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Chapter 1Introduction to MPI1.1 Overview and GoalsMessage passing is a paradigm used widely on certain classes of parallel machines, especiallythose with distributed memory. Although there are many variations, the basic concept ofprocesses communicating through messages is well understood. Over the last ten years,substantial progress has been made in casting signi�cant applications in this paradigm. Eachvendor has implemented its own variant. More recently, several systems have demonstratedthat a message passing system can be e�ciently and portably implemented. It is thus anappropriate time to try to de�ne both the syntax and semantics of a core of library routinesthat will be useful to a wide range of users and e�ciently implementable on a wide rangeof computers.In designingMPI we have sought to make use of the most attractive features of a numberof existing message passing systems, rather than selecting one of them and adopting it asthe standard. Thus, MPI has been strongly in
uenced by work at the IBM T. J. WatsonResearch Center [1, 2], Intel's NX/2 [23], Express [22], nCUBE's Vertex [21], p4 [7, 6], andPARMACS [5, 8]. Other important contributions have come from Zipcode [24, 25], Chimp[14, 15], PVM [4, 11], Chameleon [19], and PICL [18].The MPI standardization e�ort involved about 60 people from 40 organizations mainlyfrom the United States and Europe. Most of the major vendors of concurrent computerswere involved in MPI, along with researchers from universities, government laboratories, andindustry. The standardization process began with the Workshop on Standards for MessagePassing in a Distributed Memory Environment, sponsored by the Center for Research onParallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [29]. At this workshopthe basic features essential to a standard message passing interface were discussed, and aworking group established to continue the standardization process.A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel,Hey, and Walker in November 1992, and a revised version was completed in February1993 [12]. MPI1 embodied the main features that were identi�ed at the Williamsburgworkshop as being necessary in a message passing standard. Since MPI1 was primarilyintended to promote discussion and \get the ball rolling," it focused mainly on point-to-pointcommunications. MPI1 brought to the forefront a number of important standardizationissues, but did not include any collective communication routines and was not thread-safe.In November 1992, a meeting of the MPI working group was held in Minneapolis, atwhich it was decided to place the standardization process on a more formal footing, and to
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2 CHAPTER 1. INTRODUCTION TO MPIgenerally adopt the procedures and organization of the High Performance Fortran Forum.Subcommittees were formed for the major component areas of the standard, and an emaildiscussion service established for each. In addition, the goal of producing a draft MPIstandard by the Fall of 1993 was set. To achieve this goal the MPI working group met every6 weeks for two days throughout the �rst 9 months of 1993, and presented the draft MPIstandard at the Supercomputing 93 conference in November 1993. These meetings and theemail discussion together constituted the MPI Forum, membership of which has been opento all members of the high performance computing community.The main advantages of establishing a message-passing standard are portability andease-of-use. In a distributed memory communication environment in which the higher levelroutines and/or abstractions are build upon lower level message passing routines the bene�tsof standardization are particularly apparent. Furthermore, the de�nition of a messagepassing standard, such as that proposed here, provides vendors with a clearly de�ned baseset of routines that they can implement e�ciently, or in some cases provide hardware supportfor, thereby enhancing scalability.The goal of the Message Passing Interface simply stated is to develop a widely usedstandard for writing message-passing programs. As such the interface should establish apractical, portable, e�cient, and 
exible standard for message passing.A complete list of goals follows.� Design an application programming interface (not necessarily for compilers or a systemimplementation library).� Allow e�cient communication: Avoid memory-to-memory copying and allow overlapof computation and communication and o�oad to communication co-processor, whereavailable.� Allow for implementations that can be used in a heterogeneous environment.� Allow convenient C and Fortran 77 bindings for the interface.� Assume a reliable communication interface: the user need not cope with communica-tion failures. Such failures are dealt with by the underlying communication subsystem.� De�ne an interface that is not too di�erent from current practice, such as PVM, NX,Express, p4, etc., and provides extensions that allow greater 
exibility.� De�ne an interface that can be implemented on many vendor's platforms, with nosigni�cant changes in the underlying communication and system software.� Semantics of the interface should be language independent.� The interface should be designed to allow for thread-safety.1.2 Who Should Use This Standard?This standard is intended for use by all those who want to write portable message-passingprograms in Fortran 77 and C. This includes individual application programmers, developersof software designed to run on parallel machines, and creators of environments and tools.In order to be attractive to this wide audience, the standard must provide a simple, easy-to-use interface for the basic user while not semantically precluding the high-performancemessage-passing operations available on advanced machines.
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1.3. WHAT PLATFORMS ARE TARGETS FOR IMPLEMENTATION? 31.3 What Platforms Are Targets For Implementation?The attractiveness of the message-passing paradigm at least partially stems from its wideportability. Programs expressed this way may run on distributed-memory multiprocessors,networks of workstations, and combinations of all of these. In addition, shared-memoryimplementations are possible. The paradigm will not be made obsolete by architecturescombining the shared- and distributed-memory views, or by increases in network speeds. Itthus should be both possible and useful to implement this standard on a great variety ofmachines, including those \machines" consisting of collections of other machines, parallelor not, connected by a communication network.The interface is suitable for use by fully general MIMD programs, as well as thosewritten in the more restricted style of SPMD. Although no explicit support for threads isprovided, the interface has been designed so as not to prejudice their use. With this versionof MPI no support is provided for dynamic spawning of tasks.MPI provides many features intended to improve performance on scalable parallel com-puters with specialized interprocessor communication hardware. Thus, we expect thatnative, high-performance implementations of MPI will be provided on such machines. Atthe same time, implementations of MPI on top of standard Unix interprocessor communi-cation protocols will provide portability to workstation clusters and heterogenous networksof workstations. Several proprietary, native implementations of MPI, and a public domain,portable implementation of MPI are in progress at the time of this writing [17, 13].1.4 What Is Included In The Standard?The standard includes:� Point-to-point communication� Collective operations� Process groups� Communication contexts� Process topologies� Bindings for Fortran 77 and C� Environmental Management and inquiry� Pro�ling interface1.5 What Is Not Included In The Standard?The standard does not specify:� Explicit shared-memory operations� Operations that require more operating system support than is currently standard;for example, interrupt-driven receives, remote execution, or active messages
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4 CHAPTER 1. INTRODUCTION TO MPI� Program construction tools� Debugging facilities� Explicit support for threads� Support for task management� I/O functionsThere are many features that have been considered and not included in this standard.This happened for a number of reasons, one of which is the time constraint that was self-imposed in �nishing the standard. Features that are not included can always be o�ered asextensions by speci�c implementations. Perhaps future versions of MPI will address someof these issues.1.6 Organization of this DocumentThe following is a list of the remaining chapters in this document, along with a briefdescription of each.� Chapter 2, MPI Terms and Conventions, explains notational terms and conventionsused throughout the MPI document.� Chapter 3, Point to Point Communication, de�nes the basic, pairwise communicationsubset of MPI. send and receive are found here, along with many associated functionsdesigned to make basic communication powerful and e�cient.� Chapter 4, Collective Communications, de�nes process-group collective communicationoperations. Well known examples of this are barrier and broadcast over a group ofprocesses (not necessarily all the processes).� Chapter 5, Groups, Contexts, and Communicators, shows how groups of processes areformed and manipulated, how unique communication contexts are obtained, and howthe two are bound together into a communicator.� Chapter 6, Process Topologies, explains a set of utility functions meant to assist inthe mapping of process groups (a linearly ordered set) to richer topological structuressuch as multi-dimensional grids.� Chapter 7,MPI Environmental Management, explains how the programmer can manageand make inquiries of the currentMPI environment. These functions are needed for thewriting of correct, robust programs, and are especially important for the constructionof highly-portable message-passing programs.� Chapter 8, Pro�ling Interface, explains a simple name-shifting convention that anyMPI implementation must support. One motivation for this is the ability to putperformance pro�ling calls into MPI without the need for access to the MPI sourcecode. The name shift is merely an interface, it says nothing about how the actualpro�ling should be done and in fact, the name shift can be useful for other purposes.
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1.6. ORGANIZATION OF THIS DOCUMENT 5� Annex A, Language Bindings, gives speci�c syntax in Fortran 77 and C, for all MPIfunctions, constants, and types.� TheMPI Function Index is a simple index showing the location of the precise de�nitionof each MPI function, together with both C and Fortran bindings.123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



Chapter 2MPI Terms and ConventionsThis chapter explains notational terms and conventions used throughout theMPI document,some of the choices that have been made, and the rationale behind those choices.2.1 Document NotationRationale. Throughout this document, the rationale for the design choices made inthe interface speci�cation is set o� in this format. Some readers may wish to skipthese sections, while readers interested in interface design may want to read themcarefully. (End of rationale.)Advice to users. Throughout this document, material that speaks to users andillustrates usage is set o� in this format. Some readers may wish to skip these sections,while readers interested in programming inMPImaywant to read them carefully. (Endof advice to users.)Advice to implementors. Throughout this document, material that is primarilycommentary to implementors is set o� in this format. Some readers may wish to skipthese sections, while readers interested in MPI implementations may want to readthem carefully. (End of advice to implementors.)2.2 Procedure Speci�cationMPI procedures are speci�ed using a language independent notation. The arguments ofprocedure calls are marked as IN, OUT or INOUT. The meanings of these are:� the call uses but does not update an argument marked IN,� the call may update an argument marked OUT,� the call both uses and updates an argument marked INOUT.There is one special case | if an argument is a handle to an opaque object (theseterms are de�ned in Section 2.4.1), and the object is updated by the procedure call, thenthe argument is marked OUT. It is marked this way even though the handle itself is notmodi�ed | we use the OUT attribute to denote that what the handle references is updated.
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2.3. SEMANTIC TERMS 7The de�nition of MPI tries to avoid, to the largest possible extent, the use of INOUTarguments, because such use is error-prone, especially for scalar arguments.A common occurrence for MPI functions is an argument that is used as IN by someprocesses and OUT by other processes. Such argument is, syntactically, an INOUT argumentand is marked as such, although, semantically, it is not used in one call both for input andfor output.Another frequent situation arises when an argument value is needed only by a subsetof the processes. When an argument is not signi�cant at a process then an arbitrary valuecan be passed as argument.Unless speci�ed otherwise, an argument of type OUT or type INOUT cannot be aliasedwith any other argument passed to an MPI procedure. An example of argument aliasing inC appears below. If we de�ne a C procedure like this,void copyIntBuffer( int *pin, int *pout, int len ){ int i;for (i=0; i<len; ++i) *pout++ = *pin++;}then a call to it in the following code fragment has aliased arguments.int a[10];copyIntBuffer( a, a+3, 7);Although the C language allows this, such usage of MPI procedures is forbidden unlessotherwise speci�ed. Note that Fortran prohibits aliasing of arguments.All MPI functions are �rst speci�ed in the language-independent notation. Immediatelybelow this, the ANSI C version of the function is shown, and below this, a version of thesame function in Fortran 77.2.3 Semantic TermsWhen discussing MPI procedures the following semantic terms are used. The �rst two areusually applied to communication operations.nonblocking If the procedure may return before the operation completes, and before theuser is allowed to re-use resources (such as bu�ers) speci�ed in the call.blocking If return from the procedure indicates the user is allowed to re-use resourcesspeci�ed in the call.local If completion of the procedure depends only on the local executing process. Such anoperation does not require communication with another user process.non-local If completion of the operation may require the execution of some MPI procedureon another process. Such an operation may require communication occurring withanother user process.collective If all processes in a process group need to invoke the procedure.
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8 CHAPTER 2. MPI TERMS AND CONVENTIONS2.4 Data Types2.4.1 Opaque objectsMPI manages system memory that is used for bu�ering messages and for storing internalrepresentations of various MPI objects such as groups, communicators, datatypes, etc. Thismemory is not directly accessible to the user, and objects stored there are opaque: theirsize and shape is not visible to the user. Opaque objects are accessed via handles, whichexist in user space. MPI procedures that operate on opaque objects are passed handlearguments to access these objects. In addition to their use by MPI calls for object access,handles can participate in assignment and comparisons.In Fortran, all handles have type INTEGER. In C, a di�erent handle type is de�nedfor each category of objects. These should be types that support assignment and equalityoperators.In Fortran, the handle can be an index to a table of opaque objects in system table; inC it can be such index or a pointer to the object. More bizarre possibilities exist.Opaque objects are allocated and deallocated by calls that are speci�c to each objecttype. These are listed in the sections where the objects are described. The calls accept ahandle argument of matching type. In an allocate call this is an OUT argument that returnsa valid reference to the object. In a call to deallocate this is an INOUT argument whichreturns with an \invalid handle" value. MPI provides an \invalid handle" constant for eachobject type. Comparisons to this constant are used to test for validity of the handle.A call to deallocate invalidates the handle and marks the object for deallocation. Theobject is not accessible to the user after the call. However, MPI need not deallocate theobject immediatly. Any operation pending (at the time of the deallocate) that involves thisobject will complete normally; the object will be deallocated afterwards.An opaque object and its handle are signi�cant only at the process where the objectwas created, and cannot be transferred to another process.MPI provides certain prede�ned opaque objects and prede�ned, static handles to theseobjects. Such objects may not be destroyed.Rationale. This design hides the internal representation used forMPI data structures,thus allowing similar calls in C and Fortran. It also avoids con
icts with the typingrules in these languages, and easily allows future extensions of functionality. Themechanism for opaque objects used here loosely follows the POSIX Fortran bindingstandard.The explicit separating of handles in user space, objects in system space, allows space-reclaiming, deallocation calls to be made at appropriate points in the user program.If the opaque objects were in user space, one would have to be very careful not togo out of scope before any pending operation requiring that object completed. Thespeci�ed design allows an object to be marked for deallocation, the user program canthen go out of scope, and the object itself still persists until any pending operationsare complete.The requirement that handles support assignment/comparison is made since suchoperations are common. This restricts the domain of possible implementations. Thealternative would have been to allow handles to have been an arbitrary, opaque type.This would force the introduction of routines to do assignment and comparison, addingcomplexity, and was therefore ruled out. (End of rationale.)
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2.4. DATA TYPES 9Advice to users. A user may accidently create a dangling reference by assigning to ahandle the value of another handle, and then deallocating the object associated withthese handles. Conversely, if a handle variable is deallocated before the associatedobject is freed, then the object becomes inaccessible (this may occur, for example, ifthe handle is a local variable within a subroutine, and the subroutine is exited beforethe associated object is deallocated). It is the user's responsibility to avoid addingor deleting references to opaque objects, except as a result of calls that allocate ordeallocate such objects. (End of advice to users.)Advice to implementors. The intended semantics of opaque objects is that eachopaque object is separate from each other; each call to allocate such an object copiesall the information required for the object. Implementations may avoid excessivecopying by substituting referencing for copying. For example, a derived datatypemay contain references to its components, rather then copies of its components; acall to MPI COMM GROUP may return a reference to the group associated with thecommunicator, rather than a copy of this group. In such cases, the implementationmust maintain reference counts, and allocate and deallocate objects such that thevisible e�ect is as if the objects were copied. (End of advice to implementors.)2.4.2 Array argumentsAn MPI call may need an argument that is an array of opaque objects, or an array ofhandles. The array-of-handles is a regular array with entries that are handles to objectsof the same type in consecutive locations in the array. Whenever such an array is used,an additional len argument is required to indicate the number of valid entries (unless thisnumber can be derived otherwise). The valid entries are at the begining of the array; lenindicates how many of them there are, and need not be the entire size of the array. Thesame approach is followed for other array arguments.2.4.3 StateMPI procedures use at various places arguments with state types. The values of such datatype are all identi�ed by names, and no operation is de�ned on them. For example, theMPI ERRHANDLER SET routine has a state type argument with values MPI ERRORS ARE FA-TAL, MPI ERRORS RETURN, etc.2.4.4 Named constantsMPI procedures sometimes assign a special meaning to a special value of a basic type argu-ment; e.g. tag is an integer-valued argument of point-to-point communication operations,with a special wild-card value, MPI ANY TAG. Such arguments will have a range of regularvalues, which is a proper subrange of the range of values of the corresponding basic type;special values (such as MPI ANY TAG) will be outside the regular range. The range of regularvalues can be queried using environmental inquiry functions (Section 7).2.4.5 ChoiceMPI functions sometimes use arguments with a choice (or union) data type. Distinct callsto the same routine may pass by reference actual arguments of di�erent types. The mecha-
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10 CHAPTER 2. MPI TERMS AND CONVENTIONSnism for providing such arguments will di�er from language to language. For Fortran, thedocument uses <type> to represent a choice variable, for C, we use (void *).2.4.6 AddressesSome MPI procedures use address arguments that represent an absolute address in thecalling program. The datatype of such an argument is an integer of the size needed to holdany valid address in the execution environment.2.5 Language BindingThis section de�nes the rules for MPI language binding in general and for Fortran 77 andANSI C in particular. De�ned here are various object representations, as well as the namingconventions used for expressing this standard. The actual calling sequences are de�nedelsewhere.It is expected that any Fortran 90 and C++ implementations use the Fortran 77and ANSI C bindings, respectively. Although we consider it premature to de�ne otherbindings to Fortran 90 and C++, the current bindings are designed to encourage, ratherthan discourage, experimentation with better bindings that might be adopted later.Since the word PARAMETER is a keyword in the Fortran language, we use the word\argument" to denote the arguments to a subroutine. These are normally referred toas parameters in C, however, we expect that C programmers will understand the word\argument" (which has no speci�c meaning in C), thus allowing us to avoid unnecessaryconfusion for Fortran programmers.There are several important language binding issues not addressed by this standard.This standard does not discuss the interoperability of message passing between languages. Itis fully expected that many implementations will have such features, and that such featuresare a sign of the quality of the implementation.2.5.1 Fortran 77 Binding IssuesAll MPI names have an MPI pre�x, and all characters are capitals. Programs must notdeclare variables or functions with names beginning with the pre�x, MPI . This is mandatedto avoid possible name collisions.All MPI Fortran subroutines have a return code in the last argument. A few MPI op-erations are functions, which do not have the return code argument. The return code valuefor successful completion is MPI SUCCESS. Other error codes are implementation dependent;see Chapter 7.Handles are represented in Fortran as INTEGERs. Binary-valued variables are of typeLOGICAL.Array arguments are indexed from one.Unless explicitly stated, theMPI F77 binding is consistent with ANSI standard Fortran77. There are several points where this standard diverges from the ANSI Fortran 77 stan-dard. These exceptions are consistent with common practice in the Fortran community. Inparticular:� MPI identi�ers are limited to thirty, not six, signi�cant characters.� MPI identi�ers may contain underscores after the �rst character.
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2.5. LANGUAGE BINDING 11double precision ainteger b...call MPI_send(a,...)call MPI_send(b,...)Figure 2.1: An example of calling a routine with mismatched formal and actual arguments.� An MPI subroutine with a choice argument may be called with di�erent argumenttypes. An example is shown in Figure 2.1. This violates the letter of the Fortranstandard, but such a violation is common practice. An alternative would be to havea separate version of MPI SEND for each data type.� Although not required, it is strongly suggested that namedMPI constants (PARAMETERs)be provided in an include �le, called mpif.h. On systems that do not support include�les, the implementation should specify the values of named constants.� Vendors are encouraged to provide type declarations in the mpif.h �le on Fortransystems that support user-de�ned types. One should de�ne, if possible, the typeMPI ADDRESS, which is an INTEGER of the size needed to hold an address in theexecution environment. On systems where type de�nition is not supported, it is up tothe user to use an INTEGER of the right kind to represent addresses (i.e., INTEGER*4on a 32 bit machine, INTEGER*8 on a 64 bit machine, etc.).2.5.2 C Binding IssuesWe use the ANSI C declaration format. All MPI names have an MPI pre�x, de�ned con-stants are in all capital letters, and de�ned types and functions have one capital letter afterthe pre�x. Programs must not declare variables or functions with names beginning withthe pre�x, MPI . This is mandated to avoid possible name collisions.The de�nition of named constants, function prototypes, and type de�nitions must besupplied in an include �le mpi.h.Almost all C functions return an error code. The successful return code will beMPI SUCCESS, but failure return codes are implementation dependent. A few C functionsdo not return values, so that they can be implemented as macros.Type declarations are provided for handles to each category of opaque objects. Eithera pointer or an integer type is used.Array arguments are indexed from zero.Logical 
ags are integers with value 0 meaning \false" and a non-zero value meaning\true."Choice arguments are pointers of type void*.Address arguments are of MPI de�ned type MPI Aint. This is de�ned to be an int of thesize needed to hold any valid address on the target architecture.
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12 CHAPTER 2. MPI TERMS AND CONVENTIONS2.6 ProcessesAn MPI program consists of autonomous processes, executing their own code, in an MIMDstyle. The codes executed by each process need not be identical. The processes commu-nicate via calls to MPI communication primitives. Typically, each process executes in itsown address space, although shared-memory implementations of MPI are possible. Thisdocument speci�es the behavior of a parallel program assuming that only MPI calls areused for communication. The interaction of an MPI program with other possible means ofcommunication (e.g., shared memory) is not speci�ed.MPI does not specify the execution model for each process. A process can be sequential,or can be multi-threaded, with threads possibly executing concurrently. Care has been takento make MPI \thread-safe," by avoiding the use of implicit state. The desired interaction ofMPI with threads is that concurrent threads be all allowed to execute MPI calls, and callsbe reentrant; a blocking MPI call blocks only the invoking thread, allowing the schedulingof another thread.MPI does not provide mechanisms to specify the initial allocation of processes to anMPI computation and their binding to physical processors. It is expected that vendors willprovide mechanisms to do so either at load time or at run time. Such mechanisms willallow the speci�cation of the initial number of required processes, the code to be executedby each initial process, and the allocation of processes to processors. Also, the currentproposal does not provide for dynamic creation or deletion of processes during programexecution (the total number of processes is �xed), although it is intended to be consistentwith such extensions. Finally, we always identify processes according to their relative rankin a group, that is, consecutive integers in the range 0..groupsize-1.2.7 Error HandlingMPI provides the user with reliable message transmission. A message sent is always receivedcorrectly, and the user does not need to check for transmission errors, time-outs, or othererror conditions. In other words, MPI does not provide mechanisms for dealing with failuresin the communication system. If the MPI implementation is built on an unreliable underly-ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate theuser from this unreliability, or to re
ect unrecoverable errors as failures. Whenever possible,such failures will be re
ected as errors in the relevant communication call. Similarly, MPIitself provides no mechanisms for handling processor failures. The error handling facilitiesdescribed in section 7.2 can be used to restrict the scope of an unrecoverable error, or designerror recovery at the application level.Of course, MPI programs may still be erroneous. A program error can occur whenan MPI call is called with an incorrect argument (non-existing destination in a send oper-ation, bu�er too small in a receive operation, etc.) This type of error would occur in anyimplementation. In addition, a resource error may occur when a program exceeds theamount of available system resources (number of pending messages, system bu�ers, etc.).The occurrence of this type of error depends on the amount of available resources in thesystem and the resource allocation mechanism used; this may di�er from system to system.A high-quality implementation will provide generous limits on the important resources soas to alleviate the portability problem this represents.Almost allMPI calls return a code that indicates successful completion of the operation.Whenever possible, MPI calls return an error code, if an error occurred during the call.
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2.8. IMPLEMENTATION ISSUES 13By default, an error detected during the execution of the MPI library causes the parallelcomputation to abort. However, MPI provides mechanisms for users to change this defaultand to handle recoverable errors. The user may specify that no error is fatal, and handleerror codes returned by MPI calls by himself or herself. Also, the user may provide hisor her own error-handling routines, which will be invoked whenever an MPI call returnsabnormally. The MPI error handling facilities are described in section 7.2.Several factors limit the ability of MPI calls to return with meaningful error codeswhen an error occurs. MPI may not be able to detect some errors; other errors may be tooexpensive to detect in normal execution mode; �nally some errors may be \catastrophic"and may prevent MPI from returning control to the caller in a consistent state.Another subtle issue arises because of the nature of asynchronous communications: MPIcalls may initiate operations that continue asynchronously after the call returned. Thus, theoperation may return with a code indicating successful completion, yet later cause an errorexception to be raised. If there is a subsequent call that relates to the same operation (e.g.,a call that veri�es that an asynchronous operation has completed) then the error argumentassociated with this call will be used to indicate the nature of the error. In a few cases,the error may occur after all calls that relate to the operation have completed, so that noerror value can be used to indicate the nature of the error (e.g., an error in a send with theready mode). Such an error must be treated as fatal, since information cannot be returnedfor the user to recover from it.This document does not specify the state of a computation after an erroneous MPI callhas occurred. The desired behavior is that a relevant error code be returned, and the e�ectof the error be localized to the greatest possible extent. E.g., it is highly desireable that anerroneous receive call will not cause any part of the receiver's memory to be overwritten,beyond the area speci�ed for receiving the message.Implementations may go beyond this document in supporting in a meaningful mannerMPI calls that are de�ned here to be erroneous. For example, MPI speci�es strict typematching rules between matching send and receive operations: it is erroneous to send a
oating point variable and receive an integer. Implementations may go beyond these typematching rules, and provide automatic type conversion in such situations. It will be helpfulto generate warnings for such nonconforming behavior.2.8 Implementation issuesThere are a number of areas where an MPI implementation may interact with the operatingenvironment and system. While MPI does not mandate that any services (such as I/O orsignal handling) be provided, it does strongly suggest the behavior to be provided if thoseservices are available. This is an important point in achieving portability across platformsthat provide the same set of services.2.8.1 Independence of Basic Runtime RoutinesMPI programs require that library routines that are part of the basic language environment(such as date and write in Fortran and printf and malloc in ANSI C) and are executedafter MPI INIT and before MPI FINALIZE operate independently and that their completionis independent of the action of other processes in an MPI program.Note that this in no way prevents the creation of library routines that provide parallelservices whose operation is collective. However, the following program is expected to com-
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14 CHAPTER 2. MPI TERMS AND CONVENTIONSplete in an ANSI C environment regardless of the size of MPI COMM WORLD (assuming thatI/O is available at the executing nodes).int rank;MPI_Init( argc, argv );MPI_Comm_rank( MPI_COMM_WORLD, &rank );if (rank == 0) printf( "Starting program\n" );MPI_Finalize();The corresponding Fortran 77 program is also expected to complete.An example of what is not required is any particular ordering of the action of theseroutines when called by several tasks. For example, MPI makes neither requirements norrecommendations for the output from the following program (again assuming that I/O isavailable at the executing nodes).MPI_Comm_rank( MPI_COMM_WORLD, &rank );printf( "Output from task rank %d\n", rank );In addition, calls that fail because of resource exhaustion or other error are not con-sidered a violation of the requirements here (however, they are required to complete, justnot to complete successfully).2.8.2 Interaction with signals in POSIXMPI does not specify either the interaction of processes with signals, in a UNIX environment,or with other events that do not relate to MPI communication. That is, signals are notsigni�cant from the view point of MPI, and implementors should attempt to implementMPI so that signals are transparent: an MPI call suspended by a signal should resume andcomplete after the signal is handled. Generally, the state of a computation that is visibleor signi�cant from the view-point of MPI should only be a�ected by MPI calls.The intent of MPI to be thread and signal safe has a number of subtle e�ects. Forexample, on Unix systems, a catchable signal such as SIGALRM (an alarm signal) mustnot cause an MPI routine to behave di�erently than it would have in the absence of thesignal. Of course, if the signal handler issues MPI calls or changes the environment inwhich the MPI routine is operating (for example, consuming all available memory space),the MPI routine should behave as appropriate for that situation (in particular, in this case,the behavior should be the same as for a multithreaded MPI implementation).A second e�ect is that a signal handler that performs MPI calls must not interferewith the operation of MPI. For example, an MPI receive of any type that occurs within asignal handler must not cause erroneous behavior by the MPI implementation. Note that animplementation is permitted to prohibit the use of MPI calls from within a signal handler,and is not required to detect such use.It is highly desirable that MPI not use SIGALRM, SIGFPE, or SIGIO. An implementationis required to clearly document all of the signals that the MPI implementation uses; a goodplace for this information is a Unix `man' page on MPI.
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Chapter 3Point-to-Point Communication3.1 IntroductionSending and receiving of messages by processes is the basicMPI communication mechanism.The basic point-to-point communication operations are send and receive. Their use isillustrated in the example below.#include "mpi.h"main( argc, argv )int argc;char **argv;{ char message[20];int myrank;MPI_Status status;MPI_Init( &argc, &argv );MPI_Comm_rank( MPI_COMM_WORLD, &myrank );if (myrank == 0) /* code for process zero */{ strcpy(message,"Hello, there");MPI_Send(message, strlen(message), MPI_CHAR, 1, 99, MPI_COMM_WORLD);}else /* code for process one */{ MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);printf("received :%s:\n", message);}MPI_Finalize();} In this example, process zero (myrank = 0) sends a message to process one using thesend operation MPI SEND. The operation speci�es a send bu�er in the sender memoryfrom which the message data is taken. In the example above, the send bu�er consists ofthe storage containing the variable message in the memory of process zero. The location,size and type of the send bu�er are speci�ed by the �rst three parameters of the sendoperation. The message sent will contain the 13 characters of this variable. In addition,

