 

1 

f f9 dx 
( f , g )  ~- V / ~ _  X2 ' 

-1 

and associated norm 11" II. The Chebyshev polynomials are orthogonal in this space, and then from 
(1.3) we obtain (N + 1) equations 

(Lu, Ti)=O, i=O, 1,...,N. (1.4) 

There are two further conditions which arise from (1.3), 

(Lu, TN+j) = rjIITN+jll 2, j = 1,2, 

and these may effectively be used to calculate the r 's.  The two remaining conditions are found from 
the boundary conditions, which since Tn(4-1) = (+1) n, yield 

N+2 N+2 
~-~( - -1)nun  = 0, ~ Un = 0 .  (1.5) 
n=0 n-0 

Eqs. (1.4) and (1.5) yield a system of ( N + 3 )  equations for the ( N + 3 )  unknowns ui, i = 0 , . . . ,  N + 2 .  
The derivative of a Chebyshev polynomial is a linear combination of lower order Chebyshev poly- 

nomials, in fact {2° T~ = }-2~-I Tk, n even, 
,~-i (1.6) 

2n ~ = 2  T~ + nTo, n odd. 

Then (1.4) become 

't-t} 2) -I- ~Ui = 0, i = 0 , . . . ,  N, (1.7) 

where the coefficients u} 2) are given by 

p=N+2 
UI2) = % ~ p ( p 2  i2)~tp, (1.8) 

Ci p=i+2 
p+i even 

with the numbers c~ being defined by co = 2, ci = 1, i = 1 , 2 , . . . .  (Actually, (1.8) is really a 
truncation to the (N + 2)nd polynomial of an infinite expansion.) Eqs. (1.7) and (1.5) represent a 
matrix equation 

Am = -ABm,  (1.9) 
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with :e : (u0, • • •, U N + 2 )  T. However, the B matrix is inevitably singular due to the way the boundary 
condition rows are added to A. Indeed, the last two lines of B are composed of zeros, while the upper 
left (N + 1) × (N + 1) part is simply the identity. 

To clarify this point, we observe 

s : 0  s=0  r : 0  r : 0  \ s=0  

and so we may make the identification 

N + 2  

u 0 ) :  Z DTsus. 
s=0  

Similarly, 

r : 0  s=0  

and, therefore, 
N + 2  N + 2  N + 2  N + 2  N + 2  

'//'(2) : ~ "rsU~l): Z Ors E DskUk : Z Z mrsmskuk" 
s=O s:O k : 0  s:O k:O 

This allows us to introduce the differentiation matrix D, and second differentiation matrix D 2 which 
are shown to have components 

o r  

D o , 2 j - I  = 2j  - 1, j >~ 1, 

D i , i + 2 j - 1  = 2(i + 2j - 1), i ~> 1, j >~ 1, 

D~,2j = ½(2J) 3, j >~ l, 

0 2 + 2  j = (i + 2 j )4 j ( i  + j) ,  i >1 l, j /> l, 

D = 

/0  1 0 3 0 5 0 7 0 9 . . . \  
0 0 4 0 8 0 12 0 16 0 .. 
0 0 0 6 0 10 0 14 0 18 
0 0 0 0 8 0 12 0 16 0 
0 0 0 0 0 10 0 14 0 18 

(1.10) 

0 0 4 0 32 0 108 . . . \  
D2 0 0 0 24 0 120 0 

---- 0 0 0 0 48 0 192 

where we observe D 2 = D • D in the sense of matrix multiplication. These matrices are started at 
(0, 0) and truncated at colunm N + 2. However, from (1.5), we easily eliminate UN+l, UN+2. To do 
this, suppose for definiteness N is odd, then 
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U N + I  • --('tt,0 + U2 + ' ' "  + U N - I ) ,  

U N + 2  ---- __(Ul -{- 21'3 "+- . . .  "+" U N ) ,  (1.11) 

and thus the N + 1 and N + 2 rows of D 2 may be removed and the N + 1, N + 2 columns eliminated 
using (1.11). This yields an (N + 1) × (N + 1) matrix D 2, and the matrix problem which results from 
(1.9) does not suffer from B being singular due to zero boundary condition rows. 

The outcome is that Eq. (1.1) is replaced by a system 

Am = -Am, (1.12) 

where x = (u0 , . . . ,UN) ,  and where A is now the D 2 matrix with the boundary condition rows 
removed as described above. 

If we instead consider the solution to (1.1) by writing as a system of first order equations then we 
must solve 

t v ! 

u ( - 1 )  = u ( 1 ) = 0 .  (1.13) 

Regard u and v as independent variables and write 

N + I  N + I  

u = Z ukTk(x), v = Z vkTk(x), 
k=O k=O 

and then we see that solving (1.13) by a tau method requires us to solve 

g l ( u ,  v )  - u '  - v =  -ITN+I, 
(1.14) 

L2(u, v) --v t + •u = T2TN+I, 

and thus we obtain 2 (N  + 1) equations 

(L,(u,v),Ti)=O, i = 0 , . . . , N ,  

(L2(u,v),T~)=O, i = 0 , . . . , N ,  (1.15) 

and two equations for the tau coefficients, 

(Lq(u,v),TN+l) = TqlITN+lll 2, q = 1,2. (1.16) 

The boundary conditions in (1.13) are again equivalent to (1.5). The finite dimensional system to be 
solved is then 

U} 1) - -  V i = 0,  V} l) Jr- /~?-t i = 0,  i = 0 , . . . ,  N, (1.17) 

and 
N + I  N + I  

Z ( - 1 ) n u n  = 0 ,  ~ Un = 0 ,  
n = 0  n = 0  

where 
p = N + l  

U}I) = __2 ~ p u p ,  

Ci 
p=i + l 

p+i odd 

(1.1S) 

(1.19) 



4 0 4  J,J. Dongarra et al. /Applied Numerical Mathematics 22 (1996) 399-434 

with a similar expression for v} l) 
Note that in (1.19) all the boundary conditions refer to ui and none to vi. Hence, we require the 

solution of the matrix problem 

B 1 0.  0 0 . . 0  0 
= h _ l  , (1.20) 

\ B C 2  0 . . . 0 /  \ 0 . . . 0  0 

where BC1, BC2 refer to the conditions on the u~ in (1.18). We are unable to remove the boundary 
condition rows as before since we do not have conditions on vi. 

It is typical of the discretizations obtained in this paper that we have to solve a generalised eigenvalue 
problem like (1.20) and we refer to such problems in the form 

A x  = c r B x ,  (1.21) 

where B is, in general, singular. While the scheme leading to (1.12) yields all the eigenvalues accurately 
with the aid of the QZ algorithm, it is reported in [27] that (1.20) leads to the production of a spurious 
eigenvalue. By this we mean a number which is seen in the eigenvalue list but is not a solution to 
the differential equation. To elucidate on this, the QZ algorithm of Moler and Stewart [20] does not 
produce the eigenvalues hi but reduces A and B to upper triangular form with diagonal elements c~ 
and/3i. The eigenvalues are 

o~ i 
hi =- - -  

/3i' 

when division makes sense. In [27] it was found that for (1.17) one value of/3i is O(10 -15) and this 
yields a spurious eigenvalue O(1017). By changing N this value of h is seen to oscillate from a very 
large negative value to a very large positive one and vice versa. In the fluid dynamics literature such 
"eigenvalues" are referred to as spurious eigenvalues and several of the references quoted deal with 
this topic. Indeed, McFadden et al. [19] write that the occurrence of spurious eigenvalues is due to 
rows of zero's in B; in this case the N + 2 and 2(N + 2) rows of B as in (1.20). 

Before proceeding we should mention that the technique of writing the differential equations as 
systems of first order ones and discretizing is advocated by Lindsay and Ogden [18] who dealt with 
the Orr-Sommerfeld equation and some other equations from hydrodynamics, although they did not 
specifically mention the tau coefficients. Also, the idea of using (1.11) to remove boundary condition 
rows in the D 2 matrix was advanced by Haidvogel and Zang [15] who dealt with the solution of 
Poisson's equation in a two-dimensional rectangle. 

To begin our discussion of hydrodynamic stability eigenvalue problems we shall consider the Orr- 
Sommerfeld equation 

(D 2 - -  a 2 ) 2 q ~  = i aRe (U - c ) ( D  2 - a2)q5 - i a R e U " ¢ ,  z E ( - 1 ,  1), (1.22) 

see [11, Eq. (25.12)], where D = d / d z ,  Re, a and c are Reynolds number, wavenumber, and eigen- 
value (growth rate), respectively, and ¢ is the amplitude of the stream function. For Poiseuille flow 
U = 1 - z 2, whereas for Couette flow U = z. Eq. (1.22) is to be solved subject to the boundary 
conditions 

q S = D q S = 0 ,  z = 4 - 1 .  (1.23) 
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In Poiseuille flow the basic flow is driven by a pressure gradient in the x-direction whereas Couette 
flow is driven by the upper boundary being sheared relative to the lower one. The latter is known as 
shear flow but the whole class of such flows is known as parallel flow. 

