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ABSTRACT

In this paper, we make efficient use of asynchronous communications on the LU
decomposition algorithm with pivoting and a column-scattered data decomposition to
derive precise computational complexities. We then compare these results with exper-
iments on the Intel iPSC/860 and Paragon machines and show that very good perfor-
mances can be obtained on a ring with asynchronous communications.
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1. Introduction

This paper presents an analytical estimation of the LU factorization algorithm

on a distributed-memory message-passing multiprocessor.

PBK P92 and

CG87

Numerous methods have been proposed for LU factorization (see

the related works of Saa86b,Cap87,CTVST,RT88,CRTS9,D090,Robo0)

. For example,
advocates partial pivoting and load balancing in row-wise methods with a straight-
forward parallel triangular solve algorithm, but “¢®° shows that the parallel trian-
gular solve algorithm can have the same performance with column-wise storage. In
RTVSY the panel-wrapped column-distribution method is proved to be efficient be-
cause 1t leads to a good load-balancing between computation and communication;
and, in practice, this method has given good results with blocked computations

RT88,D090  Block-wise distribution is introduced in “PW?2 and BPLOLDEWS2 ghow

*On leave from LIP, CNRS URA 1398, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07,
France.

1 This work was supported by MRE grant No. 974, the CNRS-NSF grant No. 950.22/07 and
the research program C3.

tand also Oak Ridge National Laboratory, Mathematical Sciences Section, P.O. Box 2008, Bldg.
6012, Oak Ridge, TN 37831-6367, USA

§This work was supported in part by the National Science Foundation under grant ASC-
8715728, the National Science Foundation Science and Technology Center Cooperative Agreement
CCR-8809615, the DARPA and ARO under contract DAALO03-91-C-0047

'This work was supported in part by CNRS-NSF grant 950.223/07, Archipel SA and MRE
under grant 974, the National Science Foundation under grant ASC-8715728, the National Science
Foundation Science and Technology Center Cooperative Agreement CCR-8809615, the DARPA
and ARO under contract DAAL03-91-C-0047, PRC C®, and the DRET.



that the communication can be reduced by using a block-wrapped data decompo-
sition of the data.

To understand the effectiveness of these various methods and to be able to predict
performance on a target machine, we must carry out an analytical computational
complexity analysis.

We focus on column-scattered data distribution and the column-wise kji, or
“right looking” elimination method with pivoting. Our work is divided in two parts
and we introduce different cases depending on the target machine parameters that
correspond to different critical paths of the execution. In the first part we study the
algorithm with synchronous communication and propose its computational com-
plexity. We then compare the model predictions with the execution timings® for a
complete network and a ring topology. In the second part, we introduce the possi-
bility of overlapping the communication by the computation (i.e., taking advantage
of asynchronous communication to hide their cost by doing computations at the
same time). Using our earlier analysis, we propose the computational complexities
for both algorithms and compare them to the corresponding experiments and the
results obtained previously. This shows that a nearly complete overlap of communi-
cations can be achieved. Thus, we obtain quasi-optimal performance with a simple
column-scattered data distribution on a ring of processors.

In section 2 and 3, we describe the LU decomposition and the used parallel
version. In section 4, the model for the computational complexity analysis and
its parameters is introduced. Section 5 and 6 correspond to the synchronous and
asynchronous communication parts respectively. In section 8, we present the exper-
iments and we conclude and present our future works in section 9.

2. Gaussian Elimination and LU decomposition

Gaussian elimination can be used in the solution of a system of equations Az = b.
This process transforms the matrix A in a triangular form with an accompanying
update of the right-hand side, so that the solution of the system Az = b is straight-
forward by a triangular solve.

LU factorization uses the same algorithm and converts the matrix A in two
matrices L and U, where A = LU and L and U are lower and upper triangular,
respectively. Hence, many systems can be solved by two triangular solves, Ly = b
and Uz = y.