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



16 CHAPTER 3. POINT-TO-POINT COMMUNICATIONthe send operation associates an envelope with the message. This envelope speci�es themessage destination and contains distinguishing information that can be used by the receiveoperation to select a particular message. The last three parameters of the send operationspecify the envelope for the message sent.Process one (myrank = 1) receives this message with the receive operation MPI RECV.The message to be received is selected according to the value of its envelope, and the messagedata is stored into the receive bu�er. In the example above, the receive bu�er consistsof the storage containing the string message in the memory of process one. The �rst threeparameters of the receive operation specify the location, size and type of the receive bu�er.The next three parameters are used for selecting the incoming message. The last parameteris used to return information on the message just received.The next sections describe the blocking send and receive operations. We discuss send,receive, blocking communication semantics, type matching requirements, type conversion inheterogeneous environments, and more general communication modes. Nonblocking com-munication is addressed next, followed by channel-like constructs and send-receive oper-ations. We then consider general datatypes that allow one to transfer e�ciently hetero-geneous and noncontiguous data. We conclude with the description of calls for explicitpacking and unpacking of messages.3.2 Blocking Send and Receive Operations3.2.1 Blocking sendThe syntax of the blocking send operation is given below.MPI SEND(buf, count, datatype, dest, tag, comm)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (nonnegative inte-ger)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)int MPI Send(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)MPI SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORThe blocking semantics of this call are described in Sec. 3.4.3.2.2 Message dataThe send bu�er speci�ed by the MPI SEND operation consists of count successive entries ofthe type indicated by datatype, starting with the entry at address buf. Note that we specify
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 17the message length in terms of number of elements, not number of bytes. The former ismachine independent and closer to the application level.The data part of the message consists of a sequence of count values, each of the typeindicated by datatype. count may be zero, in which case the data part of the message isempty. The basic datatypes that can be speci�ed for message data values correspond to thebasic datatypes of the host language. Possible values of this argument for Fortran and thecorresponding Fortran types are listed below.MPI datatype Fortran datatypeMPI INTEGER INTEGERMPI REAL REALMPI DOUBLE PRECISION DOUBLE PRECISIONMPI COMPLEX COMPLEXMPI LOGICAL LOGICALMPI CHARACTER CHARACTER(1)MPI BYTEMPI PACKEDPossible values for this argument for C and the corresponding C types are listed below.MPI datatype C datatypeMPI CHAR signed charMPI SHORT signed short intMPI INT signed intMPI LONG signed long intMPI UNSIGNED CHAR unsigned charMPI UNSIGNED SHORT unsigned short intMPI UNSIGNED unsigned intMPI UNSIGNED LONG unsigned long intMPI FLOAT floatMPI DOUBLE doubleMPI LONG DOUBLE long doubleMPI BYTEMPI PACKEDThe datatypes MPI BYTE and MPI PACKED do not correspond to a Fortran or Cdatatype. A value of type MPI BYTE consists of a byte (8 binary digits). A byte isuninterpreted and is di�erent from a character. Di�erent machines may have di�erentrepresentations for characters, or may use more than one byte to represent characters. Onthe other hand, a byte has the same binary value on all machines. The use of the typeMPI PACKED is explained in Section 3.13.MPI requires support of the datatypes listed above, which match the basic datatypes ofFortran 77 and ANSI C. Additional MPI datatypes should be provided if the host language
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18 CHAPTER 3. POINT-TO-POINT COMMUNICATIONhas additional data types: MPI LONG LONG INT, for (64 bit) C integers declared to be oftype longlong int;MPI DOUBLE COMPLEX for double precision complex in Fortran declaredto be of type DOUBLE PRECISION; MPI REAL2, MPI REAL4 and MPI REAL8 for Fortranreals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI INTEGER1MPI INTEGER2 andMPI INTEGER4 for Fortran integers, declared to be of type INTEGER*1,INTEGER*2 and INTEGER*4, respectively; etc.Rationale. One goal of the design is to allow for MPI to be implemented as alibrary, with no need for additional preprocessing or compilation. Thus, one cannotassume that a communication call has information on the datatype of variables in thecommunication bu�er; this information must be supplied by an explicit argument.The need for such datatype information will become clear in Section 3.3.2. (End ofrationale.)3.2.3 Message envelopeIn addition to the data part, messages carry information that can be used to distinguishmessages and selectively receive them. This information consists of a �xed number of �elds,which we collectively call the message envelope. These �elds aresourcedestinationtagcommunicatorThe message source is implicitly determined by the identity of the message sender. Theother �elds are speci�ed by arguments in the send operation.The message destination is speci�ed by the dest argument.The integer-valued message tag is speci�ed by the tag argument. This integer can beused by the program to distinguish di�erent types of messages. The range of valid tagvalues is 0,...,UB, where the value of UB is implementation dependent. It can be found byquerying the value of the attribute MPI TAG UB, as described in Chapter 7. MPI requiresthat UB be no less than 32767.The comm argument speci�es the communicator that is used for the send operation.Communicators are explained in Chapter 5; below is a brief summary of their usage.A communicator speci�es the communication context for a communication operation.Each communication context provides a separate \communication universe:" messages arealways received within the context they were sent, and messages sent in di�erent contextsdo not interfere.The communicator also speci�es the set of processes that share this communicationcontext. This process group is ordered and processes are identi�ed by their rank withinthis group. Thus, the range of valid values for dest is 0, ... , n-1, where n is the number ofprocesses in the group. (If the communicator is an inter-communicator, then destinationsare identi�ed by their rank in the remote group. See Chapter 5.)A prede�ned communicator MPI COMM WORLD is provided by MPI. It allows commu-nication with all processes that are accessible after MPI initialization and processes areidenti�ed by their rank in the group of MPI COMM WORLD.Advice to users. Users that are comfortable with the notion of a 
at name spacefor processes, and a single communication context, as o�ered by most existing com-munication libraries, need only use the prede�ned variable MPI COMM WORLD as the
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3.2. BLOCKING SEND AND RECEIVE OPERATIONS 19comm argument. This will allow communication with all the processes available atinitialization time.Users may de�ne new communicators, as explained in Chapter 5. Communicatorsprovide an important encapsulation mechanism for libraries and modules. They allowmodules to have their own disjoint communication universe and their own processnumbering scheme. (End of advice to users.)Advice to implementors. The message envelope would normally be encoded by a�xed-length message header. However, the actual encoding is implementation depen-dent. Some of the information (e.g., source or destination) may be implicit, and neednot be explicitly carried by messages. Also, processes may be identi�ed by relativeranks, or absolute ids, etc. (End of advice to implementors.)3.2.4 Blocking receiveThe syntax of the blocking receive operation is given below.MPI RECV (buf, count, datatype, source, tag, comm, status)OUT buf initial address of receive bu�er (choice)IN count number of elements in receive bu�er (integer)IN datatype datatype of each receive bu�er element (handle)IN source rank of source (integer)IN tag message tag (integer)IN comm communicator (handle)OUT status status object (Status)int MPI Recv(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Status *status)MPI RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE),IERRORThe blocking semantics of this call are described in Sec. 3.4.The receive bu�er consists of the storage containing count consecutive elements of thetype speci�ed by datatype, starting at address buf. The length of the received message mustbe less than or equal to the length of the receive bu�er. An over
ow error occurs if allincoming data does not �t, without truncation, into the receive bu�er.If a message that is shorter than the receive bu�er arrives, then only those locationscorresponding to the (shorter) message are modi�ed.Advice to users. The MPI PROBE function described in Section 3.8 can be used toreceive messages of unknown length. (End of advice to users.)
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20 CHAPTER 3. POINT-TO-POINT COMMUNICATIONAdvice to implementors. Even though no speci�c behavior is mandated by MPI forerroneous programs, the recommended handling of over
ow situations is to return instatus information about the source and tag of the incoming message. The receiveoperation will return an error code. A quality implementation will also ensure thatno memory that is outside the receive bu�er will ever be overwritten.In the case of a message shorter than the receive bu�er, MPI is quite strict in that itallows no modi�cation of the other locations. A more lenient statement would allowfor some optimizations but this is not allowed. The implementation must be ready toend a copy into the receiver memory exactly at the end of the receive bu�er, even ifit is an odd address. (End of advice to implementors.)The selection of a message by a receive operation is governed by the value of themessage envelope. A message can be received by a receive operation if its envelope matchesthe source, tag and commvalues speci�ed by the receive operation. The receiver may specifya wildcard MPI ANY SOURCE value for source, and/or a wildcard MPI ANY TAG value fortag, indicating that any source and/or tag are acceptable. It cannot specify a wildcard valuefor comm. Thus, a message can be received by a receive operation only if it is addressed tothe receiving process, has a matching communicator, has matching source unless source=MPI ANY SOURCE in the pattern, and has a matching tag unless tag= MPI ANY TAG in thepattern.The message tag is speci�ed by the tag argument of the receive operation. Theargument source, if di�erent from MPI ANY SOURCE, is speci�ed as a rank within theprocess group associated with that same communicator (remote process group, for in-tercommunicators). Thus, the range of valid values for the source argument is f0,...,n-1g[fMPI ANY SOURCEg, where n is the number of processes in this group.Note the asymmetry between send and receive operations: A receive operation mayaccept messages from an arbitrary sender, on the other hand, a send operation must specifya unique receiver. This matches a \push" communication mechanism, where data transferis e�ected by the sender (rather than a \pull" mechanism, where data transfer is e�ectedby the receiver).Source = destination is allowed, that is, a process can send a message to itself. (How-ever, it is unsafe to do so with the blocking send and receive operations described above,since this may lead to deadlock. See Sec. 3.5.)Advice to implementors. Message context and other communicator information canbe implemented as an additional tag �eld. It di�ers from the regular message tagin that wild card matching is not allowed on this �eld, and that value setting forthis �eld is controlled by communicator manipulation functions. (End of advice toimplementors.)3.2.5 Return statusThe source or tag of a received message may not be known if wildcard values were used inthe receive operation. The information is returned by the status argument of MPI RECV.The type of status is MPI-de�ned. Status variables need to be explicitly allocated by theuser, that is, they are not system objects.In C, status is a structure that contains two �elds named MPI SOURCE and MPI TAG, andthe structure may contain additional �elds. Thus, status.MPI SOURCE and status.MPI TAGcontain the source and tag, respectively, of the received message.
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3.3. DATA TYPE MATCHING AND DATA CONVERSION 21In Fortran, status is an array of INTEGERs of size MPI STATUS SIZE. The two constantsMPI SOURCE and MPI TAG are the indices of the entries that store the source and tag �elds.Thus status(MPI SOURCE) and status(MPI TAG) contain, respectively, the source and thetag of the received message.The status argument also returns information on the length of the message received.However, this information is not directly available as a �eld of the status variable and a callto MPI GET COUNT is required to \decode" this information.MPI GET COUNT(status, datatype, count)IN status return status of receive operation (Status)IN datatype datatype of each receive bu�er element (handle)OUT count number of received elements (integer)int MPI Get count(MPI Status status, MPI Datatype datatype, int *count)MPI GET COUNT(STATUS, DATATYPE, COUNT, IERROR)INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERRORReturns the number of elements received. (Again, we count elements, not bytes.) Thedatatype argument should match the argument provided by the receive call that set thestatus variable. (We shall later see, in Section 3.12.5, that MPI GET COUNT may return,in certain situations, the value MPI UNDEFINED.)Rationale. Some message passing libraries use INOUT count, tag and source argu-ments, thus using them both to specify the selection criteria for incoming messagesand return the actual envelope values of the received message. The use of a separatestatus argument prevents errors that are often attached with INOUT argument (e.g.,using the MPI ANY TAG constant as the tag in a send). Some libraries use calls thatrefer implicitly to the \last message received." This is not thread safe.The datatype argument is passed to MPI GET COUNT so as to improve performance.A message might be received without counting the number of elements it contains,and the count value is often not needed. Also, this allows the same function to beused after a call to MPI PROBE. (End of rationale.)All send and receive operations use the buf, count, datatype, source, dest, tag, command status arguments in the same way as the blocking MPI SEND andMPI RECV operationsdescribed in this section.3.3 Data type matching and data conversion3.3.1 Type matching rulesOne can think of message transfer as consisting of the following three phases.1. Data is pulled out of the send bu�er and a message is assembled.2. A message is transferred from sender to receiver.
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22 CHAPTER 3. POINT-TO-POINT COMMUNICATION3. Data is pulled from the incoming message and disassembled into the receive bu�er.Type matching has to be observed at each of these three phases: The type of eachvariable in the sender bu�er has to match the type speci�ed for that entry by the sendoperation; the type speci�ed by the send operation has to match the type speci�ed by thereceive operation; and the type of each variable in the receive bu�er has to match the typespeci�ed for that entry by the receive operation. A program that fails to observe these threerules is erroneous.To de�ne type matching more precisely, we need to deal with two issues: matching oftypes of the host language with types speci�ed in communication operations; and matchingof types at sender and receiver.The types of a send and receive match (phase two) if both operations use identicalnames. That is, MPI INTEGER matches MPI INTEGER, MPI REAL matches MPI REAL,and so on. There is one exception to this rule, discussed in Sec. 3.13, the typeMPI PACKEDcan match any other type.The type of a variable in a host program matches the type speci�ed in the commu-nication operation if the datatype name used by that operation corresponds to the basictype of the host program variable. For example, an entry with type name MPI INTEGERmatches a Fortran variable of type INTEGER. A table giving this correspondence for Fortranand C appears in Sec. 3.2.2. There are two exceptions to this last rule: an entry withtype name MPI BYTE or MPI PACKED can be used to match any byte of storage (on abyte-addressable machine), irrespective of the datatype of the variable that contains thisbyte. The typeMPI PACKED is used to send data that has been explicitly packed, or receivedata that will be explicitly unpacked, see Section 3.13. The type MPI BYTE allows one totransfer the binary value of a byte in memory unchanged.To summarize, the type matching rules fall into the three categories below.� Communication of typed values (e.g., with datatype di�erent from MPI BYTE), wherethe datatypes of the corresponding entries in the sender program, in the send call, inthe receive call and in the receiver program must all match.� Communication of untyped values (e.g., of datatype MPI BYTE), where both senderand receiver use the datatype MPI BYTE. In this case, there are no requirements onthe types of the corresponding entries in the sender and the receiver programs, nor isit required that they be the same.� Communication involving packed data, where MPI PACKED is used.The following examples illustrate the �rst two cases.Example 3.1 Sender and receiver specify matching types.CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)ELSECALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)END IFThis code is correct if both a and b are real arrays of size � 10. (In Fortran, it mightbe correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalencedto an array with ten reals.)
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3.3. DATA TYPE MATCHING AND DATA CONVERSION 23Example 3.2 Sender and receiver do not specify matching types.CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)ELSECALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)END IFThis code is erroneous, since sender and receiver do not provide matching datatypearguments.Example 3.3 Sender and receiver specify communication of untyped values.CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)ELSECALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)END IFThis code is correct, irrespective of the type and size of a and b (unless this results inan out of bound memory access).Advice to users. If a bu�er of type MPI BYTE is passed as an argument toMPI SEND,then MPI will send the data stored at contiguous locations, starting from the addressindicated by the buf argument. This may have unexpected results when the datalayout is not as a casual user would expect it to be. For example, some Fortrancompilers implement variables of type CHARACTER as a structure that contains thecharacter length and a pointer to the actual string. In such an environment, sendingand receiving a Fortran CHARACTER variable using the MPI BYTE type will not havethe anticipated result of transferring the character string. For this reason, the user isadvised to use typed communications whenever possible. (End of advice to users.)Type MPI CHARACTERThe typeMPI CHARACTER matches one character of a Fortran variable of type CHARACTER,rather then the entire character string stored in the variable. Fortran variables of typeCHARACTER or substrings are transferred as if they were arrays of characters. This isillustrated in the example below.Example 3.4 Transfer of Fortran CHARACTERs.CHARACTER*10 aCHARACTER*10 bCALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)ELSECALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0, tag, comm, status, ierr)END IF
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24 CHAPTER 3. POINT-TO-POINT COMMUNICATIONThe last �ve characters of string b at process 1 are replaced by the �rst �ve charactersof string a at process 0.Rationale. The alternative choice would be for MPI CHARACTER to match a char-acter of arbitrary length. This runs into problems.A Fortran character variable is a constant length string, with no special terminationsymbol. There is no �xed convention on how to represent characters, and how to storetheir length. Some compilers pass a character argument to a routine as a pair of argu-ments, one holding the address of the string and the other holding the length of string.Consider the case of anMPI communication call that is passed a communication bu�erwith type de�ned by a derived datatype (Section 3.12). If this communicator bu�ercontains variables of type CHARACTER then the information on their length will not bepassed to the MPI routine.This problem forces us to provide explicit information on character length with theMPI call. One could add a length parameter to the type MPI CHARACTER, but thisdoes not add much convenience and the same functionality can be achieved by de�ninga suitable derived datatype. (End of rationale.)Advice to implementors. Some compilers pass Fortran CHARACTER arguments as astructure with a length and a pointer to the actual string. In such an environment,the MPI call needs to dereference the pointer in order to reach the string. (End ofadvice to implementors.)3.3.2 Data conversionOne of the goals of MPI is to support parallel computations across heterogeneous environ-ments. Communication in a heterogeneous environment may require data conversions. Weuse the following terminology.type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.representation conversion changes the binary representation of a value, e.g., from Hex
oating point to IEEE 
oating point.The type matching rules imply that MPI communication never entails type conversion.On the other hand, MPI requires that a representation conversion be performed when atyped value is transferred across environments that use di�erent representations for thedatatype of this value. MPI does not specify rules for representation conversion. Suchconversion is expected to preserve integer, logical or character values, and to convert a
oating point value to the nearest value that can be represented on the target system.Over
ow and under
ow exceptions may occur during 
oating point conversions. Con-version of integers or characters may also lead to exceptions when a value that can berepresented in one system cannot be represented in the other system. An exception occur-ring during representation conversion results in a failure of the communication. An erroroccurs either in the send operation, or the receive operation, or both.If a value sent in a message is untyped (i.e., of type MPI BYTE), then the binaryrepresentation of the byte stored at the receiver is identical to the binary representationof the byte loaded at the sender. This holds true, whether sender and receiver run in thesame or in distinct environments. No representation conversion is required. (Note that
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3.4. COMMUNICATION MODES 25representation conversion may occur when values of type MPI CHARACTER or MPI CHARare transferred, for example, from an EBCDIC encoding to an ASCII encoding.)No conversion need occur when an MPI program executes in a homogeneous system,where all processes run in the same environment.Consider the three examples, 3.1{3.3. The �rst program is correct, assuming that a andb are REAL arrays of size � 10. If the sender and receiver execute in di�erent environments,then the ten real values that are fetched from the send bu�er will be converted to therepresentation for reals on the receiver site before they are stored in the receive bu�er.While the number of real elements fetched from the send bu�er equal the number of realelements stored in the receive bu�er, the number of bytes stored need not equal the numberof bytes loaded. For example, the sender may use a four byte representation and the receiveran eight byte representation for reals.The second program is erroneous, and its behavior is unde�ned.The third program is correct. The exact same sequence of forty bytes that were loadedfrom the send bu�er will be stored in the receive bu�er, even if sender and receiver run ina di�erent environment. The message sent has exactly the same length (in bytes) and thesame binary representation as the message received. If a and b are of di�erent types, or ifthey are of the same type but di�erent data representations are used, then the bits storedin the receive bu�er may encode values that are di�erent from the values they encoded inthe send bu�er.Data representation conversion also applies to the envelope of a message: source, des-tination and tag are all integers that may need to be converted.Advice to implementors. The current de�nition does not require messages to carrydata type information. Both sender and receiver provide complete data type infor-mation. In a heterogeneous environment, one can either use a machine independentencoding such as XDR, or have the receiver convert from the sender representationto its own, or even have the sender do the conversion.Additional type information might be added to messages in order to allow the sys-tem to detect mismatches between datatype at sender and receiver. This might beparticularly useful in a slower but safer debug mode. (End of advice to implementors.)MPI does not require support for inter-language communication. The behavior of aprogram is unde�ned if messages are sent by a C process and received by a Fortran process,or vice-versa.Rationale. MPI does not handle inter-language communication because there are noagreed standards for the correspondence between C types and Fortran types. There-fore, MPI programs that mix languages would not port. (End of rationale.)Advice to implementors. MPI implementors may want to support inter-languagecommunication by allowing Fortran programs to use \C MPI types," such as MPI INT,MPI CHAR, etc., and allowing C programs to use Fortran types. (End of advice toimplementors.)3.4 Communication ModesThe send call described in Section 3.2.1 is blocking: it does not return until the messagedata and envelope have been safely stored away so that the sender is free to access and
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26 CHAPTER 3. POINT-TO-POINT COMMUNICATIONoverwrite the send bu�er. The message might be copied directly into the matching receivebu�er, or it might be copied into a temporary system bu�er.Message bu�ering decouples the send and receive operations. A blocking send can com-plete as soon as the message was bu�ered, even if no matching receive has been executed bythe receiver. On the other hand, message bu�ering can be expensive, as it entails additionalmemory-to-memory copying, and it requires the allocation of memory for bu�ering. MPIo�ers the choice of several communication modes that allow one to control the choice of thecommunication protocol.The send call described in Section 3.2.1 used the standard communication mode. Inthis mode, it is up to MPI to decide whether outgoing messages will be bu�ered. MPI maybu�er outgoing messages. In such a case, the send call may complete before a matchingreceive is invoked. On the other hand, bu�er space may be unavailable, or MPI may choosenot to bu�er outgoing messages, for performance reasons. In this case, the send call willnot complete until a matching receive has been posted, and the data has been moved to thereceiver.Thus, a send in standard mode can be started whether or not a matching receive hasbeen posted. It may complete before a matching receive is posted. The standard mode sendis non-local: successful completion of the send operation may depend on the occurrenceof a matching receive.Rationale. The reluctance of MPI to mandate whether standard sends are bu�eringor not stems from the desire to achieve portable programs. Since any system will runout of bu�er resources as message sizes are increased, and some implementations maywant to provide little bu�ering, MPI takes the position that correct (and therefore,portable) programs do not rely on system bu�ering in standard mode. Bu�ering mayimprove the performance of a correct program, but it doesn't a�ect the result of theprogram. If the user wishes to guarantee a certain amount of bu�ering, the user-provided bu�er system of Sec. 3.6 should be used, along with the bu�ered-mode send.(End of rationale.)There are three additional communication modes.A bu�ered mode send operation can be started whether or not a matching receivehas been posted. It may complete before a matching receive is posted. However, unlikethe standard send, this operation is local, and its completion does not depend on theoccurrence of a matching receive. Thus, if a send is executed and no matching receive isposted, thenMPI must bu�er the outgoing message, so as to allow the send call to complete.An error will occur if there is insu�cient bu�er space. The amount of available bu�er spaceis controlled by the user | see Section 3.6. Bu�er allocation by the user may be requiredfor the bu�ered mode to be e�ective.A send that uses the synchronous mode can be started whether or not a matchingreceive was posted. However, the send will complete successfully only if a matching re-ceive is posted, and the receive operation has started to receive the message sent by thesynchronous send. Thus, the completion of a synchronous send not only indicates that thesend bu�er can be reused, but also indicates that the receiver has reached a certain point inits execution, namely that it has started executing the matching receive. If both sends andreceives are blocking operations then the use of the synchronous mode provides synchronouscommunication semantics: a communication does not complete at either end before bothprocesses rendezvous at the communication. A send executed in this mode is non-local.
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3.4. COMMUNICATION MODES 27A send that uses the ready communication mode may be started only if the matchingreceive is already posted. Otherwise, the operation is erroneous and its outcome is unde-�ned. On some systems, this allows the removal of a hand-shake operation that is otherwiserequired and results in improved performance. The completion of the send operation doesnot depend on the status of a matching receive, and merely indicates that the send bu�ercan be reused. A send operation that uses the ready mode has the same semantics as astandard send operation, or a synchronous send operation; it is merely that the senderprovides additional information to the system (namely that a matching receive is alreadyposted), that can save some overhead. In a correct program, therefore, a ready send couldbe replaced by a standard send with no e�ect on the behavior of the program other thanperformance.Three additional send functions are provided for the three additional communicationmodes. The communication mode is indicated by a one letter pre�x: B for bu�ered, S forsynchronous, and R for ready.MPI BSEND (buf, count, datatype, dest, tag, comm)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)int MPI Bsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)MPI BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORSend in bu�ered mode.MPI SSEND (buf, count, datatype, dest, tag, comm)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)int MPI Ssend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)MPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
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28 CHAPTER 3. POINT-TO-POINT COMMUNICATION<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORSend in synchronous mode.MPI RSEND (buf, count, datatype, dest, tag, comm)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)int MPI Rsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)MPI RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORSend in ready mode.There is only one receive operation, which can match any of the send modes. Thereceive operation described in the last section is blocking: it returns only after the receivebu�er contains the newly received message. A receive can complete before the matchingsend has completed (of course, it can complete only after the matching send has started).In a multi-threaded implementation of MPI, the system may de-schedule a thread thatis blocked on a send or receive operation, and schedule another thread for execution in thesame address space. In such a case it is the user's responsibility not to access or modify acommunication bu�er until the communication completes. Otherwise, the outcome of thecomputation is unde�ned.Rationale. We prohibit read accesses to a send bu�er while it is being used, eventhough the send operation is not supposed to alter the content of this bu�er. Thismay seem more stringent than necessary, but the additional restriction causes littleloss of functionality and allows better performance on some systems | consider thecase where data transfer is done by a DMA engine that is not cache-coherent with themain processor. (End of rationale.)Advice to implementors. Since a synchronous send cannot complete before a matchingreceive is posted, one will not normally bu�er messages sent by such an operation.It is recommended to choose bu�ering over blocking the sender, whenever possible,for standard sends. The programmer can signal his or her preference for blocking thesender until a matching receive occurs by using the synchronous send mode.A possible communication protocol for the various communication modes is outlinedbelow.ready send: The message is sent as soon as possible.
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3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 29synchronous send: The sender sends a request-to-send message. The receiver storesthis request. When a matching receive is posted, the receiver sends back a permission-to-send message, and the sender now sends the message.standard send: First protocol may be used for short messages, and second protocol forlong messages.bu�ered send: The sender copies the message into a bu�er and then sends it with anonblocking send (using the same protocol as for standard send).Additional control messages might be needed for 
ow control and error recovery. Ofcourse, there are many other possible protocols.Ready send can be implemented as a standard send. In this case there will be noperformance advantage (or disadvantage) for the use of ready send.A standard send can be implemented as a synchronous send. In such a case, no databu�ering is needed. However, many (most?) users expect some bu�ering.In a multi-threaded environment, the execution of a blocking communication shouldblock only the executing thread, allowing the thread scheduler to de-schedule thisthread and schedule another thread for execution. (End of advice to implementors.)3.5 Semantics of point-to-point communicationA valid MPI implementation guarantees certain general properties of point-to-point com-munication, which are described in this section.Order Messages are non-overtaking: If a sender sends two messages in succession to thesame destination, and both match the same receive, then this operation cannot receive thesecond message if the �rst one is still pending. If a receiver posts two receives in succession,and both match the same message, then the second receive operation cannot be satis�edby this message, if the �rst one is still pending. This requirement facilitates matching ofsends to receives. It guarantees that message-passing code is deterministic, if processesare single-threaded and the wildcard MPI ANY SOURCE is not used in receives. (Some ofthe calls described later, such as MPI CANCEL or MPI WAITANY, are additional sources ofnondeterminism.)If a process has a single thread of execution, then any two communications executedby this process are ordered. On the other hand, if the process is multi-threaded, then thesemantics of thread execution may not de�ne a relative order between two send operationsexecuted by two distinct threads. The operations are logically concurrent, even if onephysically precedes the other. In such a case, the two messages sent can be received inany order. Similarly, if two receive operations that are logically concurrent receive twosuccessively sent messages, then the two messages can match the two receives in eitherorder.Example 3.5 An example of non-overtaking messages.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
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30 CHAPTER 3. POINT-TO-POINT COMMUNICATIONELSE ! rank.EQ.1CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)END IFThe message sent by the �rst send must be received by the �rst receive, and the messagesent by the second send must be received by the second receive.Progress If a pair of matching send and receives have been initiated on two processes, thenat least one of these two operations will complete, independently of other actions in thesystem: the send operation will complete, unless the receive is satis�ed by another message,and completes; the receive operation will complete, unless the message sent is consumed byanother matching receive that was posted at the same destination process.Example 3.6 An example of two, intertwined matching pairs.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)ELSE ! rank.EQ.1CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)END IFBoth processes invoke their �rst communication call. Since the �rst send of process zerouses the bu�ered mode, it must complete, irrespective of the state of process one. Sinceno matching receive is posted, the message will be copied into bu�er space. (If insu�cientbu�er space is available, then the program will fail.) The second send is then invoked. Atthat point, a matching pair of send and receive operation is enabled, and both operationsmust complete. Process one next invokes its second receive call, which will be satis�ed bythe bu�ered message. Note that process one received the messages in the reverse order theywere sent.Fairness MPI makes no guarantee of fairness in the handling of communication. Supposethat a send is posted. Then it is possible that the destination process repeatedly posts areceive that matches this send, yet the message is never received, because it is each timeovertaken by another message, sent from another source. Similarly, suppose that a receivewas posted by a multi-threaded process. Then it is possible that messages that match thisreceive are repeatedly received, yet the receive is never satis�ed, because it is overtakenby other receives posted at this node (by other executing threads). It is the programmer'sresponsibility to prevent starvation in such situations.Resource limitations Any pending communication operation consumes system resourcesthat are limited. Errors may occur when lack of resources prevent the execution of an MPIcall. A quality implementation will use a (small) �xed amount of resources for each pendingsend in the ready or synchronous mode and for each pending receive. However, bu�er spacemay be consumed to store messages sent in standard mode, and must be consumed to storemessages sent in bu�ered mode, when no matching receive is available. The amount of space
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3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 31available for bu�ering will be much smaller than program data memory on many systems.Then, it will be easy to write programs that overrun available bu�er space.MPI allows the user to provide bu�er memory for messages sent in the bu�ered mode.Furthermore, MPI speci�es a detailed operational model for the use of this bu�er. An MPIimplementation is required to do no worse than implied by this model. This allows users toavoid bu�er over
ows when they use bu�ered sends. Bu�er allocation and use is describedin Section 3.6.A bu�ered send operation that cannot complete because of a lack of bu�er space iserroneous. When such a situation is detected, an error is signalled that may cause theprogram to terminate abnormally. On the other hand, a standard send operation thatcannot complete because of lack of bu�er space will merely block, waiting for bu�er spaceto become available or for a matching receive to be posted. This behavior is preferable inmany situations. Consider a situation where a producer repeatedly produces new valuesand sends them to a consumer. Assume that the producer produces new values fasterthan the consumer can consume them. If bu�ered sends are used, then a bu�er over
owwill result. Additional synchronization has to be added to the program so as to preventthis from occurring. If standard sends are used, then the producer will be automaticallythrottled, as its send operations will block when bu�er space is unavailable.In some situations, a lack of bu�er space leads to deadlock situations. This is illustratedby the examples below.Example 3.7 An exchange of messages.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)ELSE ! rank.EQ.1CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)END IFThis program will succeed even if no bu�er space for data is available. The standard sendoperation can be replaced, in this example, with a synchronous send.Example 3.8 An attempt to exchange messages.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)ELSE ! rank.EQ.1CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)END IFThe receive operation of the �rst process must complete before its send, and can completeonly if the matching send of the second processor is executed. The receive operation of thesecond process must complete before its send and can complete only if the matching sendof the �rst process is executed. This program will always deadlock. The same holds for anyother send mode.
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32 CHAPTER 3. POINT-TO-POINT COMMUNICATIONExample 3.9 An exchange that relies on bu�ering.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)ELSE ! rank.EQ.1CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)END IFThe message sent by each process has to be copied out before the send operation returnsand the receive operation starts. For the program to complete, it is necessary that at leastone of the two messages sent be bu�ered. Thus, this program can succeed only if thecommunication system can bu�er at least count words of data.Advice to users. When standard send operations are used, then a deadlock situationmay occur where both processes are blocked because bu�er space is not available. Thesame will certainly happen, if the synchronous mode is used. If the bu�ered mode isused, and not enough bu�er space is available, then the program will not completeeither. However, rather than a deadlock situation, we shall have a bu�er over
owerror.A program is \safe" if no message bu�ering is required for the program to complete.One can replace all sends in such program with synchronous sends, and the pro-gram will still run correctly. This conservative programming style provides the bestportability, since program completion does not depend on the amount of bu�er spaceavailable or in the communication protocol used.Many programmers prefer to have more leeway and be able to use the \unsafe" pro-gramming style shown in example 3.9. In such cases, the use of standard sends is likelyto provide the best compromise between performance and robustness: quality imple-mentations will provide su�cient bu�ering so that \common practice" programs willnot deadlock. The bu�ered send mode can be used for programs that require morebu�ering, or in situations where the programmer wants more control. This modemight also be used for debugging purposes, as bu�er over
ow conditions are easier todiagnose than deadlock conditions.Nonblocking message-passing operations, as described in Section 3.7, can be used toavoid the need for bu�ering outgoing messages. This prevents deadlocks due to lackof bu�er space, and improves performance, by allowing overlap of computation andcommunication, and avoiding the overheads of allocating bu�ers and copying messagesinto bu�ers. (End of advice to users.)3.6 Bu�er allocation and usageA user may specify a bu�er to be used for bu�ering messages sent in bu�ered mode. Bu�er-ing is done by the sender.
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3.6. BUFFER ALLOCATION AND USAGE 33MPI BUFFER ATTACH( bu�er, size)IN bu�er initial bu�er address (choice)IN size bu�er size, in bytes (integer)int MPI Buffer attach( void* buffer, int size)MPI BUFFER ATTACH( BUFFER, SIZE, IERROR)<type> BUFFER(*)INTEGER SIZE, IERRORProvides to MPI a bu�er in the user's memory to be used for bu�ering outgoing mes-sages. The bu�er is used only by messages sent in bu�ered mode. Only one bu�er can beattached to a process at a time.MPI BUFFER DETACH( bu�er, size)OUT bu�er initial bu�er address (choice)OUT size bu�er size, in bytes (integer)int MPI Buffer detach( void** buffer, int* size)MPI BUFFER DETACH( BUFFER, SIZE, IERROR)<type> BUFFER(*)INTEGER SIZE, IERRORDetach the bu�er currently associated with MPI. This operation will block until allmessages currently in the bu�er have been transmitted. Upon return of this function, theuser may reuse or deallocate the space taken by the bu�er.The statements made in this section describe the behavior of MPI for bu�ered-modesends. When no bu�er is currently associated, MPI behaves as if a zero-sized bu�er isassociated with the process.MPI must provide as much bu�ering for outgoing messages as if outgoing messagedata were bu�ered by the sending process, in the speci�ed bu�er space, using a circular,contiguous-space allocation policy. We outline below a model implementation that de�nesthis policy. MPI may provide more bu�ering, and may use a better bu�er allocation algo-rithm than described below. On the other hand, MPI may signal an error whenever thesimple bu�ering allocator described below would run out of space. In particular, if no bu�eris explicitly associated with the process, then any bu�ered send may cause an error.MPI does not provide mechanisms for querying or controlling bu�ering done by standardmode sends. It is expected that vendors will provide such information for their implemen-tations.Rationale. There is a wide spectrum of possible implementations of bu�ered com-munication: bu�ering can be done at sender, at receiver, or both; bu�ers can bededicated to one sender-receiver pair, or be shared by all communications; bu�eringcan be done in real or in virtual memory; it can use dedicated memory, or memoryshared by other processes; bu�er space may be allocated statically or be changed dy-namically; etc. It does not seem feasible to provide a portable mechanism for querying
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34 CHAPTER 3. POINT-TO-POINT COMMUNICATIONor controlling bu�ering that would be compatible with all these choices, yet providemeaningful information. (End of rationale.)3.6.1 Model implementation of bu�ered modeThe model implementation uses the packing and unpacking functions described in Sec-tion 3.13 and the nonblocking communication functions described in Section 3.7.We assume that a circular queue of pending message entries (PME) is maintained.Each entry contains a communication request handle that identi�es a pending nonblockingsend, a pointer to the next entry and the packed message data. The entries are stored insuccessive locations in the bu�er. Free space is available between the queue tail and thequeue head.A bu�ered send call results in the execution of the following code.� Traverse sequentially the PME queue from head towards the tail, deleting all entriesfor communications that have completed, up to the �rst entry with an uncompletedrequest; update queue head to point to that entry.� Compute the number, n, of bytes needed to store entry for new message (length ofpacked message computed with MPI PACK SIZE plus space for request handle andpointer).� Find the next contiguous empty space of n bytes in bu�er (space following queue tail,or space at start of bu�er if queue tail is too close to end of bu�er). If space not foundthen raise bu�er over
ow error.� Append to end of PME queue in contiguous space the new entry that contains requesthandle, next pointer and packed message data; MPI PACK is used to pack data.� Post nonblocking send (standard mode) for packed data.� Return3.7 Nonblocking communicationOne can improve performance on many systems by overlapping communication and com-putation. This is especially true on systems where communication can be executed au-tonomously by an intelligent communication controller. Light-weight threads are one mech-anism for achieving such overlap. An alternative mechanism that often leads to betterperformance is to use nonblocking communication. A nonblocking send start call ini-tiates the send operation, but does not complete it. The send start call will return beforethe message was copied out of the send bu�er. A separate send complete call is neededto complete the communication, i.e., to verify that the data has been copied out of the sendbu�er. With suitable hardware, the transfer of data out of the sender memory may proceedconcurrently with computations done at the sender after the send was initiated and before itcompleted. Similarly, a nonblocking receive start call initiates the receive operation, butdoes not complete it. The call will return before a message is stored into the receive bu�er.A separate receive complete call is needed to complete the receive operation and verifythat the data has been received into the receive bu�er. With suitable hardware, the transferof data into the receiver memory may proceed concurrently with computations done after
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3.7. NONBLOCKING COMMUNICATION 35the receive was initiated and before it completed. The use of nonblocking receives may alsoavoid system bu�ering and memory-to-memory copying, as information is provided earlyon the location of the receive bu�er.Nonblocking send start calls can use the same four modes as blocking sends: standard,bu�ered, synchronous and ready. These carry the same meaning. Sends of all modes, readyexcepted, can be started whether a matching receive has been posted or not; a nonblockingready send can be started only if a matching receive is posted. In all cases, the send start callis local: it returns immediately, irrespective of the status of other processes. If the call causessome system resource to be exhausted, then it will fail and return an error code. Qualityimplementations of MPI should ensure that this happens only in \pathological" cases. Thatis, anMPI implementation should be able to support a large number of pending nonblockingoperations.The send-complete call returns when data has been copied out of the send bu�er. Itmay carry additional meaning, depending on the send mode.If the send mode is synchronous, then the send can complete only if a matching receivehas started. That is, a receive has been posted, and has been matched with the send. Inthis case, the send-complete call is non-local. Note that a synchronous, nonblocking sendmay complete, if matched by a nonblocking receive, before the receive complete call occurs.(It can complete as soon as the sender \knows" the transfer will complete, but before thereceiver \knows" the transfer will complete.)If the send mode is bu�ered then the message must be bu�ered if there is no pendingreceive. In this case, the send-complete call is local, and must succeed irrespective of thestatus of a matching receive.If the send mode is standard then the send-complete call may return before a matchingreceive occurred, if the message is bu�ered. On the other hand, the send-complete may notcomplete until a matching receive occurred, and the message was copied into the receivebu�er.Nonblocking sends can be matched with blocking receives, and vice-versa.Advice to users. The completion of a send operation may be delayed, for standardmode, and must be delayed, for synchronous mode, until a matching receive is posted.The use of nonblocking sends in these two cases allows the sender to proceed aheadof the receiver, so that the computation is more tolerant of 
uctuations in the speedsof the two processes.Nonblocking sends in the bu�ered and ready modes have a more limited impact. Anonblocking send will return as soon as possible, whereas a blocking send will returnafter the data has been copied out of the sender memory. The use of nonblockingsends is advantageous in these cases only if data copying can be concurrent withcomputation.The message-passing model implies that communication is initiated by the sender.The communication will generally have lower overhead if a receive is already postedwhen the sender initiates the communication (data can be moved directly to thereceive bu�er, and there is no need to queue a pending send request). However, areceive operation can complete only after the matching send has occurred. The useof nonblocking receives allows one to achieve lower communication overheads withoutblocking the receiver while it waits for the send. (End of advice to users.)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