Eq. (1.22) governs the two-dimensional stability problem for parallel flow where Squire's theorem 
is employed to reduce the three-dimensional problem to a two-dimensional one. This is standard 
knowledge in the fluid dynamics literature, cf. [l 1]. The function 0 is related to the stream function 

by 

~; = fb(z)e ia(x-ct). (1.24) 

System (1.22), (1.23) has an infinite number of eigenvalues and associated eigenfunctions. Since 
the real part of the temporal growth rate in (1.24) is e e~t, c = Cr + ici, the eigenvalue which has 
largest imaginary part is the most dangerous in a linear instability analysis. The component in (1.24) 
of the solution associated with an eigenvalue is referred to as a mode and the one with largest 
imaginary part is known as the dominant, or leading, mode (eigenvalue). For Poiseuille flow the first 
occurrence of ci > 0 is when the Reynolds number is approximately 5772, see [11]. Thus, according 
to linearised instability theory the flow becomes unstable when Re ~> 5772. However, it has long been 
known from experimental evidence, that instabilities are seen at much lower Reynolds numbers, even 
around Re = 1100. This has led to very recent analyses which investigate the possible interaction 
of more than one mode, and guided by experiments, interactions of modes which pertain to a three- 
dimensional structure solution. [3,23] are particularly interesting studies which investigate the kinetic 
energy associated with a finite number of modes arising in the linearised theory. For example, Butler 
and Farrell [3] show that modes associated with eigenvalues which have ci < 0 can lead to energy 
growth, over a fixed time interval, of many orders of magnitude (perhaps 1000 times) greater than 
that associated with the leading eigenvalue. They then argue that when this happens very rapid growth 
is present and three-dimensional instabilities can possibly give rise to growing nonlinear terms which 
lead to instability at Reynolds numbers well below those of classical linear theory. The analyses of 
[3,23] are very interesting and show that one ought to consider several eigenvalues in the spectrum, 
not just the one with greatest imaginary part. For this reason we believe it is important to have a 
method which yields many eigenvalues/eigenfunctions very accurately and also in an efficient manner. 
The purpose of this paper is to describe such a technique, one which we refer to as the D 2 Chebyshev 
tau-QZ algorithm method. When we refer to the top end of the spectrum we mean those eigenvalues 
with ci largest. Usually we here restrict attention to those ci with ci > - 1 .  In analyses such as those 
of [3,23] this ought to be sufficient, although lower values of ci are easily found. 

2. The Chebyshev tau methods for solving the Orr-Sommerfeld problem 

The D 4 Chebyshev tau method 

Here we write, cf. [14], 

N+4 

i=0 

(2.1) 
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in Eq. (1.22). Then we use the fact that 

N + 4  

D4¢ = Z q~}4)r/(z)' 
i=0  

where 

(2.2) 

i = N + 3  i = N + 4  i = N + 4  i = N + 3  

Z ,b,=o, 
i=0  i=1 i=1 i=2 

i even i odd i odd i even 

p = i + 4  
p+i even 

This expression, together with expressions like (1.8) allow us to reduce (1.22) to a system of N + 1 
equations for ¢0, . . . ,  ¢N+4, by taking the inner product with Ti. To see this define the differential 
operator 

L¢ -= D4q$ - 2a2D2¢ - ia Re(U - c ) (D 2 - a2)¢ Jr- (a 4 - i a R e U " ) ¢ ,  (2.4) 

and then we solve exactly the equation 

L¢ = T1TN+I + r2TN+2 + ~3TN+3 + "r4TN+4, (2.5) 

where Ti denote tau coefficients. There should not be any confusion with our earlier use of L as it is 
clear from the context which operator we are referring to. We take the inner product of (2.5) with T/ 
for i = 0 , . . . ,  N. The inner product with Ti for i = N + 1 , . . . ,  N + 4 leads to four equations for the 
tau coefficients. The four remaining conditions are obtained from the boundary conditions (1.23), and 
since T~(+I )  = (-bl)n+ln 2, these are 

N + 4  N + 4  N + 4  N + 4  

i=0  i=0  i=0  i=0  

(Due to the way the terms split in the discretization of (1.22) when U = 1 - z 2 it is then better to 
write (2.6) as 

In this way, one may see that the matrix problem which arises can be split into two problems, one 
involving ¢i, i odd, the other ¢i, i even. Then one has to solve much smaller generalised eigenvalue 
problems. In the general case, however, one cannot reduce the differential equation to separate even 
and odd mode calculations.) 

Eq. (2.7) can be solved to write CN+j, j = 1,2,3,4,  as a linear combination of ¢0, . . . ,  ON. 
The terms CN+j, j = 1 ,2 ,3 ,4 ,  can then be removed in a manner not dissimilar to that for the 
simple example in Section 1, and what results is a generalised eigenvalue problem like (1.21) with 
x = (¢0,. • •, Cg), although the matrix B which results is non-singular. 

Even though/3 is non-singular it is important to realise that the discretization involving the fourth 
order derivative D 4 leads to a matrix whose terms grow like O(MT), where M = N + 1 is the 
number of polynomials. This is evident from (2.3). In actual calculations we find that a large number 
of polynomials are required, perhaps M = 500, and thus this growth rate can lead to serious round 

p = N + 4  
q ~ } 4 ) _  1 24c, Z p[p2(p2_4)2 _ 3p4{2 + 3p2i4_/2( /2  _4)2]¢p .  (2.3) 
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off error problems. It is worth noting that in specific calculations we use the form for D 4 given by 
Canuto et al. [4, p. 196], which rearranges (2.3) to give smaller round off error. Nevertheless, even 
with the Canuto et al. rearrangement the growth is still O(M7). Thus, we believe it is desirable to 
reduce the order of the differential equations whenever possible. 

The D 2 Chebyshev tau method 

A D 2 method writes (1.22) as two equations 

LI(¢,X)--- (D 2 - a 2 ) ¢ -  X = 0, 

L2(¢, X) = (D 2 - a 2 ) x  - i a R e ( U - c ) X  + iaRe U"¢ = 0. 
(2.8) 

We solve exactly the equations 

LI (q), X) = T1TN+I -t- 7-2TN+2, 

L2(¢, X) = T~TN+I + T4TN+2, 
(2.9) 

by writing 

N+2 N+2 

i=0 i=0 

and then by multiplying each of (2.9) in tum by Ti, i = 0 , . . . ,  N. This yields 2(N + 1) equations for 
the coefficients qSi, Xi. The equations obtained by taking the inner product of (2.9) with TN+I, TN+2 
yield equations for the tau coefficients. The difficulty with the above approach, as pointed out by 
McFadden et al. [19, p. 232], is that the boundary conditions are all on q5 i and none are on Xi. Thus, 
we cannot remove boundary condition rows by removing the CN+l, CAr+2, XX+l, XN+2 terms which 
arise in the resulting D 2 matrices. (If the boundary conditions are those appropriate to surfaces free of 
tangential stress then there are two boundary conditions on ¢ and two on X and one can remove the 
offending boundary condition rows. This we have done for Orr-Sommerfeld problems and we obtain 
highly accurate results and no spurious eigenvalues. Also, in a practical multicomponent diffusion 
problem involving penetrative convection Straughan and Walker [28] arrived at similar conclusions. 
For porous convection problems the natural boundary conditions allow boundary condition removal 
in the A matrix and very satisfactory results are yielded [26,27].) 

We may instead write in the boundary conditions as rows of the matrix. This is also done by Lindsay 
and Ogden [18] who generalized the Gardner et al. [14] method and solved (1.22), (1.23) as a system 
of four first order equations. We refer to their technique as a D-method and outline this below. As 
we have pointed out in Section 1 when we use the Lindsay and Ogden [18] technique on the simple 
harmonic motion equation with homogeneous boundary conditions we detect a spurious eigenvalue. 

A D2-method for (1.22), (1.23) appropriate to Poiseuille flow eventually solves an equation like 
(1.21) where 

x = ( ¢ o , . . . ,  ¢N+2, x o , - . . ,  XN+2) "r, 
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with 

and 

Ar 

I D _ a2I 
BC1 
B e 2  

0 
BC3 
BC4 

- I  
0 . . . 0  
0 . . . 0  

D 2 _ a2I 
0 . .0 
0 . .0  

, A i  = 

0 0 
0 . . . 0  0 . . . 0  
0 . . . 0  0 . . . 0  

- 2 a R e I  a R e ( P  - I )  
0 . . . 0  0 . . . 0  
0 . . . 0  0 . . . 0  

/3r = 0, Bi = 
( °/ 

where P is the Chebyshev matrix representing Z 2, A = Ar + iAi, and /3  = / 3 r  + i/3i. ( P  is the matrix 
obtained by writing z 2 = (1 + T2(z))/2, and then taking the inner product (Ti, z2¢).) 

The rows BCl ,  . . . ,  BC4 refer to the boundary conditions on en and for the Orr-Sommerfeld  
problem we find it preferable to use the form (2.7)1 as BCl ,  BC2 and (2.7)2 as BC3, BC4. 

