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that the communication can be reduced by using a block-wrapped data decompo-sition of the data.To understand the e�ectiveness of these various methods and to be able to predictperformance on a target machine, we must carry out an analytical computationalcomplexity analysis.We focus on column-scattered data distribution and the column-wise kji, or\right looking" elimination method with pivoting. Our work is divided in two partsand we introduce di�erent cases depending on the target machine parameters thatcorrespond to di�erent critical paths of the execution. In the �rst part we study thealgorithm with synchronous communication and propose its computational com-plexity. We then compare the model predictions with the execution timingsa for acomplete network and a ring topology. In the second part, we introduce the possi-bility of overlapping the communication by the computation (i.e., taking advantageof asynchronous communication to hide their cost by doing computations at thesame time). Using our earlier analysis, we propose the computational complexitiesfor both algorithms and compare them to the corresponding experiments and theresults obtained previously. This shows that a nearly complete overlap of communi-cations can be achieved. Thus, we obtain quasi-optimal performance with a simplecolumn-scattered data distribution on a ring of processors.In section 2 and 3, we describe the LU decomposition and the used parallelversion. In section 4, the model for the computational complexity analysis andits parameters is introduced. Section 5 and 6 correspond to the synchronous andasynchronous communication parts respectively. In section 8, we present the exper-iments and we conclude and present our future works in section 9.2. Gaussian Elimination and LU decompositionGaussian elimination can be used in the solution of a system of equations Ax = b.This process transforms the matrix A in a triangular form with an accompanyingupdate of the right-hand side, so that the solution of the system Ax = b is straight-forward by a triangular solve.LU factorization uses the same algorithm and converts the matrix A in twomatrices L and U , where A = LU and L and U are lower and upper triangular,respectively. Hence, many systems can be solved by two triangular solves, Ly = band Ux = y.There are many versions of the LU algorithm depending on the way the threeinternal loops are nested Rob90;GL89. We study the kji, or \right looking" form,which is most suitable for parallel implementation (since the matrix can be dis-tributed by columns, the pivoting is done inside each processor without communi-cation PBKP92).3. Parallel kji Version of the LU Algorithm with Column-scattered DataDistributionaAll the experiments are ran on the Intel iPSC/860 and Paragon machines.2



me = my proc id()for k = 0 to n� 2if (data alloc(k) == me)S(k) /* scaling of column k of A. */endifC(k) /* broadcast of column k */for (j � k and data alloc(j) == me)U (k; j) /* updating of column j */endforendforFigure 1: Parallel LU decomposition algorithm (data alloc(i) returns the id. of theprocessor that owns the column i of A).Task S(k) Task U (k; j)pivot = index of max(k)interchange((k; k); (pivot; k)) interchange((k; j); (pivot; j))c = 1akk for i = k + 1 to n � 1for i = k + 1 to n � 1 aij = aij � aik � akjaik = aik � c endforendforFigure 2: Algorithms for the tasks S and U in the LU decomposition(index of max(i) returns the index of the maximum absolute value in the columni of A, interchange((i; j); (m;n)), interchanges elements A(i; j) and A(m;n)).Parallel versions of the LU algorithm with column-scattered data distribution ofthe matrix A are described in Saa86a;Saa86b;RTV89;Rob90 and summarized in Figure1b. Depending on the topology, the di�erence between the methods is the mannerin which the elimination column is sent to all the processors. Two well-knownmethods for broadcast are the minimum spanning tree broadcast and the pipelinering (unidirectional broadcast along the ring) algorithms Saa86a;RTV 89;Rob90.In the following parallel algorithm, we assume that the data are equally dis-tributed in a wrapped manner along a virtual ring. Thus, with our algorithm, thesame number of columns is assigned to each processor, and, as the column distri-bution is wrapped, a given processor has a scattered collection of columns. Thisapproach ensures a good balance of the computational load between the processors.For the parallel kji LU decomposition, we selected the following set of com-putational tasks: S is the scalingc (Figure 2), U is the updatingd of the columnj (Figure 2), and C is the communication broadcast (Figure 3) of the eliminationbNote that the multipliers, L, are saved in the array A in place of the elements that wouldbecome zero in task S.cIt comprises the pivot search,the interchange, and the scaling of the elimination column.dIt comprises the interchange of pivot elements and the updating of the column j.3