36 CHAPTER 3. POINT-TO-POINT COMMUNICATION3.7.1 Communication ObjectsNonblocking communications use opaque request objects to identify communication oper-ations and match the operation that initiates the communication with the operation thatterminates it. These are system objects that are accessed via a handle. A request objectidenti�es various properties of a communication operation, such as the send mode, the com-munication bu�er that is associated with it, its context, the tag and destination argumentsto be used for a send, or the tag and source arguments to be used for a receive. In addition,this object stores information about the status of the pending communication operation.3.7.2 Communication initiationWe use the same naming conventions as for blocking communication: a pre�x of B, S, orR is used for bu�ered, synchronous or ready mode. In addition a pre�x of I (for immediate)indicates that the call is nonblocking.MPI ISEND(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Isend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORStart a standard mode, nonblocking send.
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3.7. NONBLOCKING COMMUNICATION 37MPI IBSEND(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Ibsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORStart a bu�ered mode, nonblocking send.MPI ISSEND(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Issend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORStart a synchronous mode, nonblocking send.
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38 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI IRSEND(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype datatype of each send bu�er element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Irsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORStart a ready mode nonblocking send.MPI IRECV (buf, count, datatype, source, tag, comm, request)OUT buf initial address of receive bu�er (choice)IN count number of elements in receive bu�er (integer)IN datatype datatype of each receive bu�er element (handle)IN source rank of source (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Request *request)MPI IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERRORStart a nonblocking receive.These calls allocate a communication request object and associate it with the requesthandle (the argument request). The request can be used later to query the status of thecommunication or wait for its completion.A nonblocking send call indicates that the system may start copying data out of thesend bu�er. The sender should not access any part of the send bu�er after a nonblockingsend operation is called, until the send completes.A nonblocking receive call indicates that the system may start writing data into the re-ceive bu�er. The receiver should not access any part of the receive bu�er after a nonblockingreceive operation is called, until the receive completes.
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3.7. NONBLOCKING COMMUNICATION 393.7.3 Communication CompletionThe functions MPI WAIT and MPI TEST are used to complete a nonblocking communica-tion. The completion of a send operation indicates that the sender is now free to update thelocations in the send bu�er (the send operation itself leaves the content of the send bu�erunchanged). It does not indicate that the message has been received, rather, it may havebeen bu�ered by the communication subsystem. However, if a synchronous mode send wasused, the completion of the send operation indicates that a matching receive was initiated,and that the message will eventually be received by this matching receive.The completion of a receive operation indicates that the receive bu�er contains thereceived message, the receiver is now free to access it, and that the status object is set. Itdoes not indicate that the matching send operation has completed (but indicates, of course,that the send was initiated).We shall use the following terminology. A null handle is a handle with valueMPI REQUEST NULL. A persistent request and the handle to it are inactive if the requestis not associated with any ongoing communication (see Section 3.9). A handle is active ifit is neither null nor inactive.MPI WAIT(request, status)INOUT request request (handle)OUT status status object (Status)int MPI Wait(MPI Request *request, MPI Status *status)MPI WAIT(REQUEST, STATUS, IERROR)INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERRORA call toMPI WAIT returns when the operation identi�ed by request is complete. If thecommunication object associated with this request was created by a nonblocking send orreceive call, then the object is deallocated by the call to MPI WAIT and the request handleis set to MPI REQUEST NULL. MPI WAIT is a non-local operation.The call returns, in status, information on the completed operation. The content ofthe status object for a receive operation can be accessed as described in section 3.2.5. Thestatus object for a send operation may be queried by a call to MPI TEST CANCELLED (seeSection 3.8).One is allowed to call MPI WAIT with a null or inactive request argument. In this casethe operation returns immediately. The status argument is set to return tag =MPI ANY TAG,source = MPI ANY SOURCE, and is also internally con�gured so that calls to MPI GET-COUNT and MPI GET ELEMENTS return count = 0.Rationale. This makes MPI WAIT functionally equivalent to MPI WAITALL with alist of length one and adds some elegance. Status is set in this way so as to preventerrors due to accesses of stale information.Successful return of MPI WAIT after a MPI IBSEND implies that the user send bu�ercan be reused | i.e., data has been sent out or copied into a bu�er attached withMPI BUFFER ATTACH. Note that, at this point, we can no longer cancel the send(see Sec. 3.8). If a matching receive is never posted, then the bu�er cannot be freed.This runs somewhat counter to the stated goal of MPI CANCEL (always being able to
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40 CHAPTER 3. POINT-TO-POINT COMMUNICATIONfree program space that was committed to the communication subsystem). (End ofrationale.)Advice to implementors. In a multi-threaded environment, a call to MPI WAITshould block only the calling thread, allowing the thread scheduler to schedule anotherthread for execution. (End of advice to implementors.)MPI TEST(request, 
ag, status)INOUT request communication request (handle)OUT 
ag true if operation completed (logical)OUT status status object (Status)int MPI Test(MPI Request *request, int *flag, MPI Status *status)MPI TEST(REQUEST, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER REQUEST, STATUS(MPI STATUS SIZE), IERRORA call to MPI TEST returns 
ag = true if the operation identi�ed by request is com-plete. In such a case, the status object is set to contain information on the completedoperation; if the communication object was created by a nonblocking send or receive, thenit is deallocated and the request handle is set to MPI REQUEST NULL. The call returns 
ag= false, otherwise. In this case, the value of the status object is unde�ned. MPI TEST is alocal operation.The return status object for a receive operation carries information that can be accessedas described in section 3.2.5. The status object for a send operation carries informationthat can be accessed by a call to MPI TEST CANCELLED (see Section 3.8).One is allowed to call MPI TEST with a null or inactive request argument. In such acase the operation returns 
ag = false.The functions MPI WAIT and MPI TEST can be used to complete both sends andreceives.Advice to users. The use of the nonblocking MPI TEST call allows the user toschedule alternative activities within a single thread of execution. An event-driventhread scheduler can be emulated with periodic calls to MPI TEST. (End of advice tousers.)Example 3.10 Simple usage of nonblocking operations and MPI WAIT.CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)**** do some computation to mask latency ****CALL MPI_WAIT(request, status, ierr)ELSECALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)**** do some computation to mask latency ****
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3.7. NONBLOCKING COMMUNICATION 41CALL MPI_WAIT(request, status, ierr)END IFA request object can be deallocated without waiting for the associated communicationto complete, by using the following operation.MPI REQUEST FREE(request)INOUT request communication request (handle)int MPI Request free(MPI Request *request)MPI REQUEST FREE(REQUEST, IERROR)INTEGER REQUEST, IERRORMark the request object for deallocation and set request to MPI REQUEST NULL. Anongoing communication that is associated with the request will be allowed to complete.The request will be deallocated only after its completion.Rationale. The MPI REQUEST FREE mechanism is provided for reasons of perfor-mance and convenience on the sending side. (End of rationale.)Advice to users. Once a request is freed by a call to MPI REQUEST FREE, it isnot possible to check for the successful completion of the associated communicationwith calls to MPI WAIT or MPI TEST. Also, if an error occurs subsequently duringthe communication, an error code cannot be returned to the user | such an errormust be treated as fatal. Questions arise as to how one knows when the operationshave completed when using MPI REQUEST FREE. Depending on the program logic,there may be other ways in which the program knows that certain operations havecompleted and this makes usage of MPI REQUEST FREE practical. For example, anactive send request could be freed when the logic of the program is such that thereceiver sends a reply to the message sent | the arrival of the reply informs thesender that the send has completed and the send bu�er can be reused. An activereceive request should never be freed as the receiver will have no way to verify thatthe receive has completed and the receive bu�er can be reused. (End of advice tousers.)Example 3.11 An example using MPI REQUEST FREE.CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank)IF(rank.EQ.0) THENDO i=1, nCALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, req, ierr)CALL MPI_REQUEST_FREE(req, ierr)CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, req, ierr)CALL MPI_WAIT(req, status, ierr)END DOELSE ! rank.EQ.1CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, req, ierr)
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42 CHAPTER 3. POINT-TO-POINT COMMUNICATIONCALL MPI_WAIT(req, status)DO I=1, n-1CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, req, ierr)CALL MPI_REQUEST_FREE(req, ierr)CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, req, ierr)CALL MPI_WAIT(req, status, ierr)END DOCALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, req, ierr)CALL MPI_WAIT(req, status)END IF3.7.4 Semantics of Nonblocking CommunicationsThe semantics of nonblocking communication is de�ned by suitably extending the de�nitionsin Section 3.5.Order Nonblocking communication operations are ordered according to the execution orderof the calls that initiate the communication. The non-overtaking requirement of Section 3.5is extended to nonblocking communication, with this de�nition of order being used.Example 3.12 Message ordering for nonblocking operations.CALL MPI_COMM_RANK(comm, rank, ierr)IF (RANK.EQ.0) THENCALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)ELSE ! rank.EQ.1CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)END IFCALL MPI_WAIT(r1,status)CALL MPI_WAIT(r2,status)The �rst send of process zero will match the �rst receive of process one, even if both messagesare sent before process one executes either receive.Progress A call toMPI WAIT that completes a receive will eventually terminate and returnif a matching send has been started, unless the send is satis�ed by another receive. Inparticular, if the matching send is nonblocking, then the receive should complete even ifno call is executed by the sender to complete the send. Similarly, a call to MPI WAIT thatcompletes a send will eventually return if a matching receive has been started, unless thereceive is satis�ed by another send, and even if no call is executed to complete the receive.Example 3.13 An illustration of progress semantics.CALL MPI_COMM_RANK(comm, rank, ierr)IF (RANK.EQ.0) THENCALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)
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3.7. NONBLOCKING COMMUNICATION 43ELSE ! rank.EQ.1CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, ierr)CALL MPI_WAIT(r, status, ierr)END IFThis code should not deadlock in a correct MPI implementation. The �rst synchronoussend of process zero must complete after process one posts the matching (nonblocking)receive even if process one has not yet reached the completing wait call. Thus, process zerowill continue and execute the second send, allowing process one to complete execution.If anMPI TEST that completes a receive is repeatedly called with the same arguments,and a matching send has been started, then the call will eventually return 
ag = true, unlessthe send is satis�ed by another receive. If an MPI TEST that completes a send is repeatedlycalled with the same arguments, and a matching receive has been started, then the call willeventually return 
ag = true, unless the receive is satis�ed by another send.3.7.5 Multiple CompletionsIt is convenient to be able to wait for the completion of any, some, or all the operationsin a list, rather than having to wait for a speci�c message. A call to MPI WAITANY orMPI TESTANY can be used to wait for the completion of one out of several operations. Acall to MPI WAITALL or MPI TESTALL can be used to wait for all pending operations ina list. A call to MPI WAITSOME or MPI TESTSOME can be used to complete all enabledoperations in a list.MPI WAITANY (count, array of requests, index, status)IN count list length (integer)INOUT array of requests array of requests (array of handles)OUT index index of handle for operation that completed (integer)OUT status status object (Status)int MPI Waitany(int count, MPI Request *array of requests, int *index,MPI Status *status)MPI WAITANY(COUNT, ARRAY OF REQUESTS, INDEX, STATUS, IERROR)INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),IERRORBlocks until one of the operations associated with the active requests in the array hascompleted. If more then one operation is enabled and can terminate, one is arbitrarilychosen. Returns in index the index of that request in the array and returns in status thestatus of the completing communication. (The array is indexed from zero in C, and fromone in Fortran.) If the request was allocated by a nonblocking communication operation,then it is deallocated and the request handle is set to MPI REQUEST NULL.The array of requests list may contain null or inactive handles. If the list contains noactive handles (list has length zero or all entries are null or inactive), then the call returnsimmediately with index = MPI UNDEFINED.
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44 CHAPTER 3. POINT-TO-POINT COMMUNICATIONThe execution of MPI WAITANY(count, array of requests, index, status) has the samee�ect as the execution of MPI WAIT(&array of requests[i], status), where i is the valuereturned by index. MPI WAITANY with an array containing one active entry is equivalentto MPI WAIT.MPI TESTANY(count, array of requests, index, 
ag, status)IN count list length (integer)INOUT array of requests array of requests (array of handles)OUT index index of operation that completed, or MPI UNDE-FINED if none completed (integer)OUT 
ag true if one of the operations is complete (logical)OUT status status object (Status)int MPI Testany(int count, MPI Request *array of requests, int *index,int *flag, MPI Status *status)MPI TESTANY(COUNT, ARRAY OF REQUESTS, INDEX, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),IERRORTests for completion of either one or none of the operations associated with activehandles. In the former case, it returns 
ag = true, returns in index the index of this requestin the array, and returns in status the status of that operation; if the request was allocatedby a nonblocking communication call then the request is deallocated and the handle is setto MPI REQUEST NULL. (The array is indexed from zero in C, and from one in Fortran.) Inthe latter case, it returns 
ag = false, returns a value of MPI UNDEFINED in index and statusis unde�ned. The array may contain null or inactive handles. If the array contains no activehandles then the call returns immediately with 
ag = false, index = MPI UNDEFINED, andstatus unde�ned.The execution of MPI TESTANY(count, array of requests, index, status) has the samee�ect as the execution of MPI TEST(&array of requests[i], 
ag, status), for i=0, 1 ,..., count-1, in some arbitrary order, until one call returns 
ag = true, or all fail. In the formercase, index is set to the last value of i, and in the latter case, it is set to MPI UNDEFINED.MPI TESTANY with an array containing one active entry is equivalent to MPI TEST.MPI WAITALL( count, array of requests, array of statuses)IN count lists length (integer)INOUT array of requests array of requests (array of handles)OUT array of statuses array of status objects (array of Status)int MPI Waitall(int count, MPI Request *array of requests,MPI Status *array of statuses)MPI WAITALL(COUNT, ARRAY OF REQUESTS, ARRAY OF STATUSES, IERROR)
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3.7. NONBLOCKING COMMUNICATION 45INTEGER COUNT, ARRAY OF REQUESTS(*)INTEGER ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORBlocks until all communication operations associated with active handles in the listcomplete, and return the status of all these operations (this includes the case where nohandle in the list is active). Both arrays have the same number of valid entries. Thei-th entry in array of statuses is set to the return status of the i-th operation. Requeststhat were created by nonblocking communication operations are deallocated and the corre-sponding handles in the array are set to MPI REQUEST NULL. The list may contain null orinactive handles. The call returns in the status of each such entry tag = MPI ANY TAG,source = MPI ANY SOURCE, and each status entry is also con�gured so that calls toMPI GET COUNT and MPI GET ELEMENTS return count = 0.The execution ofMPI WAITALL(count, array of requests, array of statuses) has the samee�ect as the execution of MPI WAIT(&array of request[i], &array of statuses[i]), for i=0 ,...,count-1, in some arbitrary order. MPI WAITALL with an array of length one is equivalentto MPI WAIT.MPI TESTALL(count, array of requests, 
ag, array of statuses)IN count lists length (integer)INOUT array of requests array of requests (array of handles)OUT 
ag (logical)OUT array of statuses array of status objects (array of Status)int MPI Testall(int count, MPI Request *array of requests, int *flag,MPI Status *array of statuses)MPI TESTALL(COUNT, ARRAY OF REQUESTS, FLAG, ARRAY OF STATUSES, IERROR)LOGICAL FLAGINTEGER COUNT, ARRAY OF REQUESTS(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORReturns 
ag = true if all communications associated with active handles in the arrayhave completed (this includes the case where no handle in the list is active). In this case,each status entry that corresponds to an active handle request is set to the status of thecorresponding communication; if the request was allocated by a nonblocking communica-tion call then it is deallocated, and the handle is set to MPI REQUEST NULL. Each statusentry that corresponds to a null or inactive handle is set to return tag = MPI ANY TAG,source = MPI ANY SOURCE, and is also con�gured so that calls to MPI GET COUNT andMPI GET ELEMENTS return count = 0.Otherwise, 
ag = false is returned, no request is modi�ed and the values of the statusentries are unde�ned. This is a local operation.
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46 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI WAITSOME(incount, array of requests, outcount, array of indices, array of statuses)IN incount length of array of requests (integer)INOUT array of requests array of requests (array of handles)OUT outcount number of completed requests (integer)OUT array of indices array of indices of operations that completed (array ofintegers)OUT array of statuses array of status objects for operations that completed(array of Status)int MPI Waitsome(int incount, MPI Request *array of requests, int *outcount,int *array of indices, MPI Status *array of statuses)MPI WAITSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,ARRAY OF STATUSES, IERROR)INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORWaits until at least one of the operations associated with active handles in the listhave completed. Returns in outcount the number of requests from the list array of requeststhat have completed. Returns in the �rst outcount locations of the array array of indices theindices of these operations (index within the array array of requests; the array is indexedfrom zero in C and from one in Fortran). Returns in the �rst outcount locations of the arrayarray of status the status for these completed operations. If a request that completed wasallocated by a nonblocking communication call, then it is deallocated, and the associatedhandle is set to MPI REQUEST NULL.If the list contains no active handles, then the call returns immediately with outcount= 0.MPI TESTSOME(incount, array of requests, outcount, array of indices, array of statuses)IN incount length of array of requests (integer)INOUT array of requests array of requests (array of handles)OUT outcount number of completed requests (integer)OUT array of indices array of indices of operations that completed (array ofintegers)OUT array of statuses array of status objects for operations that completed(array of Status)int MPI Testsome(int incount, MPI Request *array of requests, int *outcount,int *array of indices, MPI Status *array of statuses)MPI TESTSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,ARRAY OF STATUSES, IERROR)INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