There are many versions of the LU algorithm depending on the way the three

internal loops are nested F0090,GL89

We study the kji, or “right looking” form,
which is most suitable for parallel implementation (since the matrix can be dis-
tributed by columns, the pivoting is done inside each processor without communi-

cation PBKP92).

3. Parallel kji Version of the LU Algorithm with Column-scattered Data
Distribution

%All the experiments are ran on the Intel iPSC/860 and Paragon machines.



me = my_proc_id()
for k=0 to n—2
if (data_alloc(k) == me)
S(k) /* scaling of column k of A. */
endif
C(k) /* broadcast of column k */
for (j > k and data_alloc(j) == me)
U(k,j) /* updating of column j */
endfor
endfor

Figure 1: Parallel LU decomposition algorithm (data_alloc(i) returns the id. of the
processor that owns the column ¢ of A).

Task S(k) Task U(k,j)
pivot = index _of _max(k)
interchange((k, k), (pivot, k)) interchange((k,j), (pivot, j))
1

¢= g for i=k+1 ton-—-1

for i=k+1 ton-—1 Qij = Qj; — Qjf * Ak
i = A5 * C endfor

endfor

Figure 2: Algorithms for the tasks S and U in the LU decomposition
(index_of -max (i) returns the index of the maximum absolute value in the column
i of A, interchange((4,j),(m,n)), interchanges elements A(%, j) and A(m,n)).

Parallel versions of the LU algorithm with column-scattered data distribution of

the matrix A are described in ©#286¢,5aa86h, RTVS9, Robo0

and summarized in Figure
1°. Depending on the topology, the difference between the methods is the manner
in which the elimination column is sent to all the processors. Two well-known
methods for broadcast are the minimum spanning tree broadcast and the pipeline
ring (unidirectional broadcast along the ring) algorithms ©##86a, TV 89,Rob90,

In the following parallel algorithm, we assume that the data are equally dis-
tributed in a wrapped manner along a virtual ring. Thus, with our algorithm, the
same number of columns is assigned to each processor, and, as the column distri-
bution is wrapped, a given processor has a scattered collection of columns. This
approach ensures a good balance of the computational load between the processors.

For the parallel kj¢ LU decomposition, we selected the following set of com-
putational tasks: S is the scaling® (Figure 2), U is the updating? of the column

J (Figure 2), and C' is the communication broadcast (Figure 3) of the elimination

bNote that the multipliers, L, are saved in the array A in place of the elements that would
become zero in task S.

€It comprises the pivot search,the interchange, and the scaling of the elimination column.

41t comprises the interchange of pivot elements and the updating of the column j.



Task C'(k)
if (data_alloc(k) == me)
mess := concatenate(pivot, [k +1:n—1,k])
endif
broadcast(mess,n — k)

Figure 3: Algorithm for the task C' of LU decomposition (concatenate(i, [a : b, c]),
concatenates in the same message buffer ¢ and elements a,a + 1,...,b of column ¢
of A, broadcast(X, ), broadcasts array X of length ¢).

column k to the processors using message passing primitives®.
Thus, the LU decomposition of an n*n matrix on p processors is (n — 1) tasks

S;, and assuming n and p are even, (np — p; + &) tasks C; and ("2—2 + 5) tasks U.

4. Models

Our target machines are distributed-memory parallel multicomputers. We as-
sume that the p processors (0..p— 1) are identical and that the same program runs
(at the same time) on each processor. The communication network topology is
assumed to be a fully connected network or a ring; the results for the two configu-
rations will be compared.

In the first part, we assume that the communication protocol is synchronous.
On the other hand, in the second part, we assume that the communication protocol
is asynchronous; thus, each processor has independent units for communication
(which manage direct-memory access) and computation. It is therefore possible to
perform in parallel on the same node at least unidirectional data transfers on each
link (half duplex and two-port assumptions) and arithmetic operations.

The time needed to communicate a message of size m between two neighboring

9989 a5 the startup time B¢ plus the length m times

processors is modeled like in
the transfer time/ 7c. We assume that the messages are sent in one block.