The D Chebyshev tau method 

In this case we write (1.22) as four equations 

LIY=-- D e -  ~ = O, 

LzY- -  D~ - r I = O, 

L3Y = Drl - 7 = O, 
L4Y=-- D T -  [2a 2 + i a R e ( U -  c ) ] r / +  [a 4 + i a 3 R e ( U -  c) + i a R e U " ] ¢  = 0, 

where Li denote the operators indicated and Y = (¢, a ,  fl, 7).  Then write 

N+I N+I N+I 

i=O i=O i=O 

Now solve exactly the tau system 

LmY =TmTN+I, r e = l , . . . , 4 ,  

by multiplying each equation by T/. This yields 

(L,~Y,T~)=O, r e = l , . . . , 4 ,  i = O , . . . , N ,  

and the tau coefficients may be determined from 

N+I 

i=0 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 

(LmY, TN+I) =   IITN+ II 2. (2.14) 

Eq. (2.13) give 4 ( N +  1) equations for the coefficients (¢o, • • •, eN+l  ), (¢0, • • •, ¢N+1 ), (~/0, • • •, ~/N+ 1 ), 
(70 , - - ' , " ) 'N+1)"  Here, a similar problem arises with the boundary conditions as with the D 2 method. 
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The boundary conditions (2.7) involve two conditions on each of qSi, ~i, but none on ~i, 7i, although 
they are somewhat simpler being 

i=N i = N + I  

E E 
i=0  i=1 

i even i odd 

The matrix problem thus becomes (1.21) with 

Ar z 

D - I  0 
BC1 0 . . . 0  0 . . . 0  

0 D - I  
BC2 0 . . . 0  0 . . . 0  

0 0 D 
0 . . . 0  BC3 0 . . . 0  

a4I 0 - 2 a 2 I  

0 . . . 0  BC4 0 . . . 0  

i=N i = N + I  

=°, E 
i=0 i=1 

i even i odd 

ff~ = 0. (2.15) 

0 
0 . . . 0  

0 
0 . . . 0  

- I  
0 . . . 0  

D 
0 . . . 0  

A i  

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

a 3 Re U + a Re U" 0 a Re U 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

with 

B i = 

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

a 3 Re I 0 - a  Re I 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

Ur ~ 0~ 

where in this case BC1-BC4 are (2.15)1-(2.15)4. The vector m is now 

x = ( ~ o , . . . ,  ~x+ l ,  ¢o , . . - ,  CN+l, r /o , . . . ,  r/x+l, 7o , . - - ,  7N+1) T- 
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It should be observed that in each of the D 2 and D methods the B matrices involve rows of 
zero's in addition to zero blocks. This is due to the way the boundary condition rows are added to 
A. Further, from (2.3), (1.8) and (1.19), the growth of the matrix coefficients for each of the D 4, D 2 
and D methods is o ( m T ) ,  O ( M  3) and O(M).  Finally, the D 4, D 2 and D methods essentially give 
generalised eigenvalue problems which involve A, B of order M x M, 2 M  x 2 M  and 4 M  x 4M. 

The recent papers of Gardner et al. [14] and McFadden et al. [19] are very relevant to the present 
contribution and a brief discussion is in order. Gardner et al. [14] reduce a fourth order system to 
two second order ones, or, in general, reduce systems of fourth order equations to systems of second 
order ones. While in fluid dynamics one is often faced with an even order system, the system is not 
necessarily one composed of a system of fourth order equations. Gardner et al. [14] illustrate their 
method by application to the equation 

d4u d3u d2u 
dx----~ + R-d~x3 - s-~-~z 2 = 0 ,  x E  ( - 1 , 1 ) ,  

in which R is a constant and s is the eigenvalue. The boundary conditions they take are 

u = 0 ,  x = + l ;  u ' : 0 ,  x = ± l .  

To solve this they write as a second order system 

u" = v, (2.16) V n + R v  t - s v = O ,  

and use a tau method with 
N+2 

i=0 

N+2 

i=0 

By multiplying (2.16) by Ti they derive 2 (N + 1) equations for the ui, vi and four equations for the 
tau coefficients. The boundary conditions yield a further four equations for the coefficients ui, vi. 

The procedure of [14] is to eliminate the vi coefficients since the boundary conditions are all on 
ui. To do this they partition the resulting finite dimensional system as 

B i b  + B 4 y  - sbl = O, 

Bzb + B s y  - sb2 = O, (2.17) 

T = B3b + B6y  - sy ,  

b =  Qa,  

where the matrices B1, . . . ,  B6 and Q are defined in [14] and where the vectors are defined by 

b = (bo , . . . ,  bg)  T, bl = (bo , . . . ,  bN-2)  T : Q l a ,  52 = (bN-1,  bN) T = Q2a,  

y = (bN+l ,  bN+2) T, T = (7-1,7"2) T, a = ( a 0 , . . .  , aN+2)  T. 

In [14] they first solve for y and then reduce (2.17) to a single equation in a,  namely 

( B 1 Q -  B 4 B 5 1 B 2 Q ) a  : s ( Q 1 -  B4B51Q2)a .  (2.18) 

This is of form (1.21) and may be solved by the QZ algorithm. This method is extended in [14] to 
the Orr-Sommerfeld problem. Although the boundary condition rows may effectively be removed in 
this manner the problem of growth of matrix coefficients is still present. This is due to the matrices 
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in (2.18) [14, Eq. (3.9b)]. The matrices/31 and Q each involve x2F2 (in the notation of [14]) and this 
term is like O(M3),  thus the product grows at least as O ( M  6) and hence the modified tau method 
of [14] still does not remove the growth problem. Also, it is not so evident how one would extend 
the Gardner et al. [14] method to more complicated systems such as the Butler and Farrell [3] one in 
three-dimensions, or the two fluid system studied in Section 6 of this article. 

McFadden et al. [19] discuss the fourth order and second order Chebyshev tau methods, paying 
particular attention to the differential equation system 

d4u  d2u  
dx 4 - o-~z2, x C ( - 1 ,  1), 

(2.19) 
u(4-1) = ux( - t -1 )=0 .  

They suggest a modified tau method by discretizing (2.19) as it stands to obtain an equation of type 

U} 4) = O"//,} 2) (2.20) 

together with boundary conditions of type (2.6). They write Eq. (2.20) plus boundary conditions in 
the form (1.21) and then suggest setting the last two columns of the/3 matrix equal to zero in order to 
remove spurious eigenvalues. They then include an elegant proof to show that this approach is in some 
ways equivalent to a D 2 method which they call a stream function-vorticity method. Of course, the 
formulations cannot be entirely equivalent due to the growth of coefficients in the respective matrices. 
McFadden et al. [19] also discuss the Orr-Sommerfeld problem for Poiseuille flow. 

In the two-dimensional case for the Orr-Sommerfeld equation the D 2 method is essentially the 
stream function-vorticity technique discussed by McFadden et al. [19]. For, in that case, the vorticity 
has only one component, in the y-direction, co = 032 with 

co = U,z  - -  W , x  = ~ , z z  + ~ , z x  = eia(x-ct) ( D2 -- a2)q 5. 

Thus the functions ¢ and X are essentially ¢ and co. 
We believe that the D 2 method is more general than the stream function-vorticity method. For 

example, the Butler and Farrell [3] problem for Poiseuille and Couette flow in three dimensions 
results in a coupled system involving a fourth order equation for w and a second order equation for 
the normal vorticity co3 = v , z  - U,y.  In this three-dimensional situation one may still reduce things 
to three second order equations and use a D 2 method which is then not equivalent to the usual 
stream function-vorticity method. Other areas where the D 2 method differs are in three-dimensional 
convection studies in anisotropic porous media where the principal axes of the permeability tensor are 
not orthogonal to the layer, or the Hadley flow problem, see [26,28], respectively. Although we do 
not include explicit details of analysis for problems such as that of Butler and Farrell [3] we stress 
that the extension to such three-dimensional studies is very important. Details of such studies together 
with the consequences for the relevant fluid mechanics may be found in a porous media setting in 
[26,28], although the treatment of boundary conditions is different for porous media flow. 

In the remainder of the paper we make a systematic study of Chebyshev tau methods applied to 
Poiseuille flow, Couette flow, Hagen-Poiseuille flow, and finally we show how to apply the method 
to the situation where one fluid is overlying another. We stress that we concentrate on finding many 
eigenvalues, including eigenvalues which are difficult to obtain, and we investigate parameter ranges 
which have previously proved difficult. Consideration is given to loss of accuracy due to the various 
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D 4, D 2 or D methods, and to loss of accuracy due to insufficient polynomials, or insufficient resolution 
due to lack of precision in the representation of real numbers. 

3. The eigenvalue problem for plane Poiseuille flow 

In this section we study (1.22), (1.23) with U = 1 - z 2. There have been many calculations of the 
spectral behaviour for Re not too large, say Re ~< 104, see [3,11,22,23] and the references therein. 
Abdullah and Lindsay [1], Davey [7] and Feam [12] report studies on particular eigenvalues for Re 
extending to 109. We use the D 2 (stream function-vorticity) method and show what can go wrong in 
calculating the spectrum for large Re and how one can put things right. 

We have written our own codes for the D 4, D 2 and D methods, and a comparison of results for 
these methods is now given. 

Undoubtedly the advantage of the D 2 method is the growth rate removal, and in this respect the 
D method is even better, with terms growing only like O(M); this important feature does not appear 
to have been realised in [18]. Against this, the time taken by the QZ algorithm appears to scale 
like O(Ms]ze ) where Msize is the matrix width, i.e., Msize = M, 2M, 4M, with the D 4, D 2, D 
methods, respectively. The problems associated with doubling the matrix size have been commented 
on by McFadden et al. [19]. For example, on a SUN sparc station (ipc), with 50 polynomials, the 
D 4, D 2, D methods take, respectively, 4.1 seconds, 17.1 seconds, and 112.3 seconds. One test of 
the D method with M = 150 took 2940.7 seconds, i.e., approximately 49 minutes. Clearly, when 
many computations are required this is an important factor. Additionally, the memory requirements of 
the D method are substantial, requiring approximately 16MB for the 150 polynomial case (using full 
precision). The D 2 method we have found to yield high accuracy, although as reported below, for Re 
high enough extended precision arithmetic is required. Unless explicitly stated, our calculations are 
based on full precision, i.e., 64 bit arithmetic. 