3.7. NONBLOCKING COMMUNICATION 47Behaves like MPI WAITSOME, except that it returns immediately. If no operation hascompleted it returns outcount = 0.MPI TESTSOME is a local operation, which returns immediately, whereas MPI WAIT-SOME will block until a communication completes, if it was passed a list that contains atleast one active handle. Both calls ful�l a fairness requirement: If a request for a receiverepeatedly appears in a list of requests passed toMPI WAITSOME orMPI TESTSOME, anda matching send has been posted, then the receive will eventually succeed, unless the sendis satis�ed by another receive; and similarly for send requests.Advice to users. The use ofMPI TESTSOME is likely to be more e�cient than the useof MPI TESTANY. The former returns information on all completed communications,with the latter, a new call is required for each communication that completes.A server with multiple clients can use MPI WAITSOME so as not to starve anyclient. Clients send messages to the server with service requests. The server callsMPI WAITSOME with one receive request for each client, and then handles all re-ceives that completed. If a call to MPI WAITANY is used instead, then one clientcould starve while requests from another client always sneak in �rst. (End of adviceto users.)Advice to implementors. MPI TESTSOME should complete as many pending com-munications as possible. (End of advice to implementors.)Example 3.14 Client-server code (starvation can occur).CALL MPI_COMM_SIZE(comm, size, ierr)CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank > 0) THEN ! client codeDO WHILE(.TRUE.)CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)CALL MPI_WAIT(request, status, ierr)END DOELSE ! rank=0 -- server codeDO i=1, size-1CALL MPI_IRECV(a(1,i), n, MPI_REAL, 0, tag,comm, request_list(i), ierr)END DODO WHILE(.TRUE.)CALL MPI_WAITANY(size-1, request_list, index, status, ierr)CALL DO_SERVICE(a(1,index)) ! handle one messageCALL MPI_IRECV(a(1, index), n, MPI_REAL, 0, tag,comm, request_list(index), ierr)END DOEND IFExample 3.15 Same code, using MPI WAITSOME.
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48 CHAPTER 3. POINT-TO-POINT COMMUNICATIONCALL MPI_COMM_SIZE(comm, size, ierr)CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank > 0) THEN ! client codeDO WHILE(.TRUE.)CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)CALL MPI_WAIT(request, status, ierr)END DOELSE ! rank=0 -- server codeDO i=1, size-1CALL MPI_IRECV(a(1,i), n, MPI_REAL, 0, tag,comm, request_list(i), ierr)END DODO WHILE(.TRUE.)CALL MPI_WAITSOME(size, request_list, numdone,index_list, status_list, ierr)DO i=1, numdoneCALL DO_SERVICE(a(1, index_list(i)))CALL MPI_IRECV(a(1, index_list(i)), n, MPI_REAL, 0, tag,comm, request_list(i), ierr)END DOEND DOEND IF3.8 Probe and CancelThe MPI PROBE and MPI IPROBE operations allow incoming messages to be checked for,without actually receiving them. The user can then decide how to receive them, based onthe information returned by the probe (basically, the information returned by status). Inparticular, the user may allocate memory for the receive bu�er, according to the length ofthe probed message.The MPI CANCEL operation allows pending communications to be canceled. This isrequired for cleanup. Posting a send or a receive ties up user resources (send or receivebu�ers), and a cancel may be needed to free these resources gracefully.MPI IPROBE(source, tag, comm, 
ag, status)IN source source rank, or MPI ANY SOURCE (integer)IN tag tag value or MPI ANY TAG (integer)IN comm communicator (handle)OUT 
ag (logical)OUT status status object (Status)int MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,MPI Status *status)
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3.8. PROBE AND CANCEL 49MPI IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERRORMPI IPROBE(source, tag, comm, 
ag, status) returns 
ag = true if there is a messagethat can be received and that matches the pattern speci�ed by the arguments source, tag,and comm. The call matches the same message that would have been received by a call toMPI RECV(..., source, tag, comm, status) executed at the same point in the program, andreturns in status the same value that would have been returned by MPI RECV(). Otherwise,the call returns 
ag = false, and leaves status unde�ned.If MPI IPROBE returns 
ag = true, then the content of the status object can be sub-sequently accessed as described in section 3.2.5 to �nd the source, tag and length of theprobed message.A subsequent receive executed with the same context, and the source and tag returnedin status by MPI IPROBE will receive the message that was matched by the probe, if noother intervening receive occurs after the probe. If the receiving process is multi-threaded,it is the user's responsibility to ensure that the last condition holds.The source argument of MPI PROBE can be MPI ANY SOURCE, and the tag argumentcan be MPI ANY TAG, so that one can probe for messages from an arbitrary source and/orwith an arbitrary tag. However, a speci�c communication context must be provided withthe comm argument.It is not necessary to receive a message immediately after it has been probed for, andthe same message may be probed for several times before it is received.MPI PROBE(source, tag, comm, status)IN source source rank, or MPI ANY SOURCE (integer)IN tag tag value, or MPI ANY TAG (integer)IN comm communicator (handle)OUT status status object (Status)int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)MPI PROBE(SOURCE, TAG, COMM, STATUS, IERROR)INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERRORMPI PROBE behaves like MPI IPROBE except that it is a blocking call that returnsonly after a matching message has been found.TheMPI implementation ofMPI PROBE andMPI IPROBE needs to guarantee progress:if a call to MPI PROBE has been issued by a process, and a send that matches the probehas been initiated by some process, then the call to MPI PROBE will return, unless themessage is received by another concurrent receive operation (that is executed by anotherthread at the probing process). Similarly, if a process busy waits with MPI IPROBE and amatching message has been issued, then the call to MPI IPROBE will eventually return 
ag= true unless the message is received by another concurrent receive operation.Example 3.16 Use blocking probe to wait for an incoming message.
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50 CHAPTER 3. POINT-TO-POINT COMMUNICATIONCALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)ELSE IF(rank.EQ.1) THENCALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)ELSE ! rank.EQ.2DO i=1, 2CALL MPI_PROBE(MPI_ANY_SOURCE, 0,comm, status, ierr)IF (status(MPI_SOURCE) = 0) THEN100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, status, ierr)ELSE200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, status, ierr)END IFEND DOEND IFEach message is received with the right type.Example 3.17 A similar program to the previous example, but now it has a problem.CALL MPI_COMM_RANK(comm, rank, ierr)IF (rank.EQ.0) THENCALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)ELSE IF(rank.EQ.1) THENCALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)ELSEDO i=1, 2CALL MPI_PROBE(MPI_ANY_SOURCE, 0,comm, status, ierr)IF (status(MPI_SOURCE) = 0) THEN100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,0, status, ierr)ELSE200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,0, status, ierr)END IFEND DOEND IFWe slightly modi�ed example 3.16, using MPI ANY SOURCE as the source argument inthe two receive calls in statements labeled 100 and 200. The program is now incorrect: thereceive operation may receive a message that is distinct from the message probed by thepreceding call to MPI PROBE.Advice to implementors. A call toMPI PROBE(source, tag, comm, status) will matchthe message that would have been received by a call to MPI RECV(..., source, tag,comm, status) executed at the same point. Suppose that this message has source s, tagt and communicator c. If the tag argument in the probe call has value MPI ANY TAG
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3.8. PROBE AND CANCEL 51then the message probed will be the earliest pending message from source s with com-municator c and any tag; in any case, the message probed will be the earliest pendingmessage from source s with tag t and communicator c (this is the message that wouldhave been received, so as to preserve message order). This message continues as theearliest pending message from source s with tag t and communicator c, until it is re-ceived. A receive operation subsequent to the probe that uses the same communicatoras the probe and uses the tag and source values returned by the probe, must receivethis message, unless it has already been received by another receive operation. (Endof advice to implementors.)MPI CANCEL(request)IN request communication request (handle)int MPI Cancel(MPI Request *request)MPI CANCEL(REQUEST, IERROR)INTEGER REQUEST, IERRORA call to MPI CANCEL marks for cancellation a pending, nonblocking communicationoperation (send or receive). The cancel call is local. It returns immediately, possibly beforethe communication is actually canceled. It is still necessary to complete a communicationthat has been marked for cancellation, using a call to MPI REQUEST FREE, MPI WAIT orMPI TEST (or any of the derived operations).If a communication is marked for cancellation, then a MPI WAIT call for that com-munication is guaranteed to return, irrespective of the activities of other processes (i.e.,MPI WAIT behaves as a local function); similarly if MPI TEST is repeatedly called in abusy wait loop for a canceled communication, then MPI TEST will eventually be successful.MPI CANCEL can be used to cancel a communication that uses a persistent request (seeSec. 3.9), in the same way it is used for nonpersistent requests. A successful cancellationcancels the active communication, but not the request itself. After the call to MPI CANCELand the subsequent call to MPI WAIT or MPI TEST, the request becomes inactive and canbe activated for a new communication.The successful cancellation of a bu�ered send frees the bu�er space occupied by thepending message.Either the cancellation succeeds, or the communication succeeds, but not both. If asend is marked for cancellation, then it must be the case that either the send completesnormally, in which case the message sent was received at the destination process, or thatthe send is successfully canceled, in which case no part of the message was received at thedestination. Then, any matching receive has to be satis�ed by another send. If a receive ismarked for cancellation, then it must be the case that either the receive completes normally,or that the receive is successfully canceled, in which case no part of the receive bu�er isaltered. Then, any matching send has to be satis�ed by another receive.If the operation has been canceled, then information to that e�ect will be returned inthe status argument of the operation that completes the communication.
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52 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI TEST CANCELLED(status, 
ag)IN status status object (Status)OUT 
ag (logical)int MPI Test cancelled(MPI Status status, int *flag)MPI TEST CANCELLED(STATUS, FLAG, IERROR)LOGICAL FLAGINTEGER STATUS(MPI STATUS SIZE), IERRORReturns 
ag = true if the communication associated with the status object was canceledsuccessfully. In such a case, all other �elds of status (such as count or tag) are unde�ned.Returns 
ag = false, otherwise. If a receive operation might be canceled then one should callMPI TEST CANCELLED �rst, to check whether the operation was canceled, before checkingon the other �elds of the return status.Advice to users. Cancel can be an expensive operation that should be used onlyexceptionally. (End of advice to users.)Advice to implementors. If a send operation uses an \eager" protocol (data is trans-ferred to the receiver before a matching receive is posted), then the cancellation of thissend may require communication with the intended receiver in order to free allocatedbu�ers. On some systems this may require an interrupt to the intended receiver. Notethat, while communication may be needed to implement MPI CANCEL, this is still alocal operation, since its completion does not depend on the code executed by otherprocesses. If processing is required on another process, this should be transparent tothe application (hence the need for an interrupt and an interrupt handler). (End ofadvice to implementors.)3.9 Persistent communication requestsOften a communication with the same argument list is repeatedly executed within the in-ner loop of a parallel computation. In such a situation, it may be possible to optimizethe communication by binding the list of communication arguments to a persistent com-munication request once and, then, repeatedly using the request to initiate and completemessages. The persistent request thus created can be thought of as a communication port ora \half-channel." It does not provide the full functionality of a conventional channel, sincethere is no binding of the send port to the receive port. This construct allows reductionof the overhead for communication between the process and communication controller, butnot of the overhead for communication between one communication controller and another.It is not necessary that messages sent with a persistent request be received by a receiveoperation using a persistent request, or vice versa.A persistent communication request is created using one of the four following calls.These calls involve no communication.
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3.9. PERSISTENT COMMUNICATION REQUESTS 53MPI SEND INIT(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements sent (integer)IN datatype type of each element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Send init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI SEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORCreates a persistent communication request for a standard mode send operation, andbinds to it all the arguments of a send operation.MPI BSEND INIT(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements sent (integer)IN datatype type of each element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Bsend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI BSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORCreates a persistent communication request for a bu�ered mode send.
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54 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI SSEND INIT(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements sent (integer)IN datatype type of each element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Ssend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI SSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORCreates a persistent communication object for a synchronous mode send operation.MPI RSEND INIT(buf, count, datatype, dest, tag, comm, request)IN buf initial address of send bu�er (choice)IN count number of elements sent (integer)IN datatype type of each element (handle)IN dest rank of destination (integer)IN tag message tag (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Rsend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)MPI RSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORCreates a persistent communication object for a ready mode send operation.
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3.9. PERSISTENT COMMUNICATION REQUESTS 55MPI RECV INIT(buf, count, datatype, source, tag, comm, request)OUT buf initial address of receive bu�er (choice)IN count number of elements received (integer)IN datatype type of each element (handle)IN source rank of source or MPI ANY SOURCE (integer)IN tag message tag or MPI ANY TAG (integer)IN comm communicator (handle)OUT request communication request (handle)int MPI Recv init(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Request *request)MPI RECV INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERRORCreates a persistent communication request for a receive operation. The argument bufis marked as OUT because the user gives permission to write on the receive bu�er by passingthe argument to MPI RECV INIT.A persistent communication request is inactive after it was created | no active com-munication is attached to the request.A communication (send or receive) that uses a persistent request is initiated by thefunction MPI START.MPI START(request)INOUT request communication request (handle)int MPI Start(MPI Request *request)MPI START(REQUEST, IERROR)INTEGER REQUEST, IERRORThe argument, request, is a handle returned by one of the previous �ve calls. Theassociated request should be inactive. The request becomes active once the call is made.If the request is for a send with ready mode, then a matching receive should be postedbefore the call is made. The communication bu�er should not be accessed after the call,and until the operation completes.The call is local, with similar semantics to the nonblocking communication opera-tions described in section 3.7. That is, a call to MPI START with a request created byMPI SEND INIT starts a communication in the same manner as a call to MPI ISEND; a callto MPI START with a request created by MPI BSEND INIT starts a communication in thesame manner as a call to MPI IBSEND; and so on.
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56 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI STARTALL(count, array of requests)IN count list length (integer)INOUT array of requests array of requests (array of handle)int MPI Startall(int count, MPI Request *array of requests)MPI STARTALL(COUNT, ARRAY OF REQUESTS, IERROR)INTEGER COUNT, ARRAY OF REQUESTS(*), IERRORStart all communications associated with requests in array of requests. A call toMPI STARTALL(count, array of requests) has the same e�ect as calls to MPI START (&ar-ray of requests[i]), executed for i=0 ,..., count-1, in some arbitrary order.A communication started with a call to MPI START or MPI STARTALL is completedby a call toMPI WAIT,MPI TEST, or one of the derived functions described in section 3.7.5.The request becomes inactive after successful completion of such call. The request is notdeallocated and it can be activated anew by an MPI START or MPI STARTALL call.A persistent request is deallocated by a call to MPI REQUEST FREE (Section 3.7.3).The call to MPI REQUEST FREE can occur at any point in the program after the per-sistent request was created. However, the request will be deallocated only after it becomesinactive. Active receive requests should not be freed. Otherwise, it will not be possibleto check that the receive has completed. It is preferable, in general, to free requests whenthey are inactive. If this rule is followed, then the functions described in this section willbe invoked in a sequence of the form,Create (Start Complete)� Free ; where � indicates zero or more repetitions. If thesame communication object is used in several concurrent threads, it is the user's responsi-bility to coordinate calls so that the correct sequence is obeyed.A send operation initiated withMPI START can be matched with any receive operationand, likewise, a receive operation initiated with MPI START can receive messages generatedby any send operation.3.10 Send-receiveThe send-receive operations combine in one call the sending of a message to one desti-nation and the receiving of another message, from another process. The two (source anddestination) are possibly the same. A send-receive operation is very useful for executinga shift operation across a chain of processes. If blocking sends and receives are used forsuch a shift, then one needs to order the sends and receives correctly (for example, evenprocesses send, then receive, odd processes receive �rst, then send) so as to prevent cyclicdependencies that may lead to deadlock. When a send-receive operation is used, the com-munication subsystem takes care of these issues. The send-receive operation can be usedin conjunction with the functions described in Chapter 6 in order to perform shifts on var-ious logical topologies. Also, a send-receive operation is useful for implementing remoteprocedure calls.A message sent by a send-receive operation can be received by a regular receive oper-ation or probed by a probe operation; a send-receive operation can receive a message sent
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3.10. SEND-RECEIVE 57by a regular send operation.MPI SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,source, recvtag, comm, status)IN sendbuf initial address of send bu�er (choice)IN sendcount number of elements in send bu�er (integer)IN sendtype type of elements in send bu�er (handle)IN dest rank of destination (integer)IN sendtag send tag (integer)OUT recvbuf initial address of receive bu�er (choice)IN recvcount number of elements in receive bu�er (integer)IN recvtype type of elements in receive bu�er (handle)IN source rank of source (integer)IN recvtag receive tag (integer)IN comm communicator (handle)OUT status status object (Status)int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,int dest, int sendtag, void *recvbuf, int recvcount,MPI Datatype recvtype, int source, MPI Datatype recvtag,MPI Comm comm, MPI Status *status)MPI SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,SOURCE, RECVTAG, COMM, STATUS(MPI STATUS SIZE), IERRORExecute a blocking send and receive operation. Both send and receive use the samecommunicator, but possibly di�erent tags. The send bu�er and receive bu�ers must bedisjoint, and may have di�erent lengths and datatypes.
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58 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI SENDRECV REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, sta-tus)INOUT buf initial address of send and receive bu�er (choice)IN count number of elements in send and receive bu�er (integer)IN datatype type of elements in send and receive bu�er (handle)IN dest rank of destination (integer)IN sendtag send message tag (integer)IN source rank of source (integer)IN recvtag receive message tag (integer)IN comm communicator (handle)OUT status status object (Status)int MPI Sendrecv replace(void* buf, int count, MPI Datatype datatype,int dest, int sendtag, int source, int recvtag, MPI Comm comm,MPI Status *status)MPI SENDRECV REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,COMM, STATUS, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,STATUS(MPI STATUS SIZE), IERRORExecute a blocking send and receive. The same bu�er is used both for the send andfor the receive, so that the message sent is replaced by the message received.The semantics of a send-receive operation is what would be obtained if the caller forkedtwo concurrent threads, one to execute the send, and one to execute the receive, followedby a join of these two threads.Advice to implementors. Additional intermediate bu�ering is needed for the \replace"variant. (End of advice to implementors.)3.11 Null processesIn many instances, it is convenient to specify a \dummy" source or destination for commu-nication. This simpli�es the code that is needed for dealing with boundaries, for example,in the case of a non-circular shift done with calls to send-receive.The special value MPI PROC NULL can be used instead of a rank wherever a source or adestination argument is required in a call. A communication with process MPI PROC NULLhas no e�ect. A send to MPI PROC NULL succeeds and returns as soon as possible. A receivefrom MPI PROC NULL succeeds and returns as soon as possible with no modi�cations to thereceive bu�er. When a receive with source = MPI PROC NULL is executed then the statusobject returns source = MPI PROC NULL, tag = MPI ANY TAG and count = 0.
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3.12. DERIVED DATATYPES 593.12 Derived datatypesUp to here, all point to point communication have involved only contiguous bu�ers contain-ing a sequence of elements of the same type. This is too constraining on two accounts. Oneoften wants to pass messages that contain values with di�erent datatypes (e.g., an integercount, followed by a sequence of real numbers); and one often wants to send noncontiguousdata (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into acontiguous bu�er at the sender site and unpack it back at the receiver site. This has thedisadvantage of requiring additional memory-to-memory copy operations at both sites, evenwhen the communication subsystem has scatter-gather capabilities. Instead, MPI providesmechanisms to specify more general, mixed, and noncontiguous communication bu�ers. Itis up to the implementation to decide whether data should be �rst packed in a contiguousbu�er before being transmitted, or whether it can be collected directly from where it resides.The general mechanisms provided here allow one to transfer directly, without copying,objects of various shape and size. It is not assumed that the MPI library is cognizant ofthe objects declared in the host language. Thus, if one wants to transfer a structure, or anarray section, it will be necessary to provide in MPI a de�nition of a communication bu�erthat mimics the de�nition of the structure or array section in question. These facilities canbe used by library designers to de�ne communication functions that can transfer objectsde�ned in the host language | by decoding their de�nitions as available in a symbol tableor a dope vector. Such higher-level communication functions are not part of MPI.More general communication bu�ers are speci�ed by replacing the basic datatypes thathave been used so far with derived datatypes that are constructed from basic datatypes usingthe constructors described in this section. These methods of constructing derived datatypescan be applied recursively.A general datatype is an opaque object that speci�es two things:� A sequence of basic datatypes� A sequence of integer (byte) displacementsThe displacements are not required to be positive, distinct, or in increasing order.Therefore, the order of items need not coincide with their order in store, and an item mayappear more than once. We call such a pair of sequences (or sequence of pairs) a typemap. The sequence of basic datatypes (displacements ignored) is the type signature ofthe datatype.LetTypemap = f(type0; disp0); :::; (typen�1; dispn�1)g;be such a type map, where typei are basic types, and dispi are displacements. LetTypesig = ftype0; :::; typen�1gbe the associated type signature. This type map, together with a base address buf, speci�esa communication bu�er: the communication bu�er that consists of n entries, where thei-th entry is at address buf + dispi and has type typei. A message assembled from such acommunication bu�er will consist of n values, of the types de�ned by Typesig.We can use a handle to a general datatype as an argument in a send or receive operation,instead of a basic datatype argument. The operationMPI SEND(buf, 1, datatype,...) will usethe send bu�er de�ned by the base address buf and the general datatype associated with
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60 CHAPTER 3. POINT-TO-POINT COMMUNICATIONdatatype; it will generate a message with the type signature determined by the datatypeargument. MPI RECV(buf, 1, datatype,...) will use the receive bu�er de�ned by the baseaddress buf and the general datatype associated with datatype.General datatypes can be used in all send and receive operations. We discuss, in Sec.3.12.5, the case where the second argument count has value > 1.The basic datatypes presented in section 3.2.2 are particular cases of a general datatype,and are prede�ned. Thus, MPI INT is a prede�ned handle to a datatype with type mapf(int; 0)g, with one entry of type int and displacement zero. The other basic datatypes aresimilar.The extent of a datatype is de�ned to be the span from the �rst byte to the last byteoccupied by entries in this datatype, rounded up to satisfy alignment requirements. Thatis, if Typemap = f(type0; disp0); :::; (typen�1; dispn�1)g;then lb(Typemap) = minj dispj ;ub(Typemap) = maxj (dispj + sizeof(typej)); andextent(Typemap) = ub(Typemap)� lb(Typemap) + �: (3.1)If typei requires alignment to a byte address that is is a multiple of ki, then � is the leastnonnegative increment needed to round extent(Typemap) to the next multiple of maxi ki.Example 3.18 Assume that Type = f(double; 0); (char; 8)g (a double at displacement zero,followed by a char at displacement eight). Assume, furthermore, that doubles have to bestrictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediatelyfollowed by a double will also have an extent of 16.Rationale. The de�nition of extent is motivated by the assumption that the amountof padding added at the end of each structure in an array of structures is the leastneeded to ful�ll alignment constraints. More explicit control of the extent is providedin section 3.12.3. Such explicit control is needed in cases where the assumption doesnot hold, for example, where union types are used. (End of rationale.)3.12.1 Datatype constructorsContiguous The simplest datatype constructor is MPI TYPE CONTIGUOUS which allowsreplication of a datatype into contiguous locations.MPI TYPE CONTIGUOUS(count, oldtype, newtype)IN count replication count (nonnegative integer)IN oldtype old datatype (handle)OUT newtype new datatype (handle)int MPI Type contiguous(int count, MPI Datatype oldtype,MPI Datatype *newtype)
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3.12. DERIVED DATATYPES 61MPI TYPE CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, OLDTYPE, NEWTYPE, IERRORnewtype is the datatype obtained by concatenating count copies of oldtype. Concate-nation is de�ned using extent as the size of the concatenated copies.Example 3.19 Let oldtype have type map f(double; 0); (char; 8)g; with extent 16, and letcount = 3. The type map of the datatype returned by newtype isf(double; 0); (char; 8); (double; 16); (char; 24); (double; 32); (char; 40)g;i.e., alternating double and char elements, with displacements 0; 8; 16; 24; 32; 40.In general, assume that the type map of oldtype isf(type0; disp0); :::; (typen�1; dispn�1)g;with extent ex. Then newtype has a type map with count � n entries de�ned by:f(type0; disp0); :::; (typen�1; dispn�1); (type0; disp0 + ex); :::; (typen�1; dispn�1 + ex);:::; (type0; disp0 + ex � (count � 1)); :::; (typen�1; dispn�1 + ex � (count � 1))g:Vector The function MPI TYPE VECTOR is a more general constructor that allows repli-cation of a datatype into locations that consist of equally spaced blocks. Each block isobtained by concatenating the same number of copies of the old datatype. The spacingbetween blocks is a multiple of the extent of the old datatype.MPI TYPE VECTOR( count, blocklength, stride, oldtype, newtype)IN count number of blocks (nonnegative integer)IN blocklength number of elements in each block (nonnegative inte-ger)IN stride number of elements between start of each block (inte-ger)IN oldtype old datatype (handle)OUT newtype new datatype (handle)int MPI Type vector(int count, int blocklength, int stride,MPI Datatype oldtype, MPI Datatype *newtype)MPI TYPE VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERRORExample 3.20 Assume, again, that oldtype has type map f(double; 0); (char; 8)g; with ex-tent 16. A call to MPI TYPE VECTOR( 2, 3, 4, oldtype, newtype) will create the datatypewith type map,
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62 CHAPTER 3. POINT-TO-POINT COMMUNICATIONf(double; 0); (char; 8); (double; 16); (char; 24); (double; 32); (char; 40);(double; 64); (char; 72); (double; 80); (char; 88); (double; 96); (char; 104)g:That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 � 16bytes) between the blocks.Example 3.21 A call to MPI TYPE VECTOR(3, 1, -2, oldtype, newtype) will create thedatatype,f(double; 0); (char; 8); (double;�32); (char;�24); (double;�64); (char;�56)g:In general, assume that oldtype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;with extent ex. Let bl be the blocklength. The newly created datatype has a type map withcount � bl � n entries:f(type0; disp0); :::; (typen�1; dispn�1);(type0; disp0 + ex); :::; (typen�1; dispn�1 + ex); :::;(type0; disp0 + (bl� 1) � ex); :::; (typen�1; dispn�1 + (bl� 1) � ex);(type0; disp0 + stride � ex); :::; (typen�1; dispn�1 + stride � ex); :::;(type0; disp0 + (stride + bl� 1) � ex); :::; (typen�1; dispn�1 + (stride + bl � 1) � ex); ::::;(type0; disp0 + stride � (count � 1) � ex); :::;(typen�1; dispn�1 + stride � (count � 1) � ex); :::;(type0; disp0 + (stride � (count � 1) + bl � 1) � ex); :::;(typen�1; dispn�1 + (stride � (count � 1) + bl� 1) � ex)g:A call to MPI TYPE CONTIGUOUS(count, oldtype, newtype) is equivalent to a call toMPI TYPE VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI TYPE VECTOR(1,count, n, oldtype, newtype), n arbitrary.
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3.12. DERIVED DATATYPES 63Hvector The function MPI TYPE HVECTOR is identical to MPI TYPE VECTOR, exceptthat stride is given in bytes, rather than in elements. The use for both types of vectorconstructors is illustrated in Sec. 3.12.7. (H stands for \heterogeneous").MPI TYPE HVECTOR( count, blocklength, stride, oldtype, newtype)IN count number of blocks (nonnegative integer)IN blocklength number of elements in each block (nonnegative inte-ger)IN stride number of bytes between start of each block (integer)IN oldtype old datatype (handle)OUT newtype new datatype (handle)int MPI Type hvector(int count, int blocklength, MPI Aint stride,MPI Datatype oldtype, MPI Datatype *newtype)MPI TYPE HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERRORAssume that oldtype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;with extent ex. Let bl be the blocklength. The newly created datatype has a type map withcount � bl � n entries:f(type0; disp0); :::; (typen�1; dispn�1);(type0; disp0 + ex); :::; (typen�1; dispn�1 + ex); :::;(type0; disp0 + (bl� 1) � ex); :::; (typen�1; dispn�1 + (bl� 1) � ex);(type0; disp0 + stride); :::; (typen�1; dispn�1 + stride); :::;(type0; disp0 + stride + (bl� 1) � ex); :::;(typen�1; dispn�1 + stride + (bl� 1) � ex); ::::;(type0; disp0 + stride � (count � 1)); :::; (typen�1; dispn�1 + stride � (count � 1)); :::;(type0; disp0 + stride � (count � 1) + (bl� 1) � ex); :::;(typen�1; dispn�1 + stride � (count � 1) + (bl� 1) � ex)g:
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64 CHAPTER 3. POINT-TO-POINT COMMUNICATIONIndexed The function MPI TYPE INDEXED allows replication of an old datatype into asequence of blocks (each block is a concatenation of the old datatype), where each blockcan contain a di�erent number of copies and have a di�erent displacement. All blockdisplacements are multiples of the old type extent.MPI TYPE INDEXED( count, array of blocklengths, array of displacements, oldtype, newtype)IN count number of blocks { also number of entries inarray of displacements and array of blocklengths (non-negative integer)IN array of blocklengths number of elements per block (array of nonnegativeintegers)IN array of displacements displacement for each block, in multiples of oldtypeextent (array of integer)IN oldtype old datatype (handle)OUT newtype new datatype (handle)int MPI Type indexed(int count, int *array of blocklengths,int *array of displacements, MPI Datatype oldtype,MPI Datatype *newtype)MPI TYPE INDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),OLDTYPE, NEWTYPE, IERRORExample 3.22 Let oldtype have type map f(double; 0); (char; 8)g; with extent 16. Let B =(3, 1) and let D = (4, 0). A call to MPI TYPE INDEXED(2, B, D, oldtype, newtype) returnsa datatype with type map,f(double; 64); (char; 72); (double; 80); (char; 88); (double; 96); (char; 104);(double; 0); (char; 8)g:That is, three copies of the old type starting at displacement 64, and one copy starting atdisplacement 0.In general, assume that oldtype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;with extent ex. Let B be the array of blocklength argument and D be thearray of displacements argument. The newly created datatype has n �Pcount�1i=0 B[i] entries:f(type0; disp0 + D[0] � ex); :::; (typen�1; dispn�1 + D[0] � ex); :::;
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3.12. DERIVED DATATYPES 65(type0; disp0 + (D[0] + B[0]� 1) � ex); :::; (typen�1; dispn�1 + (D[0] + B[0]� 1) � ex); :::;(type0; disp0 + D[count � 1] � ex); :::; (typen�1; dispn�1 + D[count � 1] � ex); :::;(type0; disp0 + (D[count � 1] + B[count � 1]� 1) � ex); :::;(typen�1; dispn�1 + (D[count � 1] + B[count � 1]� 1) � ex)g:A call toMPI TYPE VECTOR(count, blocklength, stride, oldtype, newtype) is equivalentto a call to MPI TYPE INDEXED(count, B, D, oldtype, newtype) whereD[j] = j � stride; j = 0; :::; count� 1;and B[j] = blocklength; j = 0; :::; count� 1:Hindexed The functionMPI TYPE HINDEXED is identical toMPI TYPE INDEXED, exceptthat block displacements in array of displacements are speci�ed in bytes, rather than inmultiples of the oldtype extent.MPI TYPE HINDEXED( count, array of blocklengths, array of displacements, oldtype, new-type)IN count number of blocks { also number of entries inarray of displacements and array of blocklengths (inte-ger)IN array of blocklengths number of elements in each block (array of nonnega-tive integers)IN array of displacements byte displacement of each block (array of integer)IN oldtype old datatype (handle)OUT newtype new datatype (handle)int MPI Type hindexed(int count, int *array of blocklengths,MPI Aint *array of displacements, MPI Datatype oldtype,MPI Datatype *newtype)MPI TYPE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),OLDTYPE, NEWTYPE, IERRORAssume that oldtype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