For arithmetic operations, the arithmetic logical unit of the CPU is assumed to
be super-scalar. We also use a linear § + m7 model for its performance? on vector
of size m. This model corresponds roughly to the currently available commercial
machines, such as the Intel iPSC/860 2479 and Paragon ##93,1n193,

In the remainder of this paper, we call 35 and 7g the parameters corresponding
to the cost of the whole S task (which contains the inversion of the pivot element,
the search for the maximum of the vector, the interchange of these two elements, and
the scale of the vector by a scalar using the Level 1 BLAS DSCALP“PH0 function.

We define Sy and 1y as the parameters for the cost of the U task (which contain
the pivot interchanges and the multiply and add operations on the vector using the
DAXPY function of the Level 1 BLAS).

¢Note that C' can be sends, receive and sends, or a receive call, depending of the broadcast
strategy and the processor where it is executed.

fi.e. the inverse of the throughput of the communication channels.

9Note that in all our experiments we use 64-bit double precision floating-point arithmetic.
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Figure 4: Intel Paragon execution per-
formances as a function of the vec-
tor length for the tasks U, S and C
compared with their corresponding ba-
sic kernels (daxpy, dscal, send) in
Mflops or in Mwords per second.
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Figure 5: Intel iPSC/860 execution per-
formances as a function of the vec-
tor length for the tasks U, S and C
compared with their corresponding ba-
sic kernels (daxpy, dscal, send) in
Mflops or in Mwords per second.

These parameters of the target machine are determined by experiments shown
in Figures 4 and 5”. The corresponding asymptotical values of the 7 parameters are
given in Table 1. Notice that the pivot search and interchange are costly (task S is
far from the peak performance of the DSCAL function) and that the target machine
presents its best performance for vector of size around 1 K for the iPSC/860 and
1.5 K for the Paragon (because of memory and cache management).

| Machine | v (psec/ flop) | Ts(psec/ flop) | 1o (psee/double) |
iPSC/860 0.097 0.57 5
Paragon 0.058 0.32 2

Table 1: Values of the machine parameters for the different tasks.

For our critical path analysis of LU decomposition, we use the notation of LK K83,
where a task is an indivisible unit of computational activity and the precedence
binary relation between tasks is denoted by <, where if S and U belong to the
set of tasks, then S < U means that task S must complete execution before U

commences execution.

5. Synchronous Communication

We begin with an analysis of the algorithm with synchronous communications
and the complete network that will be compared with the ring topology.
5.1. Analysis of the algorithm on the Complete Network

With our model and when no overlap is allowed, the critical path of LU decom-

"Remark that the x-scale is different.



position is given by the precedence constraints of the sequential execution. Hence,
the critical path described by edges in the time diagram of Figure 6 follows the
following schema (where j represents the remaining local columns to update re-
garding the data allocation, the superscripts are the processors on which the task
is executed):

S5(0) < C(0)° < C(0)r < U0, ) <S(1) <C() <C(1)? <U(1,j)? <...<
S(n—2)<Cn-2)p—2)<Cn-2)p—1)<U(n—2,j)p—1)

Following this critical path, we compute the execution time analytically’.
Proposition 1 The parallel execution time of the LU algorithm on the complete
network with no overlap of communication and computation is given by Equations
1 and 2 (where Ty meas the total execution time of task A).

T = T+ TE + T (1)
where,
no? n(n—1)
Tg = (65—1—(71—/@—1)7'5):(n—1)65—|—72 TS
k=0
=2 (n+2)(n—1)

(Be+(n—Kk)re)=(n—1)pFc + 5 TC
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5.2. Analysis of the LU algorithm on the Ring

Figure 6 shows the critical path of the pipeline LU algorithm corresponding
to the ring topology on the left. The ring introduces idle times because of the
precedence edges between tasks C'(i — 1) (send) and C(¢) (receive), which are now
executed one by one from processor to processor. Depending on the machine pa-
rameters, these dependencies introduce various periods of idle time in the critical
path. If we examine the “zoom” in Figures 7 and 8, we can distinguish two cases
depending if Tg(xy > T (r—2) (case 1) or not (case 2).