The D 2 and D methods necessarily produce a B matrix in (1.21) which has one or more rows of 
blocks of O's and so is singular. One approach to solving this problem is the QZ algorithm of Moler 
and Stewart [20]. This algorithm relies on the fact that there exist unitary matrices Q and Z such that 
Q A Z  and Q B Z  are both upper triangular. The algorithm then yields sets of values c~i, /3~ which are the 
diagonal elements of Q A Z  and QBZ.  The eigenvalues cr i of (1.21) are then obtained from the relation 
cri = c~/t3i, provided fli ¢ 0. This is very important, since the way we have constructed B means 
it contains a singular band, corresponding to infinite eigenvalues, and the fli = 0 must be filtered 
out. Indeed, with the technique advocated here one ought always to consider the c~i and fit, since 
as Moler and Stewart [20] point out, the c~i and fli contain more information than the eigenvalues 
themselves. The QZ algorithm is available in the routines ZGGHRD, ZHGEQZ and ZTGEVC of 
the LAPACK Fortran Subroutine library [2]. The coefficients of the eigenvector ~ yielded by the 
QZ algorithm are extremely useful convergence indicators. In this regard we throughout render the 
eigenvector unique by normalising so that the sum of squares of the moduli of the components is equal 
to one and the component of largest modulus is real. In fact, the eigenvectors can be used to indicate 
the presence of spurious eigenvalues. We have found by computation that the "eigenvector" for such 
a spurious eigenvalue typically does not demonstrate the convergence evident in the eigenvector for 
a real eigenvalue. An alternative way is to compute the T-coefficients, cf. [14], but as these are based 
on the eigenvector we find it simpler to just examine the eigenvectors themselves. 
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Another possible method of assessing whether an eigenvector is spurious is to compute the residuals 
for (1.21), i.e., compute 

r(i)  = f l i A x ( i )  - ~ i B x ( i ) .  

When an "eigenvalue" is spurious we have found these to have all  components between O(1022) 
and O(101s). For a real eigenvalue, the residuals corresponding to those fli : 0 are O(10 Is) as are 
two or three corresponding to the presence of spurious eigenvalues, whereas the rest converge from 
O(106) down to O(10-8),  which is consistent with the fact that the discretization only allows us to 
see the "top end" of the true spectrum. Even though we are using a D 2 method we do find a spurious 
eigenvalue may be produced. When we apply the method to the problem of two fluids in Section 6 
then we always see spurious eigenvalues. In connection with this, we have calculated the sensitivities 
for the eigenvector, cf. [25], and these indicate that the spurious eigenvalues are connected with the 
discretization procedure rather than the QZ algorithm used to find the matrix eigenvalues. Details 
appropriate to the superposed fluid problem are given in Section 7. A referee has kindly pointed out 
that relying on the eigenvector or the residuals assumes the forward stability of the QZ algorithm 
which cannot be assumed. However, we have found numerically that these are reliable guides and our 
computations agree with, or are better than, numerical results reported by other workers. 

Orszag [22] gives for Re : l04 and a = l, 

c -- 0.23752649 + 0.00373967i (3. l) 

as the exact value of the first eigenvalue (to 8 d.p.). He used 56 polynomials to achieve this accuracy 
(although he only uses even ones, thereby only 28 terms are in his expansion). The D 4 method gives 

c : 0.23752708 + 0.00373980i 

with M = 50. We found this to be the best approximation and thereafter on increasing M the value 
diverges from (3.1). The D 2 and D methods, however, agree with (3.1) for M = 56 and beyond. We 
can also find the eigenfunctions very accurately. For example, the D 2 method with 56 polynomials 
yields er and ¢i as in [ l l ,  Fig. 4.20]. With the boundary conditions (2.7) or (2.15), respectively, 
by using the D 2 and D methods we obtained only even modes for cases when the eigenfunction is 
symmetric and odd modes in the skew symmetric case, and the convergence is better than that for 
the D 4 technique. Another feature of the D 4 method is that even though the boundary conditions 
are removed we still saw two values in the list with/3 = 0. The corresponding c~ values were large, 
O(1015), and real. These we believe are spurious but are easily filtered out by examining the/~i given 
by the QZ algorithm. This does raise an important point. It questions whether the only way spurious 
eigenvalues can arise is through rows of zeros in the B matrix due to inserting boundary condition 
rows in the equivalent row(s) of A. 

Orszag [22, Table 5] gives a list of the 32 least stable modes for Re -- l04, a : 1. With the D 2 
method we obtained complete agreement with this list in the sense: for the first 12 eigenvalues with 
70 polynomials, for the first 14 eigenvalues with 80 polynomials, and complete agreement with all 32 
eigenvalues by using 96 polynomials. We did, however, find an extra eigenvalue; between positions 
17 and 18 of [22, Table 5] we obtain the value 

c = 0.21272578 - 0.19936069i. (3.2) 

The eigenvector coefficients from the D 2 method (normalised as indicated earlier) with 96 polynomials 
indicate the value (3.2) corresponds to a skew-symmetric solution and with this number of polynomials 
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Fig. 1. The  spect rum for plane Poiseui l le  flow. Re = 104, a = l ,  open circle (o) = even eigenfunction,  cross ( x )  = odd 
eigenfunction.  The  upper  right branch consists of  "degenerate"  pairs of even and odd eigenvalues.  

the eigenvector had converged to O(10-13), O(10-14) ,  for  the q5 and A (= D2q5 - a2qS) terms. 
Interestingly, we find both symmetric and skew symmetric modes with the D (and D 2) method(s). 
Lindsay and Ogden [18] appear to report only symmetric ones. For Re = 104, a = 1, the spectrum, 
in the range ci E ( -1 ,0 ) ,  Cr E (0, 1), is given in Fig. 1, indicating which are even and which are odd 
modes. When we refer to the spectrum in Fig. 1 and throughout the paper we mean that part displayed 
in the relevant figure. 

We have produced an mpeg movie which may be accessed with a web browser, such as Mosaic 
or Netscape, at http://www.epm.ornl.gov/~walker/eigenproblems.html. This movie con- 
tains the parametric evolution of the spectrum of the plane Poiseuille flow problem for a = 1, with Re 
ranging from 100 to 10 4 in steps of 10. This may yield useful insight into resonance mechanisms. The 
evolution of the upper branches is clearly visible and the emanence of the eigenvalues from Cr = 2/3 
is evident. 

When Re is increased eventually mode crossing is seen, i.e., eigenvalues exchange positions in the 
sense that the imaginary part of one eigenvalue decreases relative to that of another eigenvalue whose 
imaginary part eventually becomes larger than that of the former. Abdullah and Lindsay [1] are critical 
of the papers of Davey [7] and Feam [12] in their analysis of higher Re values. According to linear 
theory for (1.22) and (1.23) the most unstable eigenvalue has largest imaginary part, i.e., ci largest. 
Davey [7] claims the most unstable mode is symmetric, presumably on the basis that this is so for 
Re = 104, a = 1. Feam [12] solves a symmetric problem and simply refers to the solution to (1.22), 
confirming Davey's [7] results. Abdullah and Lindsay [1] claim that these writers are using a tracking 
technique and miss the leading eigenvalue since mode crossing occurs. We have partially confirmed 
the findings of Abdullah and Lindsay [1] and Lindsay and Ogden [18] who only give the first five 
eigenvalues, although it would appear they find only symmetric ones. This is especially important, 
since for Re = 105, a = 1, we confirm mode crossing has occurred, but we find the leading eigenvalue 
to be skew-symmetric. We present in Table 1 the leading eigenvalues for Re : l0 s and a = 1, our 
calculations being made by a D 2 method, but determining odd modes and even modes separately, with 
M = 200 in each case, i.e., equivalent to M = 400 for the full problem. 
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Table 1 
The six odd and six even eigenvalues with largest imaginary part for the Orr-Sommerfeld 
problem with U = 1 - z 2, Re = 105, a = 1. A = anti-symmetric, S = symmetric 

415 

Symmetry Eigenvalue 

A 0.9888191058E+00 - 0.1116257893E-01i 

A 0.9798738045E+00 - 0.2008374163E-01i 

A 0.9709280339E+ 00 - 0.2900433538E- 01i 

A 0.1373944878E+00 - 0.2956356969E- 01i 

A 0.9619817790E+00 - 0.3792441466E-01i 

A 0.9530350180E+00 - 0.4684401422E-01i 

S 0.9888195933E+00 - 0.1116360699E-01i 

S 0.1459247829E+ 00 - 0.1504203085E- 01 i 

S 0.9798751271E+00 - 0.2008635538E-01i 

S 0.9709305305E+00 - 0.2900898101E-01i 

S 0.1982003566E+00 - 0.3733100660E-01i 

S 0.9619857994E+00 - 0.3793148490E-01i 

Table 2 
A selection of the components of the eigenvector corresponding to ~r (1) = 0.9888191058 - 
0.01116257893i, Re = 105, a = 1. Com. No. refers to the component of the eigenvector, 
q~ = qSr + iqSi, A = Ar + iAi. The eigenvector is normalised with the sum of squares of the 
moduli of the components equal to one and the component of largest modulus is real 

Com. No. O~ ~bi Ar Ai 

1 0.208839E-03 0.409542E-03 0.240779E-01 0.204308E-01 

11 0.421908E-03 0.289300E-03 -0.167597E+00 -0 .125165E+00 

21 0.889307E-04 -0 .897408E-04  -0.147664E+00 0.148864E+00 

31 -0 .123273E-04  -0 .114027E-05  0.458675E-01 0.307459E-02 

41 0.461222E-06 0.686801E-07 -0 .304143E-02  -0 .281158E-03  

51 -0 .553081E-08  0.346867E-08 0.525270E-04 -0 .400853E-04  

61 - 0 . 1 2 2 0 3 0 E -  10 -0 .307889E-  10 0.231698E-06 0.414265E-06 

71 0.456178E- 13 -0 .465328E-  13 -0 .665353E-09  0.937961E-09 

81 - 0 . 1 4 7 8 5 1 E -  14 -0 .190889E-  14 -0 .960477E-  12 0.301479E- 12 

86 0.153318E- 14 0.354368E- 14 -0 .262614E-  14 0.292893E- 14 

It is s e e n  f r o m  T a b l e  1 t h a t  t h e  " l e a d i n g "  e i g e n v a l u e  is a s k e w - s y m m e t r i c  o n e .  In T a b l e  2 w e  i n c l u d e  

c o m p o n e n t s  o f  t h e  ( n o r m a l i s e d )  e i g e n v e c t o r  f o r  th i s  s k e w  m o d e .  It is s e e n  tha t  m a c h i n e  p r e c i s i o n  is 
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Table 3 
The four leading odd and even eigenvalues in the transition region, M -- 200, a = 1 