66 CHAPTER 3. POINT-TO-POINT COMMUNICATIONwith extent ex. Let B be the array of blocklength argument and D be thearray of displacements argument. The newly created datatype has a type map with n �Pcount�1i=0 B[i] entries:f(type0; disp0 + D[0]); :::; (typen�1; dispn�1 + D[0]); :::;(type0; disp0 + D[0] + (B[0]� 1) � ex); :::;(typen�1; dispn�1 + D[0] + (B[0]� 1) � ex); :::;(type0; disp0 + D[count � 1]); :::; (typen�1; dispn�1 + D[count � 1]); :::;(type0; disp0 + D[count � 1] + (B[count � 1]� 1) � ex); :::;(typen�1; dispn�1 + D[count � 1] + (B[count � 1]� 1) � ex)g:Struct MPI TYPE STRUCT is the most general type constructor. It further generalizesthe previous one in that it allows each block to consist of replications of di�erent datatypes.MPI TYPE STRUCT(count, array of blocklengths, array of displacements, array of types, new-type)IN count number of blocks (integer) { also number of entriesin arrays array of types, array of displacements and ar-ray of blocklengthsIN array of blocklength number of elements in each block (array of integer)IN array of displacements byte displacement of each block (array of integer)IN array of types type of elements in each block (array of handles todatatype objects)OUT newtype new datatype (handle)int MPI Type struct(int count, int *array of blocklengths,MPI Aint *array of displacements, MPI Datatype *array of types,MPI Datatype *newtype)MPI TYPE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,ARRAY OF TYPES, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),ARRAY OF TYPES(*), NEWTYPE, IERRORExample 3.23 Let type1 have type map,f(double; 0); (char; 8)g;with extent 16. Let B = (2, 1, 3), D = (0, 16, 26), and T = (MPI FLOAT, type1, MPI CHAR).Then a call toMPI TYPE STRUCT(3, B, D, T, newtype) returns a datatype with type map,