“Note that the critical path must follow the data allocation of matrix on the processors between
the S; task (on processor data_alloc(A(7))) and Sj41 task (on processor data_alloc(A(j + 1))).
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Figure 6: Time diagrams of synchronous algorithms (left on the ring, right on the
complete network).

In order to determine into which case the algorithm fells, we study its corre-
sponding computational complexity in case 1 :

Ty > TCroo (3)
Bs+(n—k+1)rs > fo+(n—k+2)c

Generally (and it is true with our target machines), ¢ is at least one order bigger
than 7¢. Thus 7¢ — 75 > 0 and inequality 3 can be rewritten as :

Be—PBs+(n+2)mc —(n—1D1g
k> (71—1—2)—1—0(1),C ’ (4)

k>

As 0 < k < n— 2, inequality 4 is never true and this proves that on most machines
the critical path of the LU algorithm follows the description of case 2.

The computational complexity of the algorithm is then computed following the
critical path of case 2, taking into account the corresponding idle times (note that
we do not find the same total time of PBEF92 gince we take into account all the
idle times introduced by the pipeline strategy). The T7. is 2 times the T because
the pivot column needs to be received and then transmitted to the next processor.
The idle time 77, is expressed as a function of 7 and TY.
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Figure 7: Zoom on the the critical path Figure 8: Zoom on the idle times in the
in case 1 (no idle time). critical path of case 2.

Proposition 2 The parallel execution time of the LU algorithm on the ring with
no overlap of communication and computation s given by Fquations 5 and 6.

Ty = Ts +T6+ T + T (5)
where

Tg = TSC

n—2
T = > 2Pe+(n—k)re) = 2T¢

k=0
T& = Té
jjirdle — Z Ck 1 _|_Ck 1 Ck)

k:

= (n—-3) (ﬁc—ﬁs-i- (n;Q)Tc—grs)Jr-l-(n—i%)Tc

where (2)T is the function which return z if > 0 and 0 otherwise. Thus, we obtain
in case 2 (Ts(r) < Ter-2)) :

Tﬂ}”’ = TLC?Jmplete +(2n =B+ (n* —n—3)1c —(n—3) (55 _ gTS) (6)
= Ty (casel) + (n = 3)c + (n”/2 4 3n/2 = 3)rc — (n — 3) (55 - %m)



6. Asynchronous Communications

In this section, we present a strategy for improving the execution times, based on
the reduction of the communication time by its partial overlap with computation.
This overlap 1s realized inside a processor; it does not correspond to the overlap
between processors steps described in PBEFP92 which is the effect of pipeline algo-
rithms. We will see that the execution time of the complete network can be obtained
with the pipeline algorithm on a ring. Hence, on any topology (including a ring),
the execution time will remain the same.

6.1. Complete Network

Figure 9 shows that the critical path on the complete network is not changed
while using asynchronous communications. Although a slight improvement occurs
at the beginning of the task U(k, k) on the pivot processor, the execution time of
the critical path is not affected. This is because the tasks C' must wait for the
receive to complete before the execution of the U tasks.
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Figure 9: Time diagrams of nonblock- Figure 10: Zoom on the critical path
ing algorithms (ring on the left, com- for the ring topology (no idle time as in
plete network on the right). the complete network case).

Proposition 3 The parallel execution time of the LU algorithm on the complete
network with overlap of communication and computation (asynchronous sends)
(overlap of communication and computation) is given by Fquation 7.



complete c ¢ ¢
TLU,apsy:Lc = TS + TC + TUa (7)

where T¢,T¢, and T; are the same as in the synchronous section.

6.2. Ring Topology

When asynchronous communications are available, the processor holding the
next pivot column is not delayed by the sending of the current pivot column. Thus,
it starts its U tasks as soon as possible.

As the data are distributed equally (see Section 4), the tasks U are nearly of
the same duration; thus, the ring communications cannot perturb the critical path
execution time (see Figure 10).