Symmetry Eigenvalue Re 

A 0.9875629891E+00 - 0.1241421339E-01i 80822 

A 0.9776125822E÷00 - 0.2233449266E-01i 80822 

A 0.1470238117E+00 - 0.3124631640E-01i 80822 

A 0.9676615245E+00 - 0.3225401228E-01i 80822 

S 0.1555554132E+00 - 0.1241409956E-01i 80822 

S 0.9875636361E+00 - 0.1241555934E-01i 80822 

S 0.9776143504E+00 - 0.2233791980E-01i 80822 

S 0.9676648840E+00 - 0.3226011142E-01i 80822 

A 0.9875634508E+00 - 0.1241375347E-01i 80828 

A 0.9776134133E+00 - 0.2233366562E-01i 80828 

A 0.1470203436E÷00 - 0.3124575284E-01i 80828 

A 0.9676627251E+00 - 0.3225281822E-01i 80828 

S 0.1555521082E+00 - 0.1241509695E-01i 80828 

S 0.9875640977E+00 - 0.1241509935E-01i 80828 

S 0.9776151812E+00 - 0.2233709233E-01i 80828 

S 0.9676660845E+00-0.3225891687E-01i  80828 

A 0.9875636047E+00 - 0.1241360017E-01i 80830 

A 0.9776136903E+00 - 0.2233338998E-01i 80830 

A 0.1470191935E+00 - 0.3124557862E-01i 80830 

A 0.9676631252E+00-  0.3225242025E-01i 80830 

S 0.9875642516E+00 - 0.1241494596E-01i 80830 

S 0.1555510002E÷00 - 0.1241538251E-01i 80830 

S 0.9776154583E+00 - 0.2233681675E-01i 80830 

S 0.9676664843E+00 - 0.3225851880E-01i 80830 

r e a c h e d  w i t h  86 o d d  p o l y n o m i a l s ,  i .e. ,  up  to Z171 . ( A l l  c o m p o n e n t s  a re  n o t  i n c l u d e d ,  j u s t  a sample to 
d e m o n s t r a t e  c o n v e r g e n c e . )  

W e  h a v e  u s e d  t h e  s e p a r a t e  " o d d "  and  " e v e n "  c o d e s  w i t h  M = 2 0 0  to c o m p u t e  t he  b e h a v i o u r  o f  t he  

e i g e n v a l u e s  in t he  t r a n s i t i o n  r e g i o n .  F o r  a = 1, in T a b l e  3 it is s e e n  tha t  t he  s t r u c t u r e  at R e  - -  104 is 

m a i n t a i n e d  at R e  --- 8 0 , 8 2 2  b u t  by  R e  - -  8 0 , 8 2 8  the  first  t w o  e i g e n v a l u e s  e x c h a n g e  p o s i t i o n s ,  t h e n  by  

R e  = 8 0 , 8 3 0  the  e i g e n v a l u e  w h i c h  is s e c o n d  at R e  = 8 0 , 8 2 8  e x c h a n g e s  w i t h  t he  o n e  o c c u p y i n g  th i rd  

p o s i t i o n  f o r  t h e  s a m e  R e  v a l u e .  T h e  p o s i t i o n  o f  t h e s e  th ree  is m a i n t a i n e d  in T a b l e  1. 
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Fig. 2. The approximate e igenvalues  associated with even 
modes  for plane Poiseui l le  flow. Effect  of  too  few polyno-  
mials. Re = 2 .7  × 104, a = 1, M = 85,  64  bit arithmetic. 

Fig. 3. The approximate eigenvalues associated with even 
modes for plane Poiseuille flow. Effect of finite precision. 
Re = 2.7 × 104 , a = 1, M = 200, 64 bit arithmetic. 
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Fig. 4. The approximate eigenvalues associated with even 
modes for plane Poiseuille flow. Effect of finite precision. 
Re = 2.7 × 104, a = 1, m = 500,  64 bit arithmetic. 
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Fig. 5. The approximate eigenvalues associated with even 
modes for plane Poiseuille flow. Re = 2.7 × 104, a = 1, 
M = 200, 128 bit arithmetic. 

Abdul lah  and L i ndsay  [1] report further m o d e  cross ings  for h igher  Re  va lues .  H o w e v e r ,  m u c h  care 
m u s t  be  taken  w h e n  R e  increases .  W e  n o w  report f indings for  the spectrum and in particular in the 
reg ion  near  the j o i n i n g  o f  the so cal led A, P and S b r a n c h e s - - t h e  three groups  o f  branches  in Fig.  1. As  
indicated in the f igure the A branches  are the upper left ones ,  the P branch is the upper  right o n e  c o m -  
p o s e d  o f  degenera te  pairs, and the S branch is the l o w e r  o n e  emanat ing  f r o m  Cr = 2 / 3 .  This  notat ion  is 
standard in the f luid d y n a m i c s  literature, see  [1 1]. The  e i g e n v a l u e s  near the branch point  are particularly 
sens i t ive  to c h a n g e  [22],  and w e  find great care mus t  be  taken e v e n  with  R e  around 2.3  x 104. 

W e  h a v e  c o m p u t e d  m a n y  case s  and Figs.  2 - 5  are just  a sample .  E v e n  though  they are on ly  for  e v e n  
m o d e s  they  i l lustrate the important  points  regarding round o f f  error. T h e  s a m e  f indings  are true for 
odd  m o d e  cases ,  and for the full  c o d e  w h i c h  finds odd and e v e n  m o d e s  together.  
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Figs. 2-5 are obtained with the D 2 method solving (1.22), (1.23) for even modes only, i.e., employing 
only even polynomials, using full precision arithmetic (64 bit) in Figs. 2-4, whereas extended pre- 
cision (128 bit) is employed in Fig. 5. Fig. 2 demonstrates inaccuracy caused by having insufficient 
polynomials, even though M = 85 (equivalent to 170 in the odd and even code). This splitting in the 
tail is symptomatic of insufficient polynomials and we find similar behaviour in all of the problems 
reported here. By increasing the number of polynomials we are able to overcome the splitting of the 
tail problem as in Fig. 3 where M = 200. Nevertheless, the eigenvalues at the intersection are not 
accurate. Increasing the number of polynomials compounds the problem and we find a "triangle of 
numerical instability" begins to form, Fig. 4, where M = 500. We have found that this behaviour is 
due to the precision to which we are working. By increasing from 64 to 128 bit arithmetic this effect 
is removed (in this case), see Fig. 5. We have not seen the latter effect reported before. The 128 bit 
arithmetic calculations were performed with the LAPACK routines on an IBM RS 6000 590 machine. 

A referee raised the very interesting question as to whether the D 2 method operating at 128 bit 
arithmetic is as expensive as the D method at 64 bit arithmetic. From the computational time point of 
view the two methods are comparable. However, we have ran the D method in 64 bit arithmetic for 
the cases of Figs. 2-4. The instability at the intersection of the branches is n o t  removed. Thus, the D 2 
method at 128 bit arithmetic is n o t  equivalent to the D method at 64 bit arithmetic. The instability 
seen in Figs. 2-4 is not due to growth of coefficients in the A matrix and we believe that it can only 
be removed by increasing the precision. This, of course, raises the question of when to use a certain 
precision, and how many polynomials we should employ a pr ior i .  This point was succinctly raised by 
a referee. At present we do not have an analytical answer to this. We have proceeded by numerical 
experiment and comparison with previous work. We are investigating further this aspect and, indeed, 
the question of how spurious eigenvalues form. Nevertheless, we believe the findings we report here 
are worthy and ought to be brought to the attention of workers dealing with practical hydrodynamical 
stability problems. 

Remarks. To conclude this section we note that we have drawn attention to three important types of 
error which are present in solving difficult eigenvalue problems. The first is round off error due to 
growth of matrix coefficients. In this respect a D 2 method is preferable to one using D 4. Secondly, 
too few polynomials causes the "tail", i.e., the S branch, to split. Thirdly, increasing the number of 
polynomials in a cavalier fashion to compute sensitive eigenvalues can lead to inaccuracy due to ill 
conditioning and insufficient precision in real number representation. Clearly care must be taken to 
avoid these errors and while our work regarding the latter two is heuristic, we believe it is worth 
drawing attention to these points, while we continue in a search for analytical tests to determine the 
correct number of polynomials coupled with the best precision. 

4. The eigenvalue problem for plane Couette flow 

The problem of this subsection is (1.22) and (1.23) when U = z. Physically it corresponds to the 
lower plate fixed while the upper plate is moved with constant velocity, generating a linear shear. This 
problem is always stable according to linear theory, cf. [11]. Nevertheless, it is not a trivial eigenvalue 
problem from a numerical standpoint. Indeed, we studied this problem at the suggestion of Dr. Alison 
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Fig. 6. The spectrum for plane Couette flow, using 200 polynomials. Re = 13,000, a = 1, 128 bit arithmetic. 