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



3.12. DERIVED DATATYPES 67f(
oat; 0); (
oat; 4); (double; 16); (char; 24); (char; 26); (char; 27); (char; 28)g:That is, two copies of MPI FLOAT starting at 0, followed by one copy of type1 starting at16, followed by three copies of MPI CHAR, starting at 26. (We assume that a 
oat occupiesfour bytes.)In general, let T be the array of types argument, where T[i] is a handle to,typemapi = f(typei0; dispi0); :::; (typeini�1; dispini�1)g;with extent exi. Let B be the array of blocklength argument and D be the array of displace-ments argument. Let c be the count argument. Then the newly created datatype has a typemap with Pc�1i=0 B[i] � ni entries:f(type00; disp00 + D[0]); :::; (type0n0; disp0n0 + D[0]); :::;(type00; disp00 + D[0] + (B[0]� 1) � ex0); :::; (type0n0; disp0n0 + D[0] + (B[0]� 1) � ex0); :::;(typec�10 ; dispc�10 + D[c� 1]); :::; (typec�1nc�1�1; dispc�1nc�1�1 + D[c� 1]); :::;(typec�10 ; dispc�10 + D[c� 1] + (B[c� 1]� 1) � exc�1); :::;(typec�1nc�1�1; dispc�1nc�1�1 + D[c� 1] + (B[c� 1]� 1) � exc�1)g:A call to MPI TYPE HINDEXED( count, B, D, oldtype, newtype) is equivalent to a calltoMPI TYPE STRUCT( count, B, D, T, newtype), where each entry of T is equal to oldtype.3.12.2 Address and extent functionsThe displacements in a general datatype are relative to some initial bu�er address. Abso-lute addresses can be substituted for these displacements: we treat them as displacementsrelative to \address zero," the start of the address space. This initial address zero is indi-cated by the constant MPI BOTTOM. Thus, a datatype can specify the absolute address ofthe entries in the communication bu�er, in which case the buf argument is passed the valueMPI BOTTOM.The address of a location in memory can be found by invoking the functionMPI ADDRESS.MPI ADDRESS(location, address)IN location location in caller memory (choice)OUT address address of location (integer)int MPI Address(void* location, MPI Aint *address)MPI ADDRESS(LOCATION, ADDRESS, IERROR)<type> LOCATION(*)INTEGER ADDRESS, IERRORReturns the (byte) address of location.
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68 CHAPTER 3. POINT-TO-POINT COMMUNICATIONExample 3.24 Using MPI ADDRESS for an array.REAL A(100,100)INTEGER I1, I2, DIFFCALL MPI_ADDRESS(A(1,1), I1, IERROR)CALL MPI_ADDRESS(A(10,10), I2, IERROR)DIFF = I2 - I1! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are! implementation dependent.Advice to users. C users may be tempted to avoid the usage of MPI ADDRESSand rely on the availability of the address operator &. Note, however, that & cast-expression is a pointer, not an address. ANSI C does not require that the value of apointer (or the pointer cast to int) be the absolute address of the object pointed at |although this is commonly the case. Furthermore, referencing may not have a uniquede�nition on machines with a segmented address space. The use of MPI ADDRESSto \reference" C variables guarantees portability to such machines as well. (End ofadvice to users.)The following auxiliary functions provide useful information on derived datatypes.MPI TYPE EXTENT(datatype, extent)IN datatype datatype (handle)OUT extent datatype extent (integer)int MPI Type extent(MPI Datatype datatype, int *extent)MPI TYPE EXTENT(DATATYPE, EXTENT, IERROR)INTEGER DATATYPE, EXTENT, IERRORReturns the extent of a datatype, where extent is as de�ned in Eq. 3.1 on page 60.MPI TYPE SIZE(datatype, size)IN datatype datatype (handle)OUT size datatype size (integer)int MPI Type size(MPI Datatype datatype, int *size)MPI TYPE SIZE(DATATYPE, SIZE, IERROR)INTEGER DATATYPE, SIZE, IERRORMPI TYPE SIZE returns the total size, in bytes, of the entries in the type signatureassociated with datatype; i.e., the total size of the data in a message that would be createdwith this datatype. Entries that occur multiple times in the datatype are counted withtheir multiplicity.
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3.12. DERIVED DATATYPES 69MPI TYPE COUNT(datatype, count)IN datatype datatype (handle)OUT count datatype count (integer)int MPI Type count(MPI Datatype datatype, int *count)MPI TYPE COUNT(DATATYPE, COUNT, IERROR)INTEGER DATATYPE, COUNT, IERRORReturns the number of \top-level" entries in the datatype.3.12.3 Lower-bound and upper-bound markersIt is often convenient to de�ne explicitly the lower bound and upper bound of a type map,and override the de�nition given by Equation 3.1 on page 60. This allows one to de�ne adatatype that has \holes" at its beginning or its end, or a datatype with entries that extendabove the upper bound or below the lower bound. Examples of such usage are providedin Sec. 3.12.7. To achieve this, we add two additional \pseudo-datatypes," MPI LB andMPI UB, that can be used, respectively, to mark the lower bound or the upper bound of adatatype. These pseudo-datatypes occupy no space (extent(MPI LB) = extent(MPI UB) =0). They do not a�ect the size or count of a datatype, and do not a�ect the the content of amessage created with this datatype. However, they do a�ect the de�nition of the extent ofa datatype and, therefore, a�ect the outcome of a replication of this datatype by a datatypeconstructor.Example 3.25 Let D = (-3, 0, 6); T = (MPI LB, MPI INT, MPI UB), and B = (1, 1, 1).Then a call to MPI TYPE STRUCT(3, B, D, T, type1) creates a new datatype that has anextent of 9 (from -3 to 5, 5 included), and contains an integer at displacement 0. This isthe datatype de�ned by the sequence f(lb, -3), (int, 0), (ub, 6)g . If this type is replicatedtwice by a call to MPI TYPE CONTIGUOUS(2, type1, type2) then the newly created typecan be described by the sequence f(lb, -3), (int, 0), (int,9), (ub, 15)g . (Entries of type lb orub can be deleted if they are not at the end-points of the datatype.)In general, ifTypemap = f(type0; disp0); :::; (typen�1; dispn�1)g;then the lower bound of Typemap is de�ned to belb(Typemap) = ( minj dispj if no entry has basic type lbminjfdispj such that typej = lbg otherwiseSimilarly, the upper bound of Typemap is de�ned to beub(Typemap) = ( maxj dispj + sizeof(typej) if no entry has basic type ubmaxjfdispj such that typej = ubg otherwiseThenextent(Typemap) = ub(Typemap)� lb(Typemap) + �
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70 CHAPTER 3. POINT-TO-POINT COMMUNICATIONIf typei requires alignment to a byte address that is a multiple of ki, then � is the leastnonnegative increment needed to round extent(Typemap) to the next multiple of maxi ki.The formal de�nitions given for the various datatype constructors apply now, with theamended de�nition of extent.The two functions below can be used for �nding the lower bound and the upper boundof a datatype.MPI TYPE LB( datatype, displacement)IN datatype datatype (handle)OUT displacement displacement of lower bound from origin, in bytes (in-teger)int MPI Type lb(MPI Datatype datatype, int* displacement)MPI TYPE LB( DATATYPE, DISPLACEMENT, IERROR)INTEGER DATATYPE, DISPLACEMENT, IERRORMPI TYPE UB( datatype, displacement)IN datatype datatype (handle)OUT displacement displacement of upper bound from origin, in bytes (in-teger)int MPI Type ub(MPI Datatype datatype, int* displacement)MPI TYPE UB( DATATYPE, DISPLACEMENT, IERROR)INTEGER DATATYPE, DISPLACEMENT, IERRORRationale. Note that the rules given in Sec. 3.12.6 imply that it is erroneous to callMPI TYPE EXTENT, MPI TYPE LB, and MPI TYPE UB with a datatype argumentthat contains absolute addresses, unless all these addreses are within the same sequen-tial storage. For this reason, the displacement for the C binding in MPI TYPE UB isan int and not of type MPI Aint. (End of rationale.)3.12.4 Commit and freeA datatype object has to be committed before it can be used in a communication. Acommitted datatype can still be used as a argument in datatype constructors. There is noneed to commit basic datatypes. They are \pre-committed."MPI TYPE COMMIT(datatype)INOUT datatype datatype that is committed (handle)int MPI Type commit(MPI Datatype *datatype)
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3.12. DERIVED DATATYPES 71MPI TYPE COMMIT(DATATYPE, IERROR)INTEGER DATATYPE, IERRORThe commit operation commits the datatype, that is, the formal description of a com-munication bu�er, not the content of that bu�er. Thus, after a datatype has been commit-ted, it can be repeatedly reused to communicate the changing content of a bu�er or, indeed,the content of di�erent bu�ers, with di�erent starting addresses.Advice to implementors. The system may \compile" at commit time an internalrepresentation for the datatype that facilitates communication, e.g. change from acompacted representation to a 
at representation of the datatype, and select the mostconvenient transfer mechanism. (End of advice to implementors.)MPI TYPE FREE(datatype)INOUT datatype datatype that is freed (handle)int MPI Type free(MPI Datatype *datatype)MPI TYPE FREE(DATATYPE, IERROR)INTEGER DATATYPE, IERRORMarks the datatype object associated with datatype for deallocation and sets datatypeto MPI DATATYPE NULL. Any communication that is currently using this datatype will com-plete normally. Derived datatypes that were de�ned from the freed datatype are not af-fected.Example 3.26 The following code fragment gives examples of using MPI TYPE COMMIT.INTEGER type1, type2CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)! new type object createdCALL MPI_TYPE_COMMIT(type1, ierr)! now type1 can be used for communicationtype2 = type1 ! type2 can be used for communication! (it is a handle to same object as type1)CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)! new uncommitted type object createdCALL MPI_TYPE_COMMIT(type1, ierr)! now type1 can be used anew for communicationFreeing a datatype does not a�ect any other datatype that was built from the freeddatatype. The system behaves as if input datatype arguments to derived datatype con-structors are passed by value.Advice to implementors. The implementation may keep a reference count of activecommunications that use the datatype, in order to decide when to free it. Also, onemay implement constructors of derived datatypes so that they keep pointers to their
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72 CHAPTER 3. POINT-TO-POINT COMMUNICATIONdatatype arguments, rather then copying them. In this case, one needs to keep trackof active datatype de�nition references in order to know when a datatype object canbe freed. (End of advice to implementors.)3.12.5 Use of general datatypes in communicationHandles to derived datatypes can be passed to a communication call wherever a datatypeargument is required. A call of the formMPI SEND(buf, count, datatype , ...), where count >1, is interpreted as if the call was passed a new datatype which is the concatenation of countcopies of datatype. Thus, MPI SEND(buf, count, datatype, dest, tag, comm) is equivalent to,MPI_TYPE_CONTIGUOUS(count, datatype, newtype)MPI_TYPE_COMMIT(newtype)MPI_SEND(buf, 1, newtype, dest, tag, comm).Similar statements apply to all other communication functions that have a count anddatatype argument.Suppose that a send operation MPI SEND(buf, count, datatype, dest, tag, comm) isexecuted, where datatype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;and extent extent. (Empty entries of \pseudo-type" MPI UB and MPI LB are not listedin the type map, but they a�ect the value of extent.) The send operation sends n � countentries, where entry i � n + j is at location addri;j = buf + extent � i+ dispj and has typetypej , for i = 0; :::; count� 1 and j = 0; :::; n� 1. These entries need not be contiguous, nordistinct; their order can be arbitrary.The variable stored at address addri;j in the calling program should be of a type thatmatches typej , where type matching is de�ned as in section 3.3.1. The message sent containsn � count entries, where entry i � n+ j has type typej .Similarly, suppose that a receive operation MPI RECV(buf, count, datatype, source, tag,comm, status) is executed, where datatype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g;with extent extent. (Again, empty entries of \pseudo-type" MPI UB and MPI LB are notlisted in the type map, but they a�ect the value of extent.) This receive operation receivesn � count entries, where entry i � n + j is at location buf + extent � i + dispj and has typetypej . If the incoming message consists of k elements, then we must have k � n � count; thei � n + j-th element of the message should have a type that matches typej .Type matching is de�ned according to the type signature of the corresponding datatypes,that is, the sequence of basic type components. Type matching does not depend on someaspects of the datatype de�nition, such as the displacements (layout in memory) or theintermediate types used.Example 3.27 This example shows that type matching is de�ned in terms of the basictypes that a derived type consists of....CALL MPI_TYPE_CONTIGUOUS( 2, MPI_REAL, type2, ...)CALL MPI_TYPE_CONTIGUOUS( 4, MPI_REAL, type4, ...)
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3.12. DERIVED DATATYPES 73CALL MPI_TYPE_CONTIGUOUS( 2, type2, type22, ...)...CALL MPI_SEND( a, 4, MPI_REAL, ...)CALL MPI_SEND( a, 2, type2, ...)CALL MPI_SEND( a, 1, type22, ...)CALL MPI_SEND( a, 1, type4, ...)...CALL MPI_RECV( a, 4, MPI_REAL, ...)CALL MPI_RECV( a, 2, type2, ...)CALL MPI_RECV( a, 1, type22, ...)CALL MPI_RECV( a, 1, type4, ...)Each of the sends matches any of the receives.A datatype may specify overlapping entries. If such a datatype is used in a receiveoperation, that is, if some part of the receive bu�er is written more than once by the receiveoperation, then the call is erroneous.Suppose that MPI RECV(buf, count, datatype, dest, tag, comm, status) is executed,where datatype has type map,f(type0; disp0); :::; (typen�1; dispn�1)g:The received message need not �ll all the receive bu�er, nor does it need to �ll a number oflocations which is a multiple of n. Any number, k, of basic elements can be received, where0 � k � count �n. The number of basic elements received can be retrieved from status usingthe query function MPI GET ELEMENTS.MPI GET ELEMENTS( status, datatype, count)IN status return status of receive operation (Status)IN datatype datatype used by receive operation (handle)OUT count number of received basic elements (integer)int MPI Get elements(MPI Status status, MPI Datatype datatype, int *count)MPI GET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERRORThe previously de�ned function, MPI GET COUNT (Sec. 3.2.5), has a di�erent be-havior. It returns the number of \top-level elements" received. In the previous example,MPI GET COUNTmay return any integer value k, where 0 � k � count. IfMPI GET COUNTreturns k, then the number of basic elements received (and the value returned byMPI GET ELEMENTS) is n � k. If the number of basic elements received is not a multi-ple of n, that is, if the receive operation has not received an integral number of datatype\copies," then MPI GET COUNT returns the value MPI UNDEFINED.Example 3.28 Usage of MPI GET COUNT and MPI GET ELEMENT....CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
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74 CHAPTER 3. POINT-TO-POINT COMMUNICATIONCALL MPI_TYPE_COMMIT(Type2, ierr)...CALL MPI_COMM_RANK(comm, rank, ierr)IF(rank.EQ.0) THENCALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)ELSE CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=1CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=MPI_UNDEFINEDCALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3END IFThe function MPI GET ELEMENTS can also be used after a probe to �nd the numberof elements in the probed message. Note that the two functions MPI GET COUNT andMPI GET ELEMENTS return the same values when they are used with basic datatypes.Rationale. The extension given to the de�nition of MPI GET COUNT seems natural:one would expect this function to return the value of the count argument, whenthe receive bu�er is �lled. Sometimes datatype represents a basic unit of data onewants to transfer, for example, a record in an array of records (structures). Oneshould be able to �nd out how many components were received without bothering todivide by the number of elements in each component. However, on other occasions,datatype is used to de�ne a complex layout of data in the receiver memory, and doesnot represent a basic unit of data for transfers. In such cases, one needs to use thefunction MPI GET ELEMENTS. (End of rationale.)Advice to implementors. The de�nition implies that a receive cannot change thevalue of storage outside the entries de�ned to compose the communication bu�er. Inparticular, the de�nition implies that padding space in a structure should not be mod-i�ed when such a structure is copied from one process to another. This would preventthe obvious optimization of copying the structure, together with the padding, as onecontiguous block. The implementation is free to do this optimization when it does notimpact the outcome of the computation. The user can \force" this optimization byexplicitly including padding as part of the message. (End of advice to implementors.)3.12.6 Correct use of addressesSuccessively declared variables in C or Fortran are not necessarily stored at contiguouslocations. Thus, care must be exercised that displacements do not cross from one variableto another. Also, in machines with a segmented address space, addresses are not uniqueand address arithmetic has some peculiar properties. Thus, the use of addresses, that is,displacements relative to the start address MPI BOTTOM, has to be restricted.Variables belong to the same sequential storage if they belong to the same array, tothe same COMMON block in Fortran, or to the same structure in C. Valid addresses arede�ned recursively as follows:
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3.12. DERIVED DATATYPES 751. The function MPI ADDRESS returns a valid address, when passed as argument avariable of the calling program.2. The buf argument of a communication function evaluates to a valid address, whenpassed as argument a variable of the calling program.3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v andv+i are in the same sequential storage.4. If v is a valid address then MPI BOTTOM + v is a valid address.A correct program uses only valid addresses to identify the locations of entries incommunication bu�ers. Furthermore, if u and v are two valid addresses, then the (integer)di�erence u - v can be computed only if both u and v are in the same sequential storage.No other arithmetic operations can be meaningfully executed on addresses.The rules above impose no constraints on the use of derived datatypes, as long asthey are used to de�ne a communication bu�er that is wholly contained within the samesequential storage. However, the construction of a communication bu�er that containsvariables that are not within the same sequential storage must obey certain restrictions.Basically, a communication bu�er with variables that are not within the same sequentialstorage can be used only by specifying in the communication call buf = MPI BOTTOM,count = 1, and using a datatype argument where all displacements are valid (absolute)addresses.Advice to users. It is not expected that MPI implementations will be able to detecterroneous, \out of bound" displacements | unless those over
ow the user addressspace | since the MPI call may not know the extent of the arrays and records in thehost program. (End of advice to users.)Advice to implementors. There is no need to distinguish (absolute) addresses and(relative) displacements on a machine with contiguous address space: MPI BOTTOM iszero, and both addresses and displacements are integers. On machines where the dis-tinction is required, addresses are recognized as expressions that involve MPI BOTTOM.(End of advice to implementors.)3.12.7 ExamplesThe following examples illustrate the use of derived datatypes.Example 3.29 Send and receive a section of a 3D array.REAL a(100,100,100), e(9,9,9)INTEGER oneslice, twoslice, threeslice, sizeofreal, myrank, ierrINTEGER status(MPI_STATUS_SIZE)C extract the section a(1:17:2, 3:11, 2:10)C and store it in e(:,:,:).CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank)
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76 CHAPTER 3. POINT-TO-POINT COMMUNICATIONCALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)C create datatype for a 1D sectionCALL MPI_TYPE_VECTOR( 9, 1, 2, MPI_REAL, oneslice, ierr)C create datatype for a 2D sectionCALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice, twoslice, ierr)C create datatype for the entire sectionCALL MPI_TYPE_HVECTOR( 9, 1, 100*100*sizeofreal, twoslice, 1,threeslice, ierr)CALL MPI_TYPE_COMMIT( threeslice, ierr)CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9*9*9,MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)Example 3.30 Copy the (strictly) lower triangular part of a matrix.REAL a(100,100), b(100,100)INTEGER disp(100), blocklen(100), ltype, myrank, ierrINTEGER status(MPI_STATUS_SIZE)C copy lower triangular part of array aC onto lower triangular part of array bCALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank)C compute start and size of each columnDO i=1, 100disp(i) = 100*(i-1) + iblock(i) = 100-iEND DOC create datatype for lower triangular partCALL MPI_TYPE_INDEXED( 100, block, disp, MPI_REAL, ltype, ierr)CALL MPI_TYPE_COMMIT(ltype, ierr)CALL MPI_SENDRECV( a, 1, ltype, myrank, 0, b, 1,ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)Example 3.31 Transpose a matrix.REAL a(100,100), b(100,100)INTEGER row, xpose, sizeofreal, myrank, ierrINTEGER status(MPI_STATUS_SIZE)C transpose matrix a onto bCALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank)
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3.12. DERIVED DATATYPES 77CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)C create datatype for one rowCALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)C create datatype for matrix in row-major orderCALL MPI_TYPE_HVECTOR( 100, 1, sizeofreal, row, xpose, ierr)CALL MPI_TYPE_COMMIT( xpose, ierr)C send matrix in row-major order and receive in column major orderCALL MPI_SENDRECV( a, 1, xpose, myrank, 0, b, 100*100,MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)Example 3.32 Another approach to the transpose problem:REAL a(100,100), b(100,100)INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofrealINTEGER myrank, ierrINTEGER status(MPI_STATUS_SIZE)CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank)C transpose matrix a onto bCALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)C create datatype for one rowCALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)C create datatype for one row, with the extent of one real numberdisp(1) = 0disp(2) = sizeofrealtype(1) = rowtype(2) = MPI_UBblocklen(1) = 1blocklen(2) = 1CALL MPI_TYPE_STRUCT( 2, blocklen, disp, type, row1, ierr)CALL MPI_TYPE_COMMIT( row1, ierr)C send 100 rows and receive in column major orderCALL MPI_SENDRECV( a, 100, row1, myrank, 0, b, 100*100,MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)Example 3.33 We manipulate an array of structures.struct Partstruct