We follow the critical path of Figure 9, to determine the total duration of the
algorithm execution. It leads to the following results’.

Proposition 4 The parallel execution time of the LU algorithm on the ring with
overlap of communication and computation (asynchronous SENDS) (overlap of com-
munication and computation) is given by Equation 8.

ring _ a,r r __ rcomplete
TLU,async - TS + TC + TU - TLU,async (8)

where T% and T}, are the same as in the synchronous case and 72" is half of the
synchronous one (i.e. the same as the complete network one).

It is remarkable that, from an analytical point of view, as soon as the targeted
architecture is able to run asynchronous send communications, the classical pipeline
LU decomposition on a ring has the best execution time on any topology.

7. Experiments

The experiments were performed on the Intel machines. On the iPSC/860, we
used 2 to 64 processors with a ring embedded in the hypercube. On the Paragon,
we used up to 64 nodes and a virtual ring. Obviously, we were not able to conduct
experiments on a complete network of processors.

To have real synchronous sends, we used the sendrecv function (from the vendor
library), which makes possible the acknowledgment of the reception of the message.

We plotted on Figures 11 and 12 the experiments and the computational com-
plexities curves computed with the parameter values of section . The computa-
tional complexity curves are a little bit optimistic for the asynchronous case (we
think this is due to the overhead of the program management and the setup of
the asynchronous calls) and a little bit pessimistic for the synchronous case (prob-
ably because of an overlap between communication and idle time resulting of the
successive communication calls*. The experimental curves remain between the 2
computed curves, except when OS delays occurs on the Paragon'.

JWe assume that the T . << T7;, which is true since small vector sizes n because T/, = O(n2)
while T, = o(n?).

k An example of such an effect for the spanning binomial tree broadcast in hypercube is studied
. DFT93
in .

"We were using version 1.1 of the operating system which was doing some perturbing work for
some memory size requirement.

10
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Figure 11: Intel iPSC/860 execution Figure 12: Intel Paragon execution tim-
timings and complexity curves as a ings and complexity curves as a func-
function of the matrix size. tion of the matrix size.

As shown by the complexity analysis, the asynchronous method perform always
better than the synchronous one, and the difference increases slightly with the
matrix size.

We show that such analysis can predict the behavior of the LU algorithm for
any number of processors, by giving a timing interval in which the experimental
data will fit.

With the assembly-coded Level 1 BLAS routines, the total performance is in the
range of the BLAS kernels. The maximum performance obtained while decomposing
a 2K matrix with 8 processors is 64 Mflops on the iPSC and 136 Mflops on the
Paragon (representing, respectively, 8 and 17 Mflops per processor™). For larger
matrices and bigger machines, our experimental results indicate that our method is
efficient: we achieved 0.42 Gflops on the iPSC860 and 0.47 Gflops on the Paragon
for a TK matrix on 64 processors, compared with 1.34 Gflops of the ScaLAPACK
implementation of the LU decomposition in the benchmark of the iPSC860 P¢W92,

8. Conclusion and Future Work

We have described an approach for analyzing the parallel LU decomposition
with a scattered-column data distribution in both synchronous and asynchronous
communication protocols cases. We have presented a computational complexity
analysis for each algorithm. In addition, we have described experiments to deter-
mine the values of the target machines parameters. We thus have a tool that can
be used for predicting the execution time.

We have showed that in the case of synchronous communications, idle times
have to be taken into account in the ring topology complexity analysis and that
they are of the same order (O(n?)) as the communication time. On the other hand,
in the case of asynchronous communications, we have showed that no idle time 1is
introduced by the topology restriction to the ring.

" Note that because we are not using a blocked version of the LU decomposition, we not could
use the assembly-coded Level 3 BLAS routines and reach the performance of €2W92,

11



Our analytical analysis has been corroborated by efficient experiments on the
Intel iPSC/860 and Paragon machines.
Our focus has been on complete networks and on ring topologies. The analysis

can be extended, however, to grid topologies with scattered block data decomposi-

tion.
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