Table 4 

The first 45 eigenvalues graphed in Fig. 6. Conjugate pairs are presented as one mode 

Mode number  Eigenvalue c 

I ±0 .8276152337E+00 - 0 .4751548439E-01i  

2 +0 .7318167785E+00 - 0.1091860424E+00i 

3 ±0 .8694486153E+00 - 0.1279149536E+00i 

4 ±0 .6516804277E+ 00 - 0.1594003003E+ 00i 

5 ±0 .7671186628E+00 - 0.1805164930E÷00i 

6 ±0 .5801567166E+00 - 0.2035572830E+00i 

7 ±0 .6828371673E+00 - 0.2251746419E+00i 

8 +0 .5143995235E+00 - 0.2437675825E+00i 

9 +0 .6082408213E+ 00 - 0.2653481107E+ 00i 

10 ±0 .4528935800E+00 - 0.2811241939E+00i 

11 ± 0.5400219613E+ 00 - 0.3024 ,',,78732E+ 00i 

12 ±0 .3947096982E+00 - 0.3162828159E+00i 

13 ±0 .4764491821E+00 - 0.3373108149E+00i 

14 i 0 . 3 3 9 2 2 5 6 9 6 7 E + 0 0  - 0+3496747907E+00i 

15 ÷0 .4164746866E+00 - 0.3703603829E+00i 

16 ±0 .2859989475E+00 - 0.3816025000E+00i 

17 + 0 . 3 5 9 4 0 4 2 6 6 0 E + 0 0 -  0.4019439818E+00i 

18 : i0 .2347002407E+00 - 0.4122880439E+00i 

19 ÷0 .3047483827E+00 - 0.4322966352E+00i 
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Table 4 (Continued) 

Mode number Eigenvalue c 

20 i0 .1850762211E+00  - 0.4419004929E+00i 

21 ±0.2521456926E+00 - 0.4615944208E+00i 

22 :k0.1369265577E+00 - 0.4705722463E+00i 

23 +0.2013199914E+00 - 0.4899736516E÷00i 

24 +0.9008929422E-01 - 0.4984093248E+00i 

25 :k0.1520542459E+00 - 0.5175426311E÷00i 

26 :t :0.4444142747E-01 - 0.5255273887E÷00i 

27 +0.1041741466E+00 - 0.5443892453E+00i 

28 0.0000000000E÷00 - 0.5459244238E+00i 

29 :k0.5753309952E-01 - 0.5705930815E÷00i 

30 0.0000000000E÷00 - 0.5782633202E+00i 

31 :k0.9937461129E-02 - 0.5982573646E+00i 

32 0.0000000000E÷00 - 0.6268958614E÷00i 

33 0.0000000000E+00 - 0.6550042769E÷00i 

34 0.0000000000E÷00 - 0.6809093456E÷00i 

35 0.0000000000E÷00 - 0.7081327166E÷00i 

36 0.0000000000E+00 - 0.7352566431E÷00i 

37 0.0000000000E+00 - 0.7628468874E+00i 

38 0.0000000000E÷00 - 0.7906653030E+00i 

39 0.0000000000E÷ 00 - 0.8188353645E÷ 00i 

40 0.0000000000E÷00 - 0.8472841070E÷00i 

41 0.0000000000E÷00 - 0.8760700653E+00i 

42 0.0000000000E+00 - 0.9051510243E÷00i 

43 0 . 0 0 0 0 0 0 0 0 0 0 E + 0 0 -  0.9345643207E+00i 

44 0.0000000000E÷00 - 0.9642865284E+00i 

45 0.0000000000E+00 - 0.9943359829E+00i 

H o o p e r  w h o  i n f o r m e d  u s  s h e  h a d  d i f f i c u l t y  in  c a l c u l a t i n g  t h e  s p e c t r u m  f o r  R e y n o l d s  n u m b e r s  a s  l o w  

as  2 0 0 0 .  

W i t h  1 5 0  p o l y n o m i a l s  in  t h e  D 2 m e t h o d  w e  o b t a i n  e x c e l l e n t  a c c u r a c y  f o r  R e  = 3 0 0 0 ,  a - -  1, in  

6 4  b i t  a r i t h m e t i c .  B r e a k d o w n  a t  t h e  i n t e r s e c t i o n  o f  t h e  b r a n c h  p o i n t s  is e v i d e n t  a r o u n d  R e  ---- 3 5 0 0 .  

H o w e v e r ,  t h e  s a m e  c o d e  o p e r a t i n g  a t  128  b i t  a r i t h m e t i c  y i e l d s  a n  a c c u r a t e  s p e c t r u m .  

I n  128  b i t  a r i t h m e t i c  w e  a r e  a b l e  to  e x t e n d  t h e  c a l c u l a t i o n  w e l l  b e y o n d  R e  = 3 8 0 0 .  W i t h  1 5 0  

p o l y n o m i a l s  n o  d i f f i c u l t y  is  e x p e r i e n c e d  a t  R e  = 8 0 0 0 ,  b u t  a t  R e  = 104 a s p l i t  i n  t h e  t a i l  is  o b s e r v e d .  
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By using 200 polynomials and 128 bit arithmetic we have been able to proceed to Re = 13,000, and 
the spectrum for this case is shown in Fig. 6. For the benefit of others who might use this calculation 
as a yardstick we present actual numerical values in Table 4. 

5. The eigenvalue problem for circular pipe flow 

Symmetric disturbances for the linear instability problem for flow in a circular pipe driven by a 
constant pressure gradient (Hagen-Poiseuille flow) are governed by the equation 

L2¢ = i aRe(U - c)L¢, (5.1) 

where a, Re, c are wavenumber, Reynolds number, and growth rate, respectively, the base velocity 
U = 1 - -  r 2, r being the radial coordinate, the differential operator L is defined by 

d 2 1 d 
a 2 (5.2) 

L -  dr  2 r dr ' 

and (5.1) holds on the domain r E (0, 1). The disturbance ¢ is subject to the boundary conditions 

= ¢ ' = 0 ,  r=0 ,1 ,  (5.3) 

cf. [11]. Symmetric disturbances governed by (5.1)-(5.3) are believed always stable [11]. 
We show how to solve (5.1)-(5.3) by a D 2 Chebyshev tau-QZ algorithm method. This avoids the 

growth problem associated with direct discretization of the fourth order derivative. It is worth pointing 
out that this technique will have wide application since there are many technologically important 
problems in fluid flows in a pipe, or in a pipe filled with porous material. Also, the D 2 technique 
is perfectly suited to hydrodynamic stability studies of flows in a spherical geometry. The singular 
terms of form (re~r)d/dr which occur in such problems may be handled perfectly naturally using 
the propeties of Chebyshev polynomials. The boundary value problem (5.1)-(5.3) is solved by a D 2 
method by writing 

L ¢ = ¢ ,  

L¢ = ia Re(U - c)¢, (5.4) 

subject to (5.3). Define L1, L2 by 

L1 (¢, ¢ )  ~ L¢ - ¢,  

L2(q~,  ¢ )  ~ L ¢  - i aRe(U - c)¢. (5.5) 

To use the Chebyshev tau method on this system we transform to z = 2r - 1 and then use the key 
relation [22] 

Tm+l(z) + Tm-l(z) = 2zTm(z), m >~ 1. (5.6) 

In terms of z the operator L becomes 

d 2 4 d a2 
L ~  4dz  2 ( z + l )  dz 
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and 

3 I Z _ ¼ Z 2 "  U -  4 

Then we solve exactly the tau system 

7-1 ) TN+I + - -  
r ~  (~, ~) - (~ + 1 

<~ . TN+t + - -  L2(q~, ~b) -  (z + 1 ) 

7-2 
TN+2~ 

( z +  1) 
7-4 

(z + 1) TN+2" 
(5.7) 

To remove the singularity we multiply each equation in (5.6) by (z+ 1)Tm and integrate in the weighted 
L2( -1 ,  1) space with weight (1 - Z 2 )  -1/2. While we now have to calculate terms like ( z T m ,  dZ~b/dz 2) 
the beauty of using the weighted inner product is the natural removal of the singular term in L. 

After some calculation we arrive at an equation of form (1.21) where 

1 4 Z D  2 + 4D 2 - 4D - a2(Z + / )  
BC1 
BC2 

Ar = 
0 

BC3 
BC4 

-(z+ I) 
0...0 

0...0 

4 Z D  2 + 4D 2 - 4D - a2(Z + I )  

0 . . . 0  
0 . . . 0  

(o 0 
0 . . 0  0 . . . 0  

/Oo0 o0 
A i - -  Re(¼Z3 + 3Z 2 a - - ¼ Z -  

~k O.. .O 0 . . . 0  
0 . . . 0  0 . . . 0  

and 

Br -- O, Bi = 

where 

°o, ) R 

0111o / 

= (q%, • • •, q~N+2, ~ o , . . - ,  ~ N + 2 )  T, 

Z n denotes the matrix arising from the Chebyshev representation of the function z n, Z D  2 being the 
Chebyshev representation of z D  2. The boundary conditions BC1-BC4 are those of (2.7). 

Although we do not include numerical output for the problem of this section we have carried out 
many computations. The behaviour seen in Sections 3 and 4 is also observed here. The spectrum has 
a similar shape to that seen in Section 3 and too few polynomials lead to a split in the tail. Again, for 
high Reynolds numbers instability is witnessed at the intersection of the branch points but it may be 
remedied by increasing the precision. 
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6. The eigenvalue problem for Orr-Sommerfeld like flows for two superposed immiscible fluids 

Here we study the eigenvalue problem associated to the problem of Couette and/or Poiseuille 
flow when one immiscible viscous fluid overlies another. This is a problem of major technological 
importance with application from the oil industry to fields such as de-icing of an aeroplane wing, cf. 
[5]. Many references may be found in the papers by Chen and Crighton [5], Hooper [16], and Renardy 
[24]. While we here develop a D 2 method for the situation studied by Hooper [16] we believe the 
ideas are extendable to more complicated scenarios such as the one of Chen and Crighton [5]. We 
stress that the D 2 Chebyshev tau method has wide application to many hydrodynamic stability studies 
and we are presenting it here as a guide as to how one would apply it in other two or multilayer 
situations. In particular, we believe it is an ideal method to apply to two or many layer fluid flows 
in a pipe where the singular terms may be handled as outlined in Section 5. Inclusion of electric and 
magnetic effects greatly increases the order of the system, but the D 2 Chebyshev method is perfectly 
suited to incorporate such effects. 