Task C(k)if (data alloc(k) == me)mess := concatenate(pivot; [k + 1 : n� 1; k])endifbroadcast(mess; n � k)Figure 3: Algorithm for the task C of LU decomposition (concatenate(i; [a : b; c]),concatenates in the same message bu�er i and elements a; a+ 1; : : : ; b of column cof A, broadcast(X; i), broadcasts array X of length i).column k to the processors using message passing primitivese.Thus, the LU decomposition of an n � n matrix on p processors is (n� 1) tasksSj , and assuming n and p are even, (np� p22 + p2 ) tasks Cj and (n22 + n2 ) tasks U .4. ModelsOur target machines are distributed-memory parallel multicomputers. We as-sume that the p processors (0..p� 1) are identical and that the same program runs(at the same time) on each processor. The communication network topology isassumed to be a fully connected network or a ring; the results for the two con�gu-rations will be compared.In the �rst part, we assume that the communication protocol is synchronous.On the other hand, in the second part, we assume that the communication protocolis asynchronous; thus, each processor has independent units for communication(which manage direct-memory access) and computation. It is therefore possible toperform in parallel on the same node at least unidirectional data transfers on eachlink (half duplex and two-port assumptions) and arithmetic operations.The time needed to communicate a message of size m between two neighboringprocessors is modeled like in SS89 as the startup time �C plus the length m timesthe transfer timef �C . We assume that the messages are sent in one block.For arithmetic operations, the arithmetic logical unit of the CPU is assumed tobe super-scalar. We also use a linear � +m� model for its performanceg on vectorof size m. This model corresponds roughly to the currently available commercialmachines, such as the Intel iPSC/860 Dun90 and Paragon EK93;Int93.In the remainder of this paper, we call �S and �S the parameters correspondingto the cost of the whole S task (which contains the inversion of the pivot element,the search for the maximumof the vector, the interchange of these two elements, andthe scale of the vector by a scalar using the Level 1 BLAS DSCALDCDH90 function.We de�ne �U and �U as the parameters for the cost of the U task (which containthe pivot interchanges and the multiply and add operations on the vector using theDAXPY function of the Level 1 BLAS).eNote that C can be sends, receive and sends, or a receive call, depending of the broadcaststrategy and the processor where it is executed.f i.e. the inverse of the throughput of the communication channels.gNote that in all our experiments we use 64-bit double precision 
oating-point arithmetic.4



0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000

M
(d

ou
bl

e/
fl

op
)s

Vector size

SAXPY
TASK U
DSCAL
TASK S

SEND
TASK CFigure 4: Intel Paragon execution per-formances as a function of the vec-tor length for the tasks U , S and Ccompared with their corresponding ba-sic kernels (daxpy, dscal, send) inM
ops or in Mwords per second. 0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

M
(d

ou
bl

e/
fl

op
)s

Vector size

SAXPY
TASK U
DSCAL
TASK S

SEND
TASK CFigure 5: Intel iPSC/860 execution per-formances as a function of the vec-tor length for the tasks U , S and Ccompared with their corresponding ba-sic kernels (daxpy, dscal, send) inM
ops or in Mwords per second.These parameters of the target machine are determined by experiments shownin Figures 4 and 5h. The corresponding asymptotical values of the � parameters aregiven in Table 1. Notice that the pivot search and interchange are costly (task S isfar from the peak performance of the DSCAL function) and that the target machinepresents its best performance for vector of size around 1 K for the iPSC/860 and1.5 K for the Paragon (because of memory and cache management).Machine �U (�sec=flop) �S(�sec=flop) �C(�sec=double)iPSC/860 0.097 0.57 5Paragon 0.058 0.32 2Table 1: Values of the machine parameters for the di�erent tasks.For our critical path analysis of LU decomposition, we use the notation of LKK83,where a task is an indivisible unit of computational activity and the precedencebinary relation between tasks is denoted by �, where if S and U belong to theset of tasks, then S � U means that task S must complete execution before Ucommences execution.5. Synchronous CommunicationWe begin with an analysis of the algorithm with synchronous communicationsand the complete network that will be compared with the ring topology.5.1. Analysis of the algorithm on the Complete NetworkWith our model and when no overlap is allowed, the critical path of LU decom-hRemark that the x-scale is di�erent. 5