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



78 CHAPTER 3. POINT-TO-POINT COMMUNICATION{int class; /* particle class */double d[6]; /* particle coordinates */char b[7]; /* some additional information */};struct Partstruct particle[1000];int i, dest, rank;MPI_Comm comm;/* build datatype describing structure */MPI_Datatype Particletype;MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};int blocklen[3] = {1, 6, 7};MPI_Aint disp[3];int base;/* compute displacements of structure components */MPI_Address( particle, disp);MPI_Address( particle[0].d, disp+1);MPI_Address( particle[0].b, disp+2);base = disp[0];for (i=0; i <3; i++) disp[i] -= base;MPI_Type_struct( 3, blocklen, disp, type, &Particletype);/* If compiler does padding in mysterious ways,the following may be safer */MPI_Datatype type1[4] = {MPI_INT, MPI_DOUBLE, MPI_CHAR, MPI_UB};int blocklen1[4] = {1, 6, 7, 1};MPI_Aint disp1[4];/* compute displacements of structure components */MPI_Address( particle, disp1);MPI_Address( particle[0].d, disp1+1);MPI_Address( particle[0].b, disp1+2);MPI_Address( particle+1, disp1+3);base = disp1[0];for (i=0; i <4; i++) disp1[i] -= base;/* build datatype describing structure */
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3.12. DERIVED DATATYPES 79MPI_Type_struct( 4, blocklen1, disp1, type1, &Particletype);/* 4.1:send the entire array */MPI_Type_commit( &Particletype);MPI_Send( particle, 1000, Particletype, dest, tag, comm);/* 4.2:send only the entries of class zero particles,preceded by the number of such entries */MPI_Datatype Zparticles; /* datatype describing all particleswith class zero (needs to be recomputedif classes change) */MPI_Datatype Ztype;MPI_Aint zdisp[1000];int zblock[1000], j, k;int zzblock[2] = {1,1};MPI_Aint zzdisp[2];MPI_Datatype zztype[2];/* compute displacements of class zero particles */j = 0;for(i=0; i < 1000; i++)if (particle[i].class==0){zdisp[j] = i;zblock[j] = 1;j++;}/* create datatype for class zero particles */MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);/* prepend particle count */MPI_Address(&j, zzdisp);MPI_Address(particle, zzdisp+1);zztype[0] = MPI_INT;zztype[1] = Zparticles;MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);MPI_Type_commit( &Ztype);MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);
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80 CHAPTER 3. POINT-TO-POINT COMMUNICATION/* A probably more efficient way of defining Zparticles *//* consecutive particles with index zero are handled as one block */j=0;for (i=0; i < 1000; i++)if (particle[i].index==0){for (k=i+1; (k < 1000)&&(particle[k].index == 0) ; k++);zdisp[j] = i;zblock[j] = k-i;j++;i = k;}MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);/* 4.3:send the first two coordinates of all entries */MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */MPI_Aint sizeofentry;MPI_Type_extent( Particletype, &sizeofentry);/* sizeofentry can also be computed by subtracting the addressof particle[0] from the address of particle[1] */MPI_Type_hvector( 1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);MPI_Type_commit( &Allpairs);MPI_Send( particle[0].d, 1, Allpairs, dest, tag, comm);/* an alternative solution to 4.3 */MPI_Datatype Onepair; /* datatype for one pair of coordinates, withthe extent of one particle entry */MPI_Aint disp2[3];MPI_Datatype type2[3] = {MPI_LB, MPI_DOUBLE, MPI_UB};int blocklen2[3] = {1, 2, 1};MPI_Address( particle, disp2);MPI_Address( particle[0].d, disp2+1);MPI_Address( particle+1, disp2+2);base = disp2[0];for (i=0; i<2; i++) disp2[i] -= base;
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3.12. DERIVED DATATYPES 81MPI_Type_struct( 3, blocklen2, disp2, type2, &Onepair);MPI_Type_commit( &Onepair);MPI_Send( particle[0].d, 1000, Onepair, dest, tag, comm);Example 3.34 The same manipulations as in the previous example, but use absolute ad-dresses in datatypes.struct Partstruct{int class;double d[6];char b[7];};struct Partstruct particle[1000];/* build datatype describing first array entry */MPI_Datatype Particletype;MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};int block[3] = {1, 6, 7};MPI_Aint disp[3];MPI_Address( particle, disp);MPI_Address( particle[0].d, disp+1);MPI_Address( particle[0].b, disp+2);MPI_Type_struct( 3, block, disp, type, &Particletype);/* Particletype describes first array entry -- using absoluteaddresses */ /* 5.1:send the entire array */MPI_Type_commit( &Particletype);MPI_Send( MPI_BOTTOM, 1000, Particletype, dest, tag, comm);/* 5.2:send the entries of class zero,preceded by the number of such entries */MPI_Datatype Zparticles, Ztype;MPI_Aint zdisp[1000]int zblock[1000], i, j, k;int zzblock[2] = {1,1};
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82 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI_Datatype zztype[2];MPI_Aint zzdisp[2];j=0;for (i=0; i < 1000; i++)if (particle[i].index==0){for (k=i+1; (k < 1000)&&(particle[k].index = 0) ; k++);zdisp[j] = i;zblock[j] = k-i;j++;i = k;}MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);/* Zparticles describe particles with class zero, usingtheir absolute addresses*//* prepend particle count */MPI_Address(&j, zzdisp);zzdisp[1] = MPI_BOTTOM;zztype[0] = MPI_INT;zztype[1] = Zparticles;MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);MPI_Type_commit( &Ztype);MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);Example 3.35 Handling of unions.union {int ival;float fval;} u[1000]int utype;/* All entries of u have identical type; variableutype keeps track of their current type */MPI_Datatype type[2];int blocklen[2] = {1,1};MPI_Aint disp[2];MPI_Datatype mpi_utype[2];MPI_Aint i,j;/* compute an MPI datatype for each possible union type;assume values are left-aligned in union storage. */
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3.13. PACK AND UNPACK 83MPI_Address( u, &i);MPI_Address( u+1, &j);disp[0] = 0; disp[1] = j-i;type[1] = MPI_UB;type[0] = MPI_INT;MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[0]);type[0] = MPI_FLOAT;MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[1]);for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);/* actual communication */MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);3.13 Pack and unpackSome existing communication libraries provide pack/unpack functions for sending noncon-tiguous data. In these, the user explicitly packs data into a contiguous bu�er before sendingit, and unpacks it from a contiguous bu�er after receiving it. Derived datatypes, which aredescribed in Section 3.12, allow one, in most cases, to avoid explicit packing and unpacking.The user speci�es the layout of the data to be sent or received, and the communicationlibrary directly accesses a noncontiguous bu�er. The pack/unpack routines are providedfor compatibility with previous libraries. Also, they provide some functionality that is nototherwise available in MPI. For instance, a message can be received in several parts, wherethe receive operation done on a later part may depend on the content of a former part.Another use is that outgoing messages may be explicitly bu�ered in user supplied space,thus overriding the system bu�ering policy. Finally, the availability of pack and unpackoperations facilitates the development of additional communication libraries layered on topof MPI.MPI PACK(inbuf, incount, datatype, outbuf, outcount, position, comm)IN inbuf input bu�er start (choice)IN incount number of input data items (integer)IN datatype datatype of each input data item (handle)OUT outbuf output bu�er start (choice)IN outcount output bu�er size, in bytes (integer)INOUT position current position in bu�er, in bytes (integer)IN comm communicator for packed message (handle)int MPI Pack(void* inbuf, int incount, MPI Datatype datatype, void *outbuf,int outcount, int *position, MPI Comm comm)
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84 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTCOUNT, POSITION, COMM,IERROR)<type> INBUF(*), OUTBUF(*)INTEGER INCOUNT, DATATYPE, OUTCOUNT, POSITION, COMM, IERRORPacks the message in the send bu�er speci�ed by inbuf, incount, datatype into the bu�erspace speci�ed by outbuf and outcount. The input bu�er can be any communication bu�erallowed in MPI SEND. The output bu�er is a contiguous storage area containing outcountbytes, starting at the address outbuf (length is counted in bytes, not elements, as if it werea communication bu�er for a message of type MPI PACKED).The input value of position is the �rst location in the output bu�er to be used forpacking. position is incremented by the size of the packed message, and the output valueof position is the �rst location in the output bu�er following the locations occupied by thepacked message. The comm argument is the communicator that will be subsequently usedfor sending the packed message.MPI UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)IN inbuf input bu�er start (choice)IN insize size of input bu�er, in bytes (integer)INOUT position current position in bytes (integer)OUT outbuf output bu�er start (choice)IN outcount number of items to be unpacked (integer)IN datatype datatype of each output data item (handle)IN comm communicator for packed message (handle)int MPI Unpack(void* inbuf, int insize, int *position, void *outbuf,int outcount, MPI Datatype datatype, MPI Comm comm)MPI UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,IERROR)<type> INBUF(*), OUTBUF(*)INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERRORUnpacks a message into the receive bu�er speci�ed by outbuf, outcount, datatype fromthe bu�er space speci�ed by inbuf and insize. The output bu�er can be any communicationbu�er allowed in MPI RECV. The input bu�er is a contiguous storage area containing insizebytes, starting at address inbuf. The input value of position is the �rst location in the outputbu�er occupied by the packed message. position is incremented by the size of the packedmessage, so that the output value of position is the �rst location in the output bu�er afterthe locations occupied by the message that was unpacked. comm is the communicator usedto receive the packed message.Advice to users. Note the di�erence between MPI RECV and MPI UNPACK: inMPI RECV, the count argument speci�es the maximum number of items that canbe received. The actual number of items received is determined by the length ofthe incoming message. In MPI UNPACK, the count argument speci�es the actual
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3.13. PACK AND UNPACK 85number of items that are unpacked; the \size" of the corresponding message is theincrement in position. The reason for this change is that the \incoming message size"is not predetermined since the user decides how much to unpack; nor is it easy todetermine the \message size" from the number of items to be unpacked. In fact, in aheterogeneous system, this number may not be determined a priori. (End of adviceto users.)To understand the behavior of pack and unpack, it is convenient to think of the datapart of a message as being the sequence obtained by concatenating the successive values sentin that message. The pack operation stores this sequence in the bu�er space, as if sendingthe message to that bu�er. The unpack operation retrieves this sequence from bu�er space,as if receiving a message from that bu�er. (It is helpful to think of internal Fortran �les orsscanf in C, for a similar function.)Several messages can be successively packed into one packing unit. This is e�ectedby several successive related calls to MPI PACK, where the �rst call provides position = 0,and each successive call inputs the value of position that was output by the previous call,and the same values for outbuf, outcount and comm. This packing unit now contains theequivalent information that would have been stored in a message by one send call with asend bu�er that is the \concatenation" of the individual send bu�ers.A packing unit can be sent using type MPI PACKED. Any point to point or collectivecommunication function can be used to move the sequence of bytes that forms the packingunit from one process to another. This packing unit can now be received using any receiveoperation, with any datatype: the type matching rules are relaxed for messages sent withtype MPI PACKED.A message sent with any type (including MPI PACKED) can be received using the typeMPI PACKED. Such a message can then be unpacked by calls to MPI UNPACK.A packing unit (or a message created by a regular, \typed" send) can be unpackedinto several successive messages. This is e�ected by several successive related calls toMPI UNPACK, where the �rst call provides position = 0, and each successive call inputsthe value of position that was output by the previous call, and the same values for inbuf,insize and comm.The concatenation of two packing units is not necessarily a packing unit; nor is asubstring of a packing unit necessarily a packing unit. Thus, one cannot concatenate twopacking units and then unpack the result as one packing unit; nor can one unpack a substringof a packing unit as a separate packing unit. Each packing unit, that was created by a relatedsequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence ofrelated unpack calls.Rationale. The restriction on \atomic" packing and unpacking of packing unitsallows the implementation to add at the head of packing units additional information,such as a description of the sender architecture (to be used for type conversion, in aheterogeneous environment) (End of rationale.)The following call allows the user to �nd out how much space is needed to pack amessage and, thus, manage space allocation for bu�ers.
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86 CHAPTER 3. POINT-TO-POINT COMMUNICATIONMPI PACK SIZE(incount, datatype, comm, size)IN incount count argument to packing call (integer)IN datatype datatype argument to packing call (handle)IN comm communicator argument to packing call (handle)OUT size upper bound on size of packed message, in bytes (in-teger)int MPI Pack size(int incount, MPI Datatype datatype, MPI Comm comm,int *size)MPI PACK SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERRORA call toMPI PACK SIZE(incount, datatype, comm, size) returns in size an upper boundon the increment in position that is e�ected by a call to MPI PACK(inbuf, incount, datatype,outbuf, outcount, position, comm).Rationale. The call returns an upper bound, rather than an exact bound, since theexact amount of space needed to pack the message may depend on the context (e.g.,�rst message packed in a packing unit may take more space). (End of rationale.)Example 3.36 An example using MPI PACK.int position, i, j, a[2];char buff[1000];....MPI_Comm_rank(MPI_COMM_WORLD, &myrank);if (myrank == 0){ / * SENDER CODE */position = 0;MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);MPI_Send( buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);}else /* RECEIVER CODE */MPI_Recv( a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD)}Example 3.37 A elaborate example.int position, i;float a[1000];char buff[1000]
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3.13. PACK AND UNPACK 87....MPI_Comm_rank(MPI_Comm_world, &myrank);if (myrank == 0){ / * SENDER CODE */int len[2];MPI_Aint disp[2];MPI_Datatype type[2], newtype;/* build datatype for i followed by a[0]...a[i-1] */len[0] = 1;len[1] = i;MPI_Address( &i, disp);MPI_Address( a, disp+1);type[0] = MPI_INT;type[1] = MPI_FLOAT;MPI_Type_struct( 2, len, disp, type, &newtype);MPI_Type_commit( &newtype);/* Pack i followed by a[0]...a[i-1]*/position = 0;MPI_Pack( MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);/* Send */MPI_Send( buff, position, MPI_PACKED, 1, 0,MPI_COMM_WORLD)/* *****One can replace the last three lines withMPI_Send( MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);***** */}else /* myrank == 1 */{ /* RECEIVER CODE */MPI_Status status;/* Receive */MPI_Recv( buff, 1000, MPI_PACKED, 0, 0, &status);/* Unpack i */
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88 CHAPTER 3. POINT-TO-POINT COMMUNICATIONposition = 0;MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);/* Unpack a[0]...a[i-1] */MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);}Example 3.38 Each process sends a count, followed by count characters to the root; theroot concatenate all characters into one string.int count, gsize, counts[64], totalcount, k1, k2, k,displs[64], position, concat_pos;char chr[100], *lbuf, *rbuf, *cbuf;...MPI_Comm_size(comm, &gsize);MPI_Comm_rank(comm, &myrank);/* allocate local pack buffer */MPI_Pack_size(1, MPI_INT, comm, &k1);MPI_Pack_size(count, MPI_CHAR, &k2);k = k1+k2;lbuf = (char *)malloc(k);/* pack count, followed by count characters */position = 0;MPI_Pack(&count, 1, MPI_INT, &lbuf, k, &position, comm);MPI_Pack(chr, count, MPI_CHAR, &lbuf, k, &position, comm);if (myrank != root)/* gather at root sizes of all packed messages */MPI_Gather( &position, 1, MPI_INT, NULL, NULL,NULL, root, comm);/* gather at root packed messages */MPI_Gatherv( &buf, position, MPI_PACKED, NULL,NULL, NULL, NULL, root, comm);else { /* root code *//* gather sizes of all packed messages */MPI_Gather( &position, 1, MPI_INT, counts, 1,MPI_INT, root, comm);/* gather all packed messages */displs[0] = 0;for (i=1; i < gsize; i++)displs[i] = displs[i-1] + counts[i-1];totalcount = dipls[gsize-1] + counts[gsize-1];rbuf = (char *)malloc(totalcount);
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3.13. PACK AND UNPACK 89cbuf = (char *)malloc(totalcount);MPI_Gatherv( lbuf, position, MPI_PACKED, rbuf,counts, displs, MPI_PACKED, root, comm);/* unpack all messages and concatenate strings */concat_pos = 0;for (i=0; i < gsize; i++) {position = 0;MPI_Unpack( rbuf+displs[i], totalcount-displs[i],&position, &count, 1, MPI_INT, comm);MPI_Unpack( rbuf+displs[i], totalcount-displs[i],&position, cbuf+concat_pos, count, MPI_CHAR, comm);concat_pos += count;}cbuf[concat_pos] = `\0';}
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Chapter 4Collective Communication4.1 Introduction and OverviewCollective communication is de�ned as communication that involves a group of processes.The functions of this type provided by MPI are the following:� Barrier synchronization across all group members (Sec. 4.3).� Broadcast from one member to all members of a group (Sec. 4.4). This is shown in�gure 4.1.� Gather data from all group members to one member (Sec. 4.5). This is shown in�gure 4.1.� Scatter data from one member to all members of a group (Sec. 4.6). This is shownin �gure 4.1.� A variation on Gather where all members of the group receive the result (Sec. 4.7).This is shown as \allgather" in �gure 4.1.� Scatter/Gather data from all members to all members of a group (also called completeexchange or all-to-all) (Sec. 4.8). This is shown as \alltoall" in �gure 4.1.� Global reduction operations such as sum, max, min, or user-de�ned functions, wherethe result is returned to all group members and a variation where the result is returnedto only one member (Sec. 4.9).� A combined reduction and scatter operation (Sec. 4.10).� Scan across all members of a group (also called pre�x) (Sec. 4.11).A collective operation is executed by having all processes in the group call the com-munication routine, with matching arguments. The syntax and semantics of the collectiveoperations are de�ned to be consistent with the syntax and semantics of the point-to-pointoperations. Thus, general datatypes are allowed and must match between sending and re-ceiving processes as speci�ed in Chapter 3. One of the key arguments is a communicatorthat de�nes the group of participating processes and provides a context for the operation.Several collective routines such as broadcast and gather have a single originating or receiv-ing process. Such processes are called the root. Some arguments in the collective functions
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4.1. INTRODUCTION AND OVERVIEW 91
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Figure 4.1: Collective move functions illustrated for a group of six processes. In each case,each row of boxes represents data locations in one process. Thus, in the broadcast, initiallyjust the �rst process contains the data A0, but after the broadcast all processes contain it.
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92 CHAPTER 4. COLLECTIVE COMMUNICATIONare speci�ed as \signi�cant only at root," and are ignored for all participants except theroot. The reader is referred to Chapter 3 for information concerning communication bu�ers,general datatypes and type matching rules, and to Chapter 5 for information on how tode�ne groups and create communicators.The type-matching conditions for the collective operations are more strict than the cor-responding conditions between sender and receiver in point-to-point. Namely, for collectiveoperations, the amount of data sent must exactly match the amount of data speci�ed bythe receiver. Distinct type maps (the layout in memory, see Sec. 3.12) between sender andreceiver are still allowed.Collective routine calls can (but are not required to) return as soon as their participa-tion in the collective communication is complete. The completion of a call indicates that thecaller is now free to access locations in the communication bu�er. It does not indicate thatother processes in the group have completed or even started the operation (unless otherwiseindicated in the description of the operation). Thus, a collective communication call may,or may not, have the e�ect of synchronizing all calling processes. This statement excludes,of course, the barrier function.Collective communication calls may use the same communicators as point-to-pointcommunication; MPI guarantees that messages generated on behalf of collective communi-cation calls will not be confused with messages generated by point-to-point communication.A more detailed discussion of correct use of collective routines is found in Sec. 4.12.Rationale. The equal-data restriction (on type matching) was made so as to avoidthe complexity of providing a facility analogous to the status argument of MPI RECVfor discovering the amount of data sent. Some of the collective routines would requirean array of status values.The statements about synchronization are made so as to allow a variety of implemen-tations of the collective functions.The collective operations do not accept a message tag argument. If future revisions ofMPI de�ne non-blocking collective functions, then tags (or a similar mechanism) willneed to be added so as to allow the dis-ambiguation of multiple, pending, collectiveoperations. (End of rationale.)Advice to users. It is dangerous to rely on synchronization side-e�ects of the col-lective operations for program correctness. For example, even though a particularimplementation may provide a broadcast routine with a side-e�ect of synchroniza-tion, the standard does not require this, and a program that relies on this will not beportable.On the other hand, a correct, portable programmust allow for the fact that a collectivecall may be synchronizing. Though one cannot rely on any synchronization side-e�ect,one must program so as to allow it. These issues are discussed further in Sec. 4.12.(End of advice to users.)Advice to implementors. While vendors may write optimized collective routinesmatched to their architectures, a complete library of the collective communicationroutines can be written entirely using the MPI point-to-point communication func-tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,special communicator must be created for the collective operation so as to avoid inter-ference with any on-going point-to-point communication at the time of the collectivecall. This is discussed further in Sec. 4.12. (End of advice to implementors.)
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4.2. COMMUNICATOR ARGUMENT 934.2 Communicator argumentThe key concept of the collective functions is to have a \group" of participating processes.The routines do not have a group identi�er as an explicit argument. Instead, there is a com-municator argument. For the purposes of this chapter, a communicator can be thought ofas a group identi�er linked with a context. An inter-communicator, that is, a communicatorthat spans two groups, is not allowed as an argument to a collective function.4.3 Barrier synchronizationMPI BARRIER( comm )IN comm communicator (handle)int MPI Barrier(MPI Comm comm )MPI BARRIER(COMM, IERROR)INTEGER COMM, IERRORMPI BARRIER blocks the caller until all group members have called it. The call returnsat any process only after all group members have entered the call.4.4 BroadcastMPI BCAST( bu�er, count, datatype, root, comm )INOUT bu�er starting address of bu�er (choice)IN count number of entries in bu�er (integer)IN datatype data type of bu�er (handle)IN root rank of broadcast root (integer)IN comm communicator (handle)int MPI Bcast(void* buffer, int count, MPI Datatype datatype, int root,MPI Comm comm )MPI BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)<type> BUFFER(*)INTEGER COUNT, DATATYPE, ROOT, COMM, IERRORMPI BCAST broadcasts a message from the process with rank root to all processes ofthe group, itself included. It is called by all members of group using the same argumentsfor comm, root. On return, the contents of root's communication bu�er has been copied toall processes.General, derived datatypes are allowed for datatype. The type signature of count,datatype on any process must be equal to the type signature of count, datatype at the root.
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94 CHAPTER 4. COLLECTIVE COMMUNICATIONThis implies that the amount of data sent must be equal to the amount received, pairwisebetween each process and the root. MPI BCAST and all other data-movement collectiveroutines make this restriction. Distinct type maps between sender and receiver are stillallowed.4.4.1 Example using MPI BCASTExample 4.1 Broadcast 100 ints from process 0 to every process in the group.MPI_Comm comm;int array[100];int root=0;...MPI_Bcast( array, 100, MPI_INT, root, comm);As in many of our example code fragments, we assume that some of the variables (such ascomm in the above) have been assigned appropriate values.4.5 GatherMPI GATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)IN sendbuf starting address of send bu�er (choice)IN sendcount number of elements in send bu�er (integer)IN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice, signi�cant only atroot)IN recvcount number of elements for any single receive (integer, sig-ni�cant only at root)IN recvtype data type of recv bu�er elements (signi�cant only atroot) (handle)IN root rank of receiving process (integer)IN comm communicator (handle)int MPI Gather(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype, int root,MPI Comm comm)MPI GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROREach process (root process included) sends the contents of its send bu�er to the rootprocess. The root process receives the messages and stores them in rank order. The outcomeis as if each of the n processes in the group (including the root process) had executed a callto
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4.5. GATHER 95MPI Send(sendbuf; sendcount;sendtype;root; :::);and the root had executed n calls toMPI Recv(recvbuf+ i � recvcount � extent(recvtype); recvcount;recvtype;i; :::);where extent(recvtype) is the type extent obtained from a call to MPI Type extent().An alternative description is that the n messages sent by the processes in the groupare concatenated in rank order, and the resulting message is received by the root as if by acall to MPI RECV(recvbuf, recvcount�n, recvtype, ...).The receive bu�er is ignored for all non-root processes.General, derived datatypes are allowed for both sendtype and recvtype. The type sig-nature of sendcount, sendtype on process i must be equal to the type signature of recvcount,recvtype at the root. This implies that the amount of data sent must be equal to the amountof data received, pairwise between each process and the root. Distinct type maps betweensender and receiver are still allowed.All arguments to the function are signi�cant on process root, while on other processes,only arguments sendbuf, sendcount, sendtype, root, comm are signi�cant. The argumentsroot and commmust have identical values on all processes.The speci�cation of counts and types should not cause any location on the root to bewritten more than once. Such a call is erroneous.Note that the recvcount argument at the root indicates the number of items it receivesfrom each process, not the total number of items it receives.MPI GATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,comm)IN sendbuf starting address of send bu�er (choice)IN sendcount number of elements in send bu�er (integer)IN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice, signi�cant only atroot)IN recvcounts integer array (of length group size) containing the num-ber of elements that are received from each process(signi�cant only at root)IN displs integer array (of length group size). Entry i speci�esthe displacement relative to recvbuf at which to placethe incoming data from process i (signi�cant only atroot)IN recvtype data type of recv bu�er elements (signi�cant only atroot) (handle)IN root rank of receiving process (integer)IN comm communicator (handle)int MPI Gatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int *recvcounts, int *displs,MPI Datatype recvtype, int root, MPI Comm comm)
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96 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,RECVTYPE, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,COMM, IERRORMPI GATHERV extends the functionality of MPI GATHER by allowing a varying countof data from each process, since recvcounts is now an array. It also allows more 
exibilityas to where the data is placed on the root, by providing the new argument, displs.The outcome is as if each process, including the root process, sends a message to theroot, MPI Send(sendbuf; sendcount;sendtype;root; :::);and the root executes n receives,MPI Recv(recvbuf+ disp[i] � extent(recvtype);recvcounts[i];recvtype;i; :::):Messages are placed in the receive bu�er of the root process in rank order, that is, thedata sent from process j is placed in the jth portion of the receive bu�er recvbuf on processroot. The jth portion of recvbuf begins at o�set displs[j] elements (in terms of recvtype) intorecvbuf.The receive bu�er is ignored for all non-root processes.The type signature implied by sendcount, sendtype on process i must be equal to thetype signature implied by recvcounts[i], recvtype at the root. This implies that the amountof data sent must be equal to the amount of data received, pairwise between each processand the root. Distinct type maps between sender and receiver are still allowed, as illustratedin Example 4.6.All arguments to the function are signi�cant on process root, while on other processes,only arguments sendbuf, sendcount, sendtype, root, comm are signi�cant. The argumentsroot and commmust have identical values on all processes.The speci�cation of counts, types, and displacements should not cause any location onthe root to be written more than once. Such a call is erroneous.4.5.1 Examples using MPI GATHER, MPI GATHERVExample 4.2 Gather 100 ints from every process in group to root. See �gure 4.2.MPI_Comm comm;int gsize,sendarray[100];int root, *rbuf;...MPI_Comm_size( comm, &gsize);rbuf = (int *)malloc(gsize*100*sizeof(int));MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);Example 4.3 Previous example modi�ed { only the root allocates memory for the receivebu�er.
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4.5. GATHER 97
100 100 100

100 100

all processes

100

rbuf

at rootFigure 4.2: The root process gathers 100 ints from each process in the group.MPI_Comm comm;int gsize,sendarray[100];int root, myrank, *rbuf;...MPI_Comm_rank( comm, myrank);if ( myrank == root) {MPI_Comm_size( comm, &gsize);rbuf = (int *)malloc(gsize*100*sizeof(int));}MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);Example 4.4 Do the same as the previous example, but use a derived datatype. Notethat the type cannot be the entire set of gsize*100 ints since type matching is de�nedpairwise between the root and each process in the gather.MPI_Comm comm;int gsize,sendarray[100];int root, *rbuf;MPI_Datatype rtype;...MPI_Comm_size( comm, &gsize);MPI_Type_contiguous( 100, MPI_INT, &rtype );MPI_Type_commit( &rtype );rbuf = (int *)malloc(gsize*100*sizeof(int));MPI_Gather( sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);Example 4.5 Now have each process send 100 ints to root, but place each set (of 100)stride ints apart at receiving end. Use MPI GATHERV and the displs argument to achievethis e�ect. Assume stride � 100. See �gure 4.3.MPI_Comm comm;int gsize,sendarray[100];int root, *rbuf, stride;int *displs,i,*rcounts;...
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98 CHAPTER 4. COLLECTIVE COMMUNICATION
100 100 100

100 100 100

stride
rbuf

at root

all processesFigure 4.3: The root process gathers 100 ints from each process in the group, each set isplaced stride ints apart.MPI_Comm_size( comm, &gsize);rbuf = (int *)malloc(gsize*stride*sizeof(int));displs = (int *)malloc(gsize*sizeof(int));rcounts = (int *)malloc(gsize*sizeof(int));for (i=0; i<gsize; ++i) {displs[i] = i*stride;rcounts[i] = 100;}MPI_Gatherv( sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,root, comm);Note that the program is erroneous if stride < 100.Example 4.6 Same as Example 4.5 on the receiving side, but send the 100 ints from the0th column of a 100�150 int array, in C. See �gure 4.4.MPI_Comm comm;int gsize,sendarray[100][150];int root, *rbuf, stride;MPI_Datatype stype;int *displs,i,*rcounts;...MPI_Comm_size( comm, &gsize);rbuf = (int *)malloc(gsize*stride*sizeof(int));displs = (int *)malloc(gsize*sizeof(int));rcounts = (int *)malloc(gsize*sizeof(int));for (i=0; i<gsize; ++i) {displs[i] = i*stride;rcounts[i] = 100;}/* Create datatype for 1 column of array*/MPI_Type_vector( 100, 1, 150, MPI_INT, &stype);MPI_Type_commit( &stype );
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4.5. GATHER 99
100 100 100

150

rbuf

at root

stride

all processes100

150

100

150

100Figure 4.4: The root process gathers column 0 of a 100�150 C array, and each set is placedstride ints apart.MPI_Gatherv( sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,root, comm);Example 4.7 Process i sends (100-i) ints from the ith column of a 100 � 150 int array, inC. It is received into a bu�er with stride, as in the previous two examples. See �gure 4.5.MPI_Comm comm;int gsize,sendarray[100][150],*sptr;int root, *rbuf, stride, myrank;MPI_Datatype stype;int *displs,i,*rcounts;...MPI_Comm_size( comm, &gsize);MPI_Comm_rank( comm, &myrank );rbuf = (int *)malloc(gsize*stride*sizeof(int));displs = (int *)malloc(gsize*sizeof(int));rcounts = (int *)malloc(gsize*sizeof(int));for (i=0; i<gsize; ++i) {displs[i] = i*stride;rcounts[i] = 100-i; /* note change from previous example */}/* Create datatype for the column we are sending*/MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);MPI_Type_commit( &stype );/* sptr is the address of start of "myrank" column*/sptr = &sendarray[0][myrank];MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,root, comm);Note that a di�erent amount of data is received from each process.
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100 CHAPTER 4. COLLECTIVE COMMUNICATION
100 99

rbuf

at root

stride

all processes100

150

100

150

100

150

98Figure 4.5: The root process gathers 100-i ints from column i of a 100�150 C array, andeach set is placed stride ints apart.Example 4.8 Same as Example 4.7, but done in a di�erent way at the sending end. Wecreate a datatype that causes the correct striding at the sending end so that that we reada column of a C array. A similar thing was done in Example 3.32, Section 3.12.7.MPI_Comm comm;int gsize,sendarray[100][150],*sptr;int root, *rbuf, stride, myrank, disp[2], blocklen[2];MPI_Datatype stype,type[2];int *displs,i,*rcounts;...MPI_Comm_size( comm, &gsize);MPI_Comm_rank( comm, &myrank );rbuf = (int *)malloc(gsize*stride*sizeof(int));displs = (int *)malloc(gsize*sizeof(int));rcounts = (int *)malloc(gsize*sizeof(int));for (i=0; i<gsize; ++i) {displs[i] = i*stride;rcounts[i] = 100-i;}/* Create datatype for one int, with extent of entire row*/disp[0] = 0; disp[1] = 150*sizeof(int);type[0] = MPI_INT; type[1] = MPI_UB;blocklen[0] = 1; blocklen[1] = 1;MPI_Type_struct( 2, blocklen, disp, type, &stype );MPI_Type_commit( &stype );sptr = &sendarray[0][myrank];MPI_Gatherv( sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,root, comm);Example 4.9 Same as Example 4.7 at sending side, but at receiving side we make thestride between received blocks vary from block to block. See �gure 4.6.MPI_Comm comm;
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4.5. GATHER 101int gsize,sendarray[100][150],*sptr;int root, *rbuf, *stride, myrank, bufsize;MPI_Datatype stype;int *displs,i,*rcounts,offset;...MPI_Comm_size( comm, &gsize);MPI_Comm_rank( comm, &myrank );stride = (int *)malloc(gsize*sizeof(int));.../* stride[i] for i = 0 to gsize-1 is set somehow*//* set up displs and rcounts vectors first*/displs = (int *)malloc(gsize*sizeof(int));rcounts = (int *)malloc(gsize*sizeof(int));offset = 0;for (i=0; i<gsize; ++i) {displs[i] = offset;offset += stride[i];rcounts[i] = 100-i;}/* the required buffer size for rbuf is now easily obtained*/bufsize = displs[gsize-1]+rcounts[gsize-1];rbuf = (int *)malloc(bufsize*sizeof(int));/* Create datatype for the column we are sending*/MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);MPI_Type_commit( &stype );sptr = &sendarray[0][myrank];MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,root, comm);Example 4.10 Process i sends num ints from the ith column of a 100 � 150 int array, inC. The complicating factor is that the various values of num are not known to root, so aseparate gather must �rst be run to �nd these out. The data is placed contiguously at thereceiving end.MPI_Comm comm;int gsize,sendarray[100][150],*sptr;int root, *rbuf, stride, myrank, disp[2], blocklen[2];MPI_Datatype stype,types[2];int *displs,i,*rcounts,num;
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100

stride[1]
rbuf

at root

all processes100

150

100

150

100

150

99 98Figure 4.6: The root process gathers 100-i ints from column i of a 100�150 C array, andeach set is placed stride[i] ints apart (a varying stride)....MPI_Comm_size( comm, &gsize);MPI_Comm_rank( comm, &myrank );/* First, gather nums to root*/rcounts = (int *)malloc(gsize*sizeof(int));MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);/* root now has correct rcounts, using these we set displs[] so* that data is placed contiguously (or concatenated) at receive end*/displs = (int *)malloc(gsize*sizeof(int));displs[0] = 0;for (i=1; i<gsize; ++i) {displs[i] = displs[i-1]+rcounts[i-1];}/* And, create receive buffer*/rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])*sizeof(int));/* Create datatype for one int, with extent of entire row*/disp[0] = 0; disp[1] = 150*sizeof(int);type[0] = MPI_INT; type[1] = MPI_UB;blocklen[0] = 1; blocklen[1] = 1;MPI_Type_struct( 2, blocklen, disp, type, &stype );MPI_Type_commit( &stype );sptr = &sendarray[0][myrank];MPI_Gatherv( sptr, num, stype, rbuf, rcounts, displs, MPI_INT,root, comm);
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4.6. SCATTER 1034.6 ScatterMPI SCATTER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)IN sendbuf address of send bu�er (choice, signi�cant only at root)IN sendcount number of elements sent to each process (integer, sig-ni�cant only at root)IN sendtype data type of send bu�er elements (signi�cant only atroot) (handle)OUT recvbuf address of receive bu�er (choice)IN recvcount number of elements in receive bu�er (integer)IN recvtype data type of receive bu�er elements (handle)IN root rank of sending process (integer)IN comm communicator (handle)int MPI Scatter(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype, int root,MPI Comm comm)MPI SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERRORMPI SCATTER is the inverse operation to MPI GATHER.The outcome is as if the root executed n send operations,MPI Send(sendbuf+ i � sendcount � extent(sendtype); sendcount;sendtype;i; :::);and each process executed a receive,MPI Recv(recvbuf; recvcount;recvtype;i; :::):An alternative description is that the root sends a message with MPI Send(sendbuf,sendcount�n, sendtype, ...). This message is split into n equal segments, the ith segment issent to the ith process in the group, and each process receives this message as above.The send bu�er is ignored for all non-root processes.The type signature associated with sendcount, sendtype at the root must be equal tothe type signature associated with recvcount, recvtype at all processes (however, the typemaps may be di�erent). This implies that the amount of data sent must be equal to theamount of data received, pairwise between each process and the root. Distinct type mapsbetween sender and receiver are still allowed.All arguments to the function are signi�cant on process root, while on other processes,only arguments recvbuf, recvcount, recvtype, root, comm are signi�cant. The arguments rootand commmust have identical values on all processes.The speci�cation of counts and types should not cause any location on the root to beread more than once.
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104 CHAPTER 4. COLLECTIVE COMMUNICATIONRationale. Though not needed, the last restriction is imposed so as to achievesymmetry with MPI GATHER, where the corresponding restriction (a multiple-writerestriction) is necessary. (End of rationale.)MPI SCATTERV( sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,comm)IN sendbuf address of send bu�er (choice, signi�cant only at root)IN sendcounts integer array (of length group size) specifying the num-ber of elements to send to each processorIN displs integer array (of length group size). Entry i speci�esthe displacement (relative to sendbuf from which totake the outgoing data to process iIN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice)IN recvcount number of elements in receive bu�er (integer)IN recvtype data type of receive bu�er elements (handle)IN root rank of sending process (integer)IN comm communicator (handle)int MPI Scatterv(void* sendbuf, int *sendcounts, int *displs,MPI Datatype sendtype, void* recvbuf, int recvcount,MPI Datatype recvtype, int root, MPI Comm comm)MPI SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,RECVTYPE, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,COMM, IERRORMPI SCATTERV is the inverse operation to MPI GATHERV.MPI SCATTERV extends the functionality of MPI SCATTER by allowing a varyingcount of data to be sent to each process, since sendcounts is now an array. It also allowsmore 
exibility as to where the data is taken from on the root, by providing the newargument, displs.The outcome is as if the root executed n send operations,MPI Send(sendbuf+ displs[i] � extent(sendtype); sendcounts[i];sendtype;i; :::);and each process executed a receive,MPI Recv(recvbuf; recvcount;recvtype;i; :::):The send bu�er is ignored for all non-root processes.The type signature implied by sendcount[i], sendtype at the root must be equal to thetype signature implied by recvcount, recvtype at process i (however, the type maps may bedi�erent). This implies that the amount of data sent must be equal to the amount of data
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4.6. SCATTER 105
100 100 100