Hooper [16] assumes a fluid, denoted by 2, is overlying a different, immiscible fluid, denoted by 1, 
the configuration being contained in a horizontal position between planes y = - 1 ,  y = n, with the 
(x, z)-plane horizontal while the y-axis is vertical (orthogonal to the bounding planes of the fluids). 
The dynamic viscosities, densities and depths in each fluid are denoted by #~, p ,  and d~, respectively, 
c~ = 1,2. The upper plane y = n may be subject to a (dimensionless) velocity in the x-direction, Un, 

and the velocity of the interface (in the steady state) is Uint. A Reynolds number, Re, is defined with 
respect to Uint. The basic flow has form 

- l < y < 0 ,  
(6.1) 

0 < y < n ,  

u l (y)  = A I y  2 + a l y  + 1, 

u2(y) = A2y  2 + a2y + 1, 

where 

Al  = - ( m  + n) + m u n  

n ( n  + l) 

n 2 -- m Jr m u n  d l  al 
, a l  = n ( n  + 1) ' A2 = --'m a2 = --,m (6.2) 

with m and n being the viscosity and depth ratios, 

/~2 d2 
m = - - ,  n = - - .  (6.3) 

#l dl 

Hooper [16] observes that un = 0 gives rise to a two fluid version of plane Poiseuille flow, whereas 
un = ( m  + n ) / m  yields Couette flow. Renardy [24, pp. 1762-1763], includes a detailed account of the 
applicability of Squire's theorem to two fluid flows and points out that if there are islands of stability 
(where the neutral curve consists of one or more isolated closed curves in addition to the usual convex 
one, as occurs in multicomponent convection-diffusion, cf. [28]) then such a theorem would not be 
applicable. In that case one would be faced with a three-dimensional analysis and a D 2 method is 
not equivalent to a stream function-vorticity method. However, we stress that the D 2 method is still 
applicable in that case. We here follow Hooper [16] and analyse directly the two-dimensional situation. 
Hooper [16] shows the effective stream function ¢~ in each fluid satisfies the equations 

- a  2 c] d2 
- -  - -  a 2  - u g ( Y )  el (Y) ,  --1 < y < 0, (6.4) 
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(d_ff~ 2 )2 ioiRe 
- - a 2  42(Y) --  m 0 < y < n ,  (6.5) 

where a is the wavenumber and c is the growth rate due to a disturbance of form exp[ia(x - ct)]. 
The boundary conditions on the plates are 

41(-1)  = 0, 4'1(-1) = 0, 42(n) = 0, 4~(n) = 0. (6.6) 

The interface conditions due to continuity of velocity components and continuity of shear and normal 
stresses are, on y ---- 0, 

¢1 = ¢2 (= ¢(o)), 

4'1 = 42 -I- [C-- Ul (0) ]  U l (0 )  

- i ~ e ( [ c -  ~l (0)>'1 + ~141) + i ~ R e ( [ c -  ~1(0)]4~ + a242) 
-4~( ' + 3a24] + m(4~" - 3a24~) 

iaRe ( 1 )  
-[~:-~--7(o)] Y +a2s 4, 

(6.7) 

where r = Pl/P2, F is a non-dimensional form of the density difference P2 - -  Pl, and S is a non- 
dimensional form of the interfacial tension [29]. Actually, Hooper [16] restricts attention to equal 
densities and zero interfacial tension, i.e., r = 1, S = 0, as we do in computations. However, we wish 
to indicate that the D 2 method may be applied to the complete boundary condition due to continuity 
of normal stress, (6.7)4, derived by Yih [29]. 

To implement (6.7)4 in practice we use (6.7)2 to rewrite it as 

-iaRe([c - u1(0)]¢~ + al41) ~- i r a R e ( [ c  - ui(0)]¢~ + a2¢2) 

-¢~"  + 3a2¢'1 + m(¢~'  - 3a2¢~) 

i amRe  ( 1 )  
= q(o) (1 - .~ )  ~ +a2s  (¢ '1-4) ,  (6.8) 

with m ~ 1. A discrete version of (6.8) is easily added to a Chebyshev formulation, following the 
lines given below. 

Henceforth, we restrict attention to Hooper's [16] problem for which r = 1, S = 0. To solve 
(6.4)-(6.7) by a D 2 Chebyshev tau-QZ algorithm technique we first map y C ( - 1 , 0 )  and y E (0, n) 
to the domains ( -1 ,  1) by the transformations 

2 
Z 1 = - 2 y -  1, Z 2 :  - y -  1; (6.9) 

n 

note that z = - 1  becomes the interface in both cases. 
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Define now ¢(Zl) = ¢1(Y), ¢(z2) = ¢2(Y), and then define the differential operators LI, L2, and 
functions ~, co by 

L i e  ~ ( 4 d ~  - a2 )¢ ,  

L l ¢ = ~ ,  
d 2 

L2¢ = cO, 

(6.10) 

so we rewrite the differential equations (6.4) and (6.5) as 

Ll~ - i aReu l~  + 2AI i a R e ¢  = - c i a R e ~ ,  

L2¢ -- w = 0, 

L2w - i a Re a Re . a Re uzw + 2A2 i ~ = - c l  co. 
m m m 

(6.11) 

The idea is to write 

N + 2  N + 2  

¢ =  E CnTn(Zl)'  ~ : E ~nTn(Zl), 
n = 0  n = 0  

N + 2  N + 2  

~'~- Z CnTn(z2)' ~ = E cOnTn(z2)" 
n : 0  n = 0  

The boundary conditions (6.6) become 

¢(1) = d~l (1) = 0, 
de 

¢ ( 1 )  = 7 - - ( 1 )  = 0. 
UZ2 

(6.12) 

The interface boundary conditions are, on Zl = z2 ~--- - - 1 ,  

¢ - ¢ = 0 ,  
+ 2a2¢ - m w  - 2a2m¢ = O, 

d~ ,, 2 dO m dw 2m 2 d~b 0, 
dzl za  ~ + -- = n dz2 n a dz2 

c (d~z¢ 1 +-nl dd-~z~2) = dzld¢ + nldCdz2 al ( 1 _ ~ ) 2  ¢" 

(6.13) 

The Chebyshev tau version of (6.11)-(6.13) yields a 4(N + 3) × 4(N + 3) matrix system like (1.21) 
where 
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and 

Bi  = 

/ 0 0 0 0 
" 0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 - a R I  0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

0 0 0 0 0 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . .  

o . . . o  o . . . o  o . . . o  o . . . o  

o o o 
0 . . . 0  0 . . . 0  0 . . . 0  O. 
0 . . . 0  0 . . . 0  0 . . . 0  0 . . . 0  

where Ul and U 2 are the Chebyshev representations of ul (zl), U2(Z2), and 

X : ( ¢ 0 , - . . , ¢ N , ~ 0 , . . . , ~ N , ¢ 0 , ' ' ' , ~ 3 N , C d 0 , . ' ' , C O N )  T. 

Let us assume N is rescaled so that each block is N × N, i.e., each matrix is 4N × 4N. The BC1 
terms, in row N - 1, stand for the Chebyshev version of the boundary conditions ¢(1) = 0, and 
the BC2 terms, in row N, mean the boundary condition ¢'(1) = 0; these are written with the aid of 
the properties T n ( + l )  --- (+1) n, Tn~ (-4-1) = ( ± l ) n - l n  2. Likewise the BC3 and BC4 terms, in rows 
3N - 1 and 3N, respectively, overwrite with the boundary conditions ¢(1)  = 0 and ~b'(1) = 0. The 
BC5-BC8 rows stand for the interface boundary conditions (6.13). The expression BC5 overwrites 
with 

¢ ( - 1 )  0 - ¢ ( - 1 )  0, 

i .e. ,  

1 - 1  . . .  1 - 1  0 . . .  0 - 1  1 . . .  - 1  1 0 . . .  O, 

where each group, e.g., 1 - 1  . . .  1 - 1 ,  etc., contains N terms. The expression BC6 stands for 

2a2qS(-1) {(--1) --2a2m¢(--1) - moo(-1) ,  

while the notation BC7 overwrites with 

,'~ 2 de  d ~  m dw 
- z a  ~zl  ( - 1 )  d z , ( - 1 )  -2m---a2d¢(-1)n dz2 - - - - ( - 1 ) . n  dz2 

The interface boundary condition (6.13)4 involving c has to be written into row 4N of Ar and Br, via 
BC8; the part going into Ar is 

d z l ( - 1 ) - ~ a l -  ¢ ( - 1 )  0 -n ( - 1 )  0 
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Table 5 
Numerical values of the two leading eigenvalues in Fig. 7 

Mode Type Eigenvalue c 

interface 1.003907431 + 0.1791888368E-02i  

shear 0.2578942002 + 0.8778915187E- 03i 
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m = 2 ,  n = 2 ,  u~ = 0 .  

whereas into Br we write 

d~5 1 d~  
d z t ( - 1 )  0 - n d z 2 ( - 1 )  0. 

To check the code we ran it with R -- 104, a = 1, m -- n = 1, un = 0 and we reproduce Orszag's 
results [22], cf. Section 2, although a "degenerate" interface eigenvalue of (1,0) is found. That this is 
acceptable follows from boundary condition (6.13)4 where c ---- 1 is a solution. 