position is given by the precedence constraints of the sequential execution. Hence,the critical path described by edges in the time diagram of Figure 6 follows thefollowing schema (where j represents the remaining local columns to update re-garding the data allocation, the superscripts are the processors on which the taskis executed):S(0) � C(0)0 � C(0)1 � U (0; j)1 � S(1) � C(1)1 � C(1)2 � U (1; j)2 � : : : �S(n � 2) � C(n� 2)(p � 2) � C(n� 2)(p� 1) � U (n� 2; j)(p� 1)Following this critical path, we compute the execution time analyticallyi.Proposition 1 The parallel execution time of the LU algorithm on the completenetwork with no overlap of communication and computation is given by Equations1 and 2 (where TA meas the total execution time of task A).T completeLU = T cS + T cC + T cU (1)where,T cS = n�2Xk=0(�S + (n� k � 1)�S) = (n� 1)�S + n(n� 1)2 �ST cC = n�2Xk=0(�C + (n� k)�C) = (n� 1)�C + (n+ 2)(n� 1)2 �CT cU = np �1Xj=0 " pXk=1�(np � j)(n � (j(p � 1) + k))�U + �U�� (�U + n2p �U )#= (n � 1)�U + �n33p + n24 � 3n24p + n4 � np12� �UThus, T completeLU = (n� 1)(�U + �S + �C) + n(n � 1)2 (�S + �C)+ �n33p + n24 � 3n24p + n4 � np12� �U (2)5.2. Analysis of the LU algorithm on the RingFigure 6 shows the critical path of the pipeline LU algorithm correspondingto the ring topology on the left. The ring introduces idle times because of theprecedence edges between tasks C(i � 1) (send) and C(i) (receive), which are nowexecuted one by one from processor to processor. Depending on the machine pa-rameters, these dependencies introduce various periods of idle time in the criticalpath. If we examine the \zoom" in Figures 7 and 8, we can distinguish two casesdepending if TS(k) > TC(k�2) (case 1) or not (case 2).iNote that the critical path must follow the data allocation of matrix on the processors betweenthe Sj task (on processor data alloc(A(j))) and Sj+1 task (on processor data alloc(A(j + 1))).6
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Figure 6: Time diagrams of synchronous algorithms (left on the ring, right on thecomplete network).In order to determine into which case the algorithm fells, we study its corre-sponding computational complexity in case 1 :T rS(k) > T rC(k�2) (3)�S + (n� k + 1)�S > �C + (n� k + 2)�CGenerally (and it is true with our target machines), �C is at least one order biggerthan �S . Thus �C � �S > 0 and inequality 3 can be rewritten as :k > �C � �S + (n + 2)�C � (n� 1)�S�C � �Sk > (n+ 2) + o(1); (4)As 0 � k � n� 2, inequality 4 is never true and this proves that on most machinesthe critical path of the LU algorithm follows the description of case 2.The computational complexity of the algorithm is then computed following thecritical path of case 2, taking into account the corresponding idle times (note thatwe do not �nd the same total time of PBKP92 since we take into account all theidle times introduced by the pipeline strategy). The T rC is 2 times the T cC becausethe pivot column needs to be received and then transmitted to the next processor.The idle time T ridle is expressed as a function of T rS and T rC .7



Scale Update CommunicationFigure 7: Zoom on the the critical pathin case 1 (no idle time).
IDLE 1