Employing 150 polynomials in each of q~, ~, ~ and w we have made several calculations of 
spectra. Our choice of parameters was guided by Hooper's [16] results for the leading eigenvalue at 
criticality, i.e., the value of c between linear stability and instability for which ci -- 0. Her numerical 
technique was an orthonormalization type shooting method which locates one eigenvalue. We have 
not previously seen calculations of  the spectra for the superposed fluids problem. Hooper [16] reports 
that for m = 2, n = 1.2 there are two distinct modes of possible instability if the Reynolds number 
is sufficiently high; one due to shear in the bulk of the fluids whereas the other is due to the interface 
effect. She reports that the orthonormalization technique could not determine the growth rates of the 
shear mode to sufficient accuracy. We have seen no trouble with this employing the method outlined 
here. In Fig. 7 we include the spectrum obtained for the parameter values Re = 104, un -- 0, m --- 
2, n = 1.2, a = 1, which is well into the shear instability zone of Hooper [16], which she reports 
begins around Re = 7400. The shear mode is the one crossing the ci = 0 axis at the upper left whereas 
the interface mode is the one in the top right comer. The splitting of the tail is not a numerical instability 
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as w e  conf irmed by calculation with 128 bit arithmetic. This feature is, in fact, observed as m increases 
from 1. The actual numerical  values o f  the two leading e igenvalues  in Fig. 7 are presented in Table 5. 

Fig. 8 s h o w s  h o w  the tail splits more as n increases. Not ice  h o w  for n = 2 the shear m o d e  which  
is clearly unstable at n = 1.2 has dropped substantially into the stable zone.  Hooper  [16] reports 
that m o d e  cross ing occurs as n increases so the two separate modes  which are unstable at n = 1.2 
bifurcate at s o m e  intermediate value o f  n to form one stable mode  when  n -- 10. Our investigations 
of  various cases  s h o w  the shear mode  to be less influential when  n = 10. For example ,  calculations 
with r~ = 10, m = 2, un = 0, Re = 500 and a = 0.37 and a = 4.5 show one unstable mode,  
consistent  with [16, Fig. 5b]. The a = 4.5 spectrum shows  evidence  of  a shear like branch, but the 
leading e igenvalue  o f  this branch is wel l  into the stable zone.  

We have  three further mpeg  mov ie s  which may be v iewed  by opening the fo l lowing  U R L  with a 
web browser  h t t p : / / w w w . e p m . o r n l . g o v / ~ w a l k e r / e i g e n p r o b l e m s . h t m l .  These  contain the 
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parameter evolution of  the spectrum of  the Hooper [16] problem. The parametric studies are: (a) Re = 
200,  a = 2, m = 2, un = 0, with n going from 1.2 to 10 in steps of  0.1, which corresponds to a 
change from Hooper's  [16] Fig. 5a to Fig. 5b; (b) a = 1, Un = 3, m = 2, n = 10, with Re going from 
25 to 125 in steps of  1, which corresponds to [16, Fig. 6b]; (c) Re = 100, Un = 2, m = 2, n = 10, 
with a going from 0.3 to 2.3 in steps of 0.02, this corresponding to [16, Fig. 6a]. 

The "evolutionary" behaviour is revealing. In the (b) case we see only one leading mode which 
begins in the stable zone then becomes unstable before again returning to the stable zone,  entirely 
consistent with the neutral curve of [16]. The eigenvalues "emanate" from two points on the ci = - 1  
axis, one point just below Cr = 1 whereas the other is at approximately Cr = 2.45. The spectra for the 
extreme cases Re = 25 and Re = 125 are shown in Figs. 9 and 10, respectively. 

The track in the wave number a, case (c), again shows one leading eigenvalue which begins in 
the stable region, goes unstable, then stable, and finally unstable, which again is consistent with the 
neutral curve in [16]. Again, the eigenvalues emanate from two places on the ci = - 1  axis, one of 
these being Cr ~ 2.1 while the other varies between Cr .-~ 0.8 and Cr ~ 0.6. The cases a = 0.3 and 
a = 2.3 are displayed in Figs. 11 and 12, respectively. 

Variation in n in the movie  for case (a) is interesting. The leading eigenvalue begins unstable and 
finishes stable as n is varied from 1.2 to 10, consistent with the neutral curves of  [16]. However,  
at n ,-~ 2.9 this eigenvalue moves sharply down into the stable region while an eigenvalue below 
moves sharply upward. To the resolution we have they appear to almost "bounce" off each other with 
the leading eigenvalue then going close to the ci -- 0 axis but remaining stable. (Closer examination 
reveals the eigenvalues do not, in fact, overlap.) In this case the eigenvalues appear to emanate from 
only one point on the ci = - 1  axis. For n between 1.2 and 2.3 they come from Cr ~ 0.67 and at 
n ~ 2.9 this position of  emanation begins to move rapidly to the right. Fig. 13 displays the spectrum 
for n = 10. Those eigenvalues on the left side are left from the ones which came from below before 
n ~ 2.7. There is definite evidence of  some transistion at n ~ 2.9, where several eigenvalues appear 
to "bounce" off  each other. The two new branches coming from the main right branch begin to form 
at n ,-~ 3.6. Hooper's  [16] comments on a transistion as n increases are consistent with what we have 
observed. 
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7. Concluding remarks 

(1) As hydrodynamic stability problems become more complex due to incorporation of techno- 
logically important effects, the orders of the differential equations involved increase rapidly. 
Furthermore, there is increasing necessity to calculate a large part of the spectrum. A very 
important feature of the D 2 Chebyshev tau-QZ algorithm method is that extends to arbitrarily 
large systems which may be found, for example, in multicomponent convection when many 
constituents are present and even chemical reactions are taking place, or in such a problem as 
thermal convection with Hall and ion slip currents simultaneously in effect. The latter problem 
is twelfth order even without flow effects. In this case very large systems of algebraic equations 
are encountered especially when the differential equations are stiff, or higher dimensions are 
considered, as in the plane Poiseuille or Couette flow problems coupled with effects such as 
multicomponent diffusion and thermal convection, or Hall and ion slip MHD influences; such 
problems have a wide practical application, see, e.g., [21]. For such classes of problem we see 
that the precision representation of a real number presents a difficulty. The D method of Lindsay 
and Ogden [18] would appear in some ways desirable because of the O(M)  growth of coeffi- 
cients; however, the fact that the matrices are each of size J M  × J M  where J is the order of 
the system is a very severe restriction. To give an explicit example, the problem of thermal con- 
vection with two competing species as studied in [28] if coupled with Couette and/or Poiseuille 
flow, Hall and ion slip effects, in the case of one fluid overlying another would give rise to 
two 16th order systems and the resulting matrices in the D method would be 32M x 32M; 
if we require 200 polynomials for accurate resolution this means finding the eigenvalues of a 
6400 × 6400 generalised matrix problem. Even a D 2 method for a large number of polynomials 
and extended precision calculation requires a large amount of memory and a long run time; the 
problem alluded to above would require 3200 × 3200 matrices for 200 polynomials. The very 
large matrix systems which will be encountered in stability studies on practical problems like 
that quoted above are precisely the domain for application of parallel software libraries, such 
as ScaLAPACK [6,10]. Unfortunately, however, at the time of writing a parallel version of the 
QZ algorithm is not yet available in the ScaLAPACK library. Another line of attack is to use 
the Arnoldi (iterative) method, see [6], and this will form part of future work. 

(2) As a further check on accuracy, we computed the sensitivities [25] defined as 

IIx lllly ll (7.1) 
x itt y i  

for the problem (1.1) with A and B defined as in this section; hem x and y am right and left 
eigenvectors of (1.1), respectively. The quantity lOg l0s(i) is a measure of the number of digits 
one loses in accuracy. We also considered using the chordal metric which leads to sensitivities 
defined as 

s (i) = [[xillllYi[I (7.2) 
H V/lY A il 2 + fYi 8 il 

which is a more unitary invariant measure than that given in (7.1). However, it is not clear which 
sensitivity measure is best since when B = I the generalized eigenvalue problem reduces to 
the standard case, but the sensitivity given in (7.2) does not reduce to the standard sensitivity. 
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Table 6 
The sensitivities of the first ten computed "eigenvalues". Re = 100, a = 2, m : 2, n ---- 1.2, u,~ = 0, M = 150 

Mode number Sensitivity Cr ci 

1 0~104875E+05 0.9306062397E-01 

2 0.955170E+04 -0.3477822923E+05 

3 0 .955169E+04 0.3477831961E+05 

4 0 .192577E+05 0.1008716826E+01 

5 0 .133748E+03 0.6644993935E+00 

6 0 .462979E+03 0.7467618987E+00 

7 0 .113398E+04 0.7446257506E+00 

8 0.160433E+04 0.7127003503E+00 

9 0 .965561E+03 0.6933402508E÷00 

10 0 .140640E+04 0.6865584144E÷00 

0.5398774786E+05 

0.6583840773E+04 

0.6583707360E+04 

0.8889416072E-03 

-0.1242776632E+00 

-0.1793830027E+00 

-0.2683049316E+00 

-0.3747130589E+00 

-0.5181828296E+00 

-0.7191848687E+00 

(3) 

Given that the most appropriate definition of sensitivity is open to debate, we believe that the 
sensitivity defined by (7.1) is adequate for our purposes, and use this definition in Table 6 which 
gives the absolute values for the first ten "eigenvalues". Note that the first three values computed 
are spurious eigenvalues. By examining lOgl0 s(i) in Table 6 it is seen that even in full precision 
(64 bit arithmetic) high accuracy is expected. The sensitivities for the three spurious eigenvalues 
are also of the same order as those appropriate to eigenvalues of the physical problem, which 
indicates that the spurious eigenvalues arise from the discretization, not the QZ algorithm. 
Future work will investigate the implementation of a parallel version of the QZ algorithm, and 
the use of the Amoldi  method for solving the generalised eigenproblem. In addition, we intend 
to examine the regular and singular structure of A - AB, to see if this has any bearing on the 
identification of spurious eigenvalues. This may be done by reducing A - AB to the GUPTRI 
form of Demmel and Kagstr6m [8,9]. 
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