IDLE 2

Scale Update CommunicationFigure 8: Zoom on the idle times in thecritical path of case 2.Proposition 2 The parallel execution time of the LU algorithm on the ring withno overlap of communication and computation is given by Equations 5 and 6.T ringLU = T rS + T rC + T rU + T ridle (5)where T rS = T cST rC = n�2Xk=0 2(�C + (n � k)�C) = 2T cCT rU = T cUT ridle = n�3Xk=1 �(Ck�1 � Sk)+ +Ck�1 � Ck�= (n � 3)��C � �S + (n+ 2)2 �C � n2 �S�+ + (n � 3)�Cwhere (x)+ is the function which return x if x > 0 and 0 otherwise. Thus, we obtainin case 2 (TS(k) � TC(k�2)) :T ringLU = T completeLU + (2n� 4)�C + (n2 � n� 3)�C � (n� 3)��S � n2 �S� (6)= T ringLU (case1) + (n� 3)�C + (n2=2 + 3n=2� 3)�C � (n� 3)��S � n2 �S�8



6. Asynchronous CommunicationsIn this section, we present a strategy for improving the execution times, based onthe reduction of the communication time by its partial overlap with computation.This overlap is realized inside a processor; it does not correspond to the overlapbetween processors steps described in PBKP92, which is the e�ect of pipeline algo-rithms. We will see that the execution time of the complete network can be obtainedwith the pipeline algorithm on a ring. Hence, on any topology (including a ring),the execution time will remain the same.6.1. Complete NetworkFigure 9 shows that the critical path on the complete network is not changedwhile using asynchronous communications. Although a slight improvement occursat the beginning of the task U (k; k) on the pivot processor, the execution time ofthe critical path is not a�ected. This is because the tasks C must wait for thereceive to complete before the execution of the U tasks.
P0 P1 P2P3 P0P1 P2 P3

Scale Update CommunicationFigure 9: Time diagrams of nonblock-ing algorithms (ring on the left, com-plete network on the right). Scale Update CommunicationFigure 10: Zoom on the critical pathfor the ring topology (no idle time as inthe complete network case).Proposition 3 The parallel execution time of the LU algorithm on the completenetwork with overlap of communication and computation (asynchronous sends)(overlap of communication and computation) is given by Equation 7.9



T completeLU;async = T cS + T cC + T cU ; (7)where T cS ; T cC , and T cU are the same as in the synchronous section.6.2. Ring TopologyWhen asynchronous communications are available, the processor holding thenext pivot column is not delayed by the sending of the current pivot column. Thus,it starts its U tasks as soon as possible.As the data are distributed equally (see Section 4), the tasks U are nearly ofthe same duration; thus, the ring communications cannot perturb the critical pathexecution time (see Figure 10).We follow the critical path of Figure 9, to determine the total duration of thealgorithm execution. It leads to the following resultsj .Proposition 4 The parallel execution time of the LU algorithm on the ring withoverlap of communication and computation (asynchronous sends) (overlap of com-munication and computation) is given by Equation 8.T ringLU;async = T rS + T a;rC + T rU = T completeLU;async (8)where T rS and T rU are the same as in the synchronous case and T a;rC is half of thesynchronous one (i.e. the same as the complete network one).It is remarkable that, from an analytical point of view, as soon as the targetedarchitecture is able to run asynchronous send communications, the classical pipelineLU decomposition on a ring has the best execution time on any topology.7. ExperimentsThe experiments were performed on the Intel machines. On the iPSC/860, weused 2 to 64 processors with a ring embedded in the hypercube. On the Paragon,we used up to 64 nodes and a virtual ring. Obviously, we were not able to conductexperiments on a complete network of processors.To have real synchronous sends, we used the sendrecv function (from the vendorlibrary), which makes possible the acknowledgment of the reception of the message.We plotted on Figures 11 and 12 the experiments and the computational com-plexities curves computed with the parameter values of section . The computa-tional complexity curves are a little bit optimistic for the asynchronous case (wethink this is due to the overhead of the program management and the setup ofthe asynchronous calls) and a little bit pessimistic for the synchronous case (prob-ably because of an overlap between communication and idle time resulting of thesuccessive communication callsk. The experimental curves remain between the 2computed curves, except when OS delays occurs on the Paragonl.jWe assume that the T rC << T rU , which is true since small vector sizes n because T rC = O(n2)while T rU = O(n3).kAn example of such an e�ect for the spanning binomial tree broadcast in hypercube is studiedin DFT93 .lWe were using version 1.1 of the operating system which was doing some perturbing work forsome memory size requirement. 10
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