100 100

sendbuf

100

at root

all processesFigure 4.7: The root process scatters sets of 100 ints to each process in the group.received, pairwise between each process and the root. Distinct type maps between senderand receiver are still allowed.All arguments to the function are signi�cant on process root, while on other processes,only arguments recvbuf, recvcount, recvtype, root, comm are signi�cant. The arguments rootand commmust have identical values on all processes.The speci�cation of counts, types, and displacements should not cause any location onthe root to be read more than once.4.6.1 Examples using MPI SCATTER, MPI SCATTERVExample 4.11 The reverse of Example 4.2. Scatter sets of 100 ints from the root to eachprocess in the group. See �gure 4.7.MPI_Comm comm;int gsize,*sendbuf;int root, rbuf[100];...MPI_Comm_size( comm, &gsize);sendbuf = (int *)malloc(gsize*100*sizeof(int));...MPI_Scatter( sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);Example 4.12 The reverse of Example 4.5. The root process scatters sets of 100 ints tothe other processes, but the sets of 100 are stride ints apart in the sending bu�er. Requiresuse of MPI SCATTERV. Assume stride � 100. See �gure 4.8.MPI_Comm comm;int gsize,*sendbuf;int root, rbuf[100], i, *displs, *scounts;...MPI_Comm_size( comm, &gsize);sendbuf = (int *)malloc(gsize*stride*sizeof(int));...displs = (int *)malloc(gsize*sizeof(int));scounts = (int *)malloc(gsize*sizeof(int));
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100 100 100

100 100 100

sendbuf

at root

all processes

strideFigure 4.8: The root process scatters sets of 100 ints, moving by stride ints from send tosend in the scatter.for (i=0; i<gsize; ++i) {displs[i] = i*stride;scounts[i] = 100;}MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,root, comm);Example 4.13 The reverse of Example 4.9. We have a varying stride between blocks atsending (root) side, at the receiving side we receive into the ith column of a 100�150 Carray. See �gure 4.9.MPI_Comm comm;int gsize,recvarray[100][150],*rptr;int root, *sendbuf, myrank, bufsize, *stride;MPI_Datatype rtype;int i, *displs, *scounts, offset;...MPI_Comm_size( comm, &gsize);MPI_Comm_rank( comm, &myrank );stride = (int *)malloc(gsize*sizeof(int));.../* stride[i] for i = 0 to gsize-1 is set somehow* sendbuf comes from elsewhere*/...displs = (int *)malloc(gsize*sizeof(int));scounts = (int *)malloc(gsize*sizeof(int));offset = 0;for (i=0; i<gsize; ++i) {displs[i] = offset;offset += stride[i];scounts[i] = 100 - i;}/* Create datatype for the column we are receiving*/
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4.7. GATHER-TO-ALL 107
100

sendbuf

at root

all processes100

150

100

150

100

150

99 98

stride[1]Figure 4.9: The root scatters blocks of 100-i ints into column i of a 100�150 C array. Atthe sending side, the blocks are stride[i] ints apart.MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &rtype);MPI_Type_commit( &rtype );rptr = &recvarray[0][myrank];MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,root, comm);4.7 Gather-to-allMPI ALLGATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)IN sendbuf starting address of send bu�er (choice)IN sendcount number of elements in send bu�er (integer)IN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice)IN recvcount number of elements received from any process (inte-ger)IN recvtype data type of receive bu�er elements (handle)IN comm communicator (handle)int MPI Allgather(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype,MPI Comm comm)MPI ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERRORMPI ALLGATHER can be thought of as MPI GATHER, but where all processes receivethe result, instead of just the root. The jth block of data sent from each process is receivedby every process and placed in the jth block of the bu�er recvbuf.
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108 CHAPTER 4. COLLECTIVE COMMUNICATIONThe type signature associated with sendcount, sendtype, at a process must be equal tothe type signature associated with recvcount, recvtype at any other process.The outcome of a call to MPI ALLGATHER(...) is as if all processes executed n calls toMPI_GATHER(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm),for root = 0 , ..., n-1. The rules for correct usage of MPI ALLGATHER are easily foundfrom the corresponding rules for MPI GATHER.MPI ALLGATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)IN sendbuf starting address of send bu�er (choice)IN sendcount number of elements in send bu�er (integer)IN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice)IN recvcounts integer array (of length group size) containing the num-ber of elements that are received from each processIN displs integer array (of length group size). Entry i speci�esthe displacement (relative to recvbuf) at which to placethe incoming data from process iIN recvtype data type of receive bu�er elements (handle)IN comm communicator (handle)int MPI Allgatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int *recvcounts, int *displs,MPI Datatype recvtype, MPI Comm comm)MPI ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,RECVTYPE, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,IERRORMPI ALLGATHERV can be thought of asMPI GATHERV, but where all processes receivethe result, instead of just the root. The jth block of data sent from each process is receivedby every process and placed in the jth block of the bu�er recvbuf. These blocks need notall be the same size.The type signature associated with sendcount, sendtype, at process j must be equal tothe type signature associated with recvcounts[j], recvtype at any other process.The outcome is as if all processes executed calls toMPI_GATHERV(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,recvtype,root,comm),for root = 0 , ..., n-1. The rules for correct usage of MPI ALLGATHERV are easilyfound from the corresponding rules for MPI GATHERV.
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4.8. ALL-TO-ALL SCATTER/GATHER 1094.7.1 Examples using MPI ALLGATHER, MPI ALLGATHERVExample 4.14 The all-gather version of Example 4.2. Using MPI ALLGATHER, we willgather 100 ints from every process in the group to every process.MPI_Comm comm;int gsize,sendarray[100];int *rbuf;...MPI_Comm_size( comm, &gsize);rbuf = (int *)malloc(gsize*100*sizeof(int));MPI_Allgather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);After the call, every process has the group-wide concatenation of the sets of data.4.8 All-to-All Scatter/GatherMPI ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)IN sendbuf starting address of send bu�er (choice)IN sendcount number of elements sent to each process (integer)IN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice)IN recvcount number of elements received from any process (inte-ger)IN recvtype data type of receive bu�er elements (handle)IN comm communicator (handle)int MPI Alltoall(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype,MPI Comm comm)MPI ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERRORMPI ALLTOALL is an extension of MPI ALLGATHER to the case where each processsends distinct data to each of the receivers. The jth block sent from process i is receivedby process j and is placed in the ith block of recvbuf.The type signature associated with sendcount, sendtype, at a process must be equal tothe type signature associated with recvcount, recvtype at any other process. This impliesthat the amount of data sent must be equal to the amount of data received, pairwise betweenevery pair of processes. As usual, however, the type maps may be di�erent.The outcome is as if each process executed a send to each process (itself included) witha call to,
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110 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI Send(sendbuf+ i � sendcount � extent(sendtype); sendcount;sendtype;i; :::);and a receive from every other process with a call to,MPI Recv(recvbuf+ i � recvcount � extent(recvtype); recvcount;i; :::):All arguments on all processes are signi�cant. The argument commmust have identicalvalues on all processes.MPI ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype,comm)IN sendbuf starting address of send bu�er (choice)IN sendcounts integer array equal to the group size specifying thenumber of elements to send to each processorIN sdispls integer array (of length group size). Entry j speci�esthe displacement (relative to sendbuf from which totake the outgoing data destined for process jIN sendtype data type of send bu�er elements (handle)OUT recvbuf address of receive bu�er (choice)IN recvcounts integer array equal to the group size specifying thenumber of elements that can be received from eachprocessorIN rdispls integer array (of length group size). Entry i speci�esthe displacement (relative to recvbuf at which to placethe incoming data from process iIN recvtype data type of receive bu�er elements (handle)IN comm communicator (handle)int MPI Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,MPI Datatype sendtype, void* recvbuf, int *recvcounts,int *rdispls, MPI Datatype recvtype, MPI Comm comm)MPI ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,RDISPLS, RECVTYPE, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),RECVTYPE, COMM, IERRORMPI ALLTOALLV adds 
exibility toMPI ALLTOALL in that the location of data for thesend is speci�ed by sdispls and the location of the placement of the data on the receive sideis speci�ed by rdispls.The jth block sent from process i is received by process j and is placed in the ithblock of recvbuf. These blocks need not all have the same size.The type signature associated with sendcount[j], sendtype at process i must be equalto the type signature associated with recvcount[i], recvtype at process j. This implies that
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4.9. GLOBAL REDUCTION OPERATIONS 111the amount of data sent must be equal to the amount of data received, pairwise betweenevery pair of processes. Distinct type maps between sender and receiver are still allowed.The outcome is as if each process sent a message to every other process with,MPI Send(sendbuf+ displs[i] � extent(sendtype); sendcounts[i];sendtype;i; :::);and received a message from every other process with a call toMPI Recv(recvbuf+ displs[i] � extent(recvtype); recvcounts[i];recvtype;i; :::):All arguments on all processes are signi�cant. The argument commmust have identicalvalues on all processes.Rationale. The de�nitions of MPI ALLTOALL and MPI ALLTOALLV give as much
exibility as one would achieve by specifying n independent, point-to-point communi-cations, with two exceptions: all messages use the same datatype, and messages arescattered from (or gathered to) sequential storage. (End of rationale.)Advice to implementors. Although the discussion of collective communication interms of point-to-point operation implies that each message is transferred directlyfrom sender to receiver, implementations may use a tree communication pattern.Messages can be forwarded by intermediate nodes where they are split (for scatter) orconcatenated (for gather), if this is more e�cient. (End of advice to implementors.)4.9 Global Reduction OperationsThe functions in this section perform a global reduce operation (such as sum, max, logicalAND, etc.) across all the members of a group. The reduction operation can be either one ofa prede�ned list of operations, or a user-de�ned operation. The global reduction functionscome in several 
avors: a reduce that returns the result of the reduction at one node, anall-reduce that returns this result at all nodes, and a scan (parallel pre�x) operation. Inaddition, a reduce-scatter operation combines the functionality of a reduce and of a scatteroperation.4.9.1 ReduceMPI REDUCE( sendbuf, recvbuf, count, datatype, op, root, comm)IN sendbuf address of send bu�er (choice)OUT recvbuf address of receive bu�er (choice, signi�cant only atroot)IN count number of elements in send bu�er (integer)IN datatype data type of elements of send bu�er (handle)IN op reduce operation (handle)IN root rank of root process (integer)IN comm communicator (handle)int MPI Reduce(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)
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112 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERRORMPI REDUCE combines the elements provided in the input bu�er of each process inthe group, using the operation op, and returns the combined value in the output bu�er ofthe process with rank root. The input bu�er is de�ned by the arguments sendbuf, countand datatype; the output bu�er is de�ned by the arguments recvbuf, count and datatype;both have the same number of elements, with the same type. The routine is called by allgroup members using the same arguments for count, datatype, op, root and comm. Thus, allprocesses provide input bu�ers and output bu�ers of the same length, with elements of thesame type. Each process can provide one element, or a sequence of elements, in which casethe combine operation is executed element-wise on each entry of the sequence. For example,if the operation is MPI MAX and the send bu�er contains two elements that are 
oating pointnumbers (count = 2 and datatype =MPI FLOAT), then recvbuf(1) = globalmax(sendbuf(1))and recvbuf(2) = globalmax(sendbuf(2)).Sec. 4.9.2, lists the set of prede�ned operations provided by MPI. That section alsoenumerates the datatypes each operation can be applied to. In addition, users may de�netheir own operations that can be overloaded to operate on several datatypes, either basicor derived. This is further explained in Sec. 4.9.4.The operation op is always assumed to be associative. All prede�ned operations are alsoassumed to be commutative. Users may de�ne operations that are assumed to be associative,but not commutative. The \canonical" evaluation order of a reduction is determined by theranks of the processes in the group. However, the implementation can take advantage ofassociativity, or associativity and commutativity in order to change the order of evaluation.This may change the result of the reduction for operations that are not strictly associativeand commutative, such as 
oating point addition.Advice to implementors. It is strongly recommended that MPI REDUCE be imple-mented so that the same result be obtained whenever the function is applied on thesame arguments, appearing in the same order. Note that this may prevent optimiza-tions that take advantage of the physical location of processors. (End of advice toimplementors.)The datatype argument of MPI REDUCE must be compatible with op. Prede�ned op-erators work only with the MPI types listed in Sec. 4.9.2 and Sec. 4.9.3. User-de�nedoperators may operate on general, derived datatypes. In this case, each argument that thereduce operation is applied to is one element described by such a datatype, which maycontain several basic values. This is further explained in Section 4.9.4.4.9.2 Prede�ned reduce operationsThe following prede�ned operations are supplied for MPI REDUCE and related functionsMPI ALLREDUCE, MPI REDUCE SCATTER, and MPI SCAN. These operations are invokedby placing the following in op.
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4.9. GLOBAL REDUCTION OPERATIONS 113Name MeaningMPI MAX maximumMPI MIN minimumMPI SUM sumMPI PROD productMPI LAND logical andMPI BAND bit-wise andMPI LOR logical orMPI BOR bit-wise orMPI LXOR logical xorMPI BXOR bit-wise xorMPI MAXLOC max value and locationMPI MINLOC min value and locationThe two operations MPI MINLOC and MPI MAXLOC are discussed separately in Sec.4.9.3. For the other prede�ned operations, we enumerate below the allowed combinationsof op and datatype arguments. First, de�ne groups of MPI basic datatypes in the followingway.C integer: MPI INT, MPI LONG, MPI SHORT,MPI UNSIGNED SHORT, MPI UNSIGNED,MPI UNSIGNED LONGFortran integer: MPI INTEGERFloating point: MPI FLOAT, MPI DOUBLE, MPI REAL,MPI DOUBLE PRECISION, MPI LONG DOUBLELogical: MPI LOGICALComplex: MPI COMPLEXByte: MPI BYTENow, the valid datatypes for each option is speci�ed below.Op Allowed TypesMPI MAX, MPI MIN C integer, Fortran integer, Floating point, ComplexMPI SUM, MPI PROD C integer, Fortran integer, Floating point, ComplexMPI LAND, MPI LOR, MPI LXOR C integer, LogicalMPI BAND, MPI BOR, MPI BXOR C integer, Fortran integer, ByteExample 4.15 A routine that computes the dot product of two vectors that are distributedacross a group of processes and returns the answer at node zero.SUBROUTINE PAR_BLAS1(m, a, b, c, comm)REAL a(m), b(m) ! local slice of arrayREAL c ! result (at node zero)REAL sumINTEGER m, comm, i, ierr
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114 CHAPTER 4. COLLECTIVE COMMUNICATION! local sumsum = 0.0DO i = 1, msum = sum + a(i)*b(i)END DO! global sumCALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)RETURNExample 4.16 A routine that computes the product of a vector and an array that aredistributed across a group of processes and returns the answer at node zero.SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)REAL a(m), b(m,n) ! local slice of arrayREAL c(n) ! resultREAL sum(n)INTEGER n, comm, i, j, ierr! local sumDO j= 1, nsum(j) = 0.0DO i = 1, msum(j) = sum(j) + a(i)*b(i,j)END DOEND DO! global sumCALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)! return result at node zero (and garbage at the other nodes)RETURN4.9.3 MINLOC and MAXLOCThe operator MPI MINLOC is used to compute a global minimum and also an index attachedto the minimum value. MPI MAXLOC similarly computes a global maximum and index. Oneapplication of these is to compute a global minimum (maximum) and the rank of the processcontaining this value.The operation that de�nes MPI MAXLOC is: ui ! �  vj ! =  wk !wherew = max(u; v)and
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4.9. GLOBAL REDUCTION OPERATIONS 115k = 8><>: i if u > vmin(i; j) if u = vj if u < vMPI MINLOC is de�ned similarly: ui ! �  vj ! =  wk !wherew = min(u; v)and k = 8><>: i if u < vmin(i; j) if u = vj if u > vBoth operations are associative and commutative. Note that if MPI MAXLOC is appliedto reduce a sequence of pairs (u0; 0); (u1; 1); : : : ; (un�1; n � 1), then the value returned is(u; r), where u = maxi ui and r is the index of the �rst global maximum in the sequence.Thus, if each process supplies a value and its rank within the group, then a reduce operationwith op = MPI MAXLOC will return the maximum value and the rank of the �rst processwith that value. Similarly, MPI MINLOC can be used to return a minimum and its index.More generally, MPI MINLOC computes a lexicographic minimum, where elements are orderedaccording to the �rst component of each pair, and ties are resolved according to the secondcomponent.The reduce operation is de�ned to operate on arguments that consist of a pair: valueand index. For both Fortran and C, types are provided to describe the pair. The potentiallymixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,for Fortran, by having the MPI-provided type consist of a pair of the same type as value,and coercing the index to this type also. In C, the MPI-provided pair type has distincttypes and the index is an int.In order to use MPI MINLOC and MPI MAXLOC in a reduce operation, one must providea datatype argument that represents a pair (value and index). MPI provides seven suchprede�ned datatypes. The operations MPI MAXLOC and MPI MINLOC can be used with eachof the following datatypes.Fortran:Name DescriptionMPI 2REAL pair of REALsMPI 2DOUBLE PRECISION pair of DOUBLE PRECISION variablesMPI 2INTEGER pair of INTEGERsMPI 2COMPLEX pair of COMPLEXesC:Name DescriptionMPI FLOAT INT 
oat and int
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116 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI DOUBLE INT double and intMPI LONG INT long and intMPI 2INT pair of intMPI SHORT INT short and intMPI LONG DOUBLE INT long double and intThe datatype MPI 2REAL is as if de�ned by the following (see Section 3.12).MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)Similar statements apply for MPI 2INTEGER, MPI 2DOUBLE PRECISION, and MPI 2INT.The datatype MPI FLOAT INT is as if de�ned by the following sequence of instructions.type[0] = MPI_FLOATtype[1] = MPI_INTdisp[0] = 0disp[1] = sizeof(float)block[0] = 1block[1] = 1MPI_TYPE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)Similar statements apply for MPI LONG INT and MPI DOUBLE INT.Example 4.17 Each process has an array of 30 doubles, in C. For each of the 30 locations,compute the value and rank of the process containing the largest value..../* each process has an array of 30 double: ain[30]*/double ain[30], aout[30];int ind[30];struct {double val;int rank;} in[30], out[30];int i, myrank, root;MPI_Comm_rank(MPI_COMM_WORLD, &myrank);for (i=0; i<30; ++i) {in[i].val = ain[i];in[i].rank = myrank;}MPI_Reduce( in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm );/* At this point, the answer resides on process root*/if (myrank == root) {/* read ranks out*/for (i=0; i<30; ++i) {aout[i] = out[i].val;
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4.9. GLOBAL REDUCTION OPERATIONS 117ind[i] = out[i].rank;}}Example 4.18 Same example, in Fortran....! each process has an array of 30 double: ain(30)DOUBLE PRECISION ain(30), aout(30)INTEGER ind(30);DOUBLE PRECISION in(2,30), out(2,30)INTEGER i, myrank, root, ierr;MPI_COMM_RANK(MPI_COMM_WORLD, myrank);DO I=1, 30in(1,i) = ain(i)in(2,i) = myrank ! myrank is coerced to a doubleEND DOMPI_REDUCE( in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,comm, ierr );! At this point, the answer resides on process rootIF (myrank .EQ. root) THEN! read ranks outDO I= 1, 30aout(i) = out(1,i)ind(i) = out(2,i) ! rank is coerced back to an integerEND DOEND IFExample 4.19 Each process has a non-empty array of values. Find the minimum globalvalue, the rank of the process that holds it and its index on this process.#define LEN 1000float val[LEN]; /* local array of values */int count; /* local number of values */int myrank, minrank, minindex;float minval;struct {float value;int index;} in, out;/* local minloc */in.value = val[0];
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118 CHAPTER 4. COLLECTIVE COMMUNICATIONin.index = 0;for (i=1; i < count; i++)if (in.value > val[i]) {in.value = val[i];in.index = i;}/* global minloc */MPI_Comm_rank(MPI_COMM_WORLD, &myrank);in.index = myrank*LEN + in.index;MPI_Reduce( in, out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );/* At this point, the answer resides on process root*/if (myrank == root) {/* read answer out*/minval = out.value;minrank = out.index / LEN;minindex = out.index % LEN;} Rationale. The de�nition of MPI MINLOC and MPI MAXLOC given here has theadvantage that it does not require any special-case handling of these two operations:they are handled like any other reduce operation. A programmer can provide his orher own de�nition of MPI MAXLOC and MPI MINLOC, if so desired. The disadvantageis that values and indices have to be �rst interleaved, and that indices and values haveto be coerced to the same type, in Fortran. (End of rationale.)4.9.4 User-De�ned OperationsMPI OP CREATE( function, commute, op)IN function user de�ned function (function)IN commute true if commutative; false otherwise.OUT op operation (handle)int MPI Op create(MPI User function *function, int commute, MPI Op *op)MPI OP CREATE( FUNCTION, COMMUTE, OP, IERROR)EXTERNAL FUNCTIONLOGICAL COMMUTEINTEGER OP, IERRORMPI OP CREATE binds a user-de�ned global operation to an op handle that cansubsequently be used in MPI REDUCE, MPI ALLREDUCE, MPI REDUCE SCATTER, andMPI SCAN. The user-de�ned operation is assumed to be associative. If commute = true,then the operation should be both commutative and associative. If commute = false,
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4.9. GLOBAL REDUCTION OPERATIONS 119then the order of operations is �xed and is de�ned to be in ascending, process rank order,beginning with process zero.function is the user-de�ned function, which must have the following four arguments:invec, inoutvec, len and datatype.The ANSI-C prototype for the function is the following.typedef void MPI_User_function( void *invec, void *inoutvec, int *len,MPI_Datatype *datatype);The Fortran declaration of the user-de�ned function appears below.FUNCTION USER_FUNCTION( INVEC(*), INOUTVEC(*), LEN, TYPE)<type> INVEC(LEN), INOUTVEC(LEN)INTEGER LEN, TYPEThe datatype argument is a handle to the data type that was passed into the call toMPI REDUCE. The user reduce function should be written such that the following holds:Let u[0], ... , u[len-1] be the len elements in the communication bu�er described by thearguments invec, len and datatype when the function is invoked; let v[0], ... , v[len-1] be lenelements in the communication bu�er described by the arguments inoutvec, len and datatypewhen the function is invoked; let w[0], ... , w[len-1] be len elements in the communicationbu�er described by the arguments inoutvec, len and datatype when the function returns;then w[i] = u[i]�v[i], for i=0 , ... , len-1, where � is the reduce operation that the functioncomputes.Informally, we can think of invec and inoutvec as arrays of len elements that functionis combining. The result of the reduction over-writes values in inoutvec, hence the name.Each invocation of the function results in the pointwise evaluation of the reduce operatoron len elements: I.e, the function returns in inoutvec[i] the value invec[i] � inoutvec[i], fori = 0; : : : ; count � 1, where � is the combining operation computed by the function.Rationale. The len argument allows MPI REDUCE to avoid calling the function foreach element in the input bu�er. Rather, the system can choose to apply the functionto chunks of input. In C, it is passed in as a reference for reasons of compatibilitywith Fortran.By internally comparing the value of the datatype argument to known, global handles,it is possible to overload the use of a single user-de�ned function for several, di�erentdata types. (End of rationale.)General datatypes may be passed to the user function. However, use of datatypes thatare not contiguous is likely to lead to ine�ciencies.No MPI communication function may be called inside the user function. MPI ABORTmay be called inside the function in case of an error.Advice to users. Suppose one de�nes a library of user-de�ned reduce functions thatare overloaded: the datatype argument is used to select the right execution path at eachinvocation, according to the types of the operands. The user-de�ned reduce functioncannot \decode" the datatype argument that it is passed, and cannot identify, by itself,the correspondence between the datatype handles and the datatype they represent.This correspondence was established when the datatypes were created. Before the
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120 CHAPTER 4. COLLECTIVE COMMUNICATIONlibrary is used, a library initialization preamble must be executed. This preamblecode will de�ne the datatypes that are used by the library, and store handles to thesedatatypes in global, static variables that are shared by the user code and the librarycode.The Fortran version of MPI REDUCE will invoke a user-de�ned reduce function usingthe Fortran calling conventions and will pass a Fortran-type datatype argument; theC version will use C calling convention and the C representation of a datatype handle.Users who plan to mix languages should de�ne their reduction functions accordingly.(End of advice to users.)Advice to implementors. We outline below a naive and ine�cient implementation ofMPI REDUCE.if (rank > 0) {RECV(tempbuf, count, datatype, rank-1,...)User_reduce( tempbuf, sendbuf, count, datatype)}if (rank < groupsize-1) {SEND( sendbuf, count, datatype, rank+1, ...)}/* answer now resides in process groupsize-1 ... now send to root*/if (rank == groupsize-1) {SEND( sendbuf, count, datatype, root, ...)}if (rank == root) {RECV(recvbuf, count, datatype, groupsize-1,...)}The reduction computation proceeds, sequentially, from process 0 to process group-size-1. This order is chosen so as to respect the order of a possibly non-commutativeoperator de�ned by the function User reduce(). A more e�cient implementation isachieved by taking advantage of associativity and using a logarithmic tree reduction.Commutativity can be used to advantage, for those cases in which the commute argu-ment to MPI OP CREATE is true. Also, the amount of temporary bu�er required canbe reduced, and communication can be pipelined with computation, by transferringand reducing the elements in chunks of size len <count.The prede�ned reduce operations can be implemented as a library of user-de�nedoperations. However, better performance might be achieved if MPI REDUCE handlesthese functions as a special case. (End of advice to implementors.)MPI OP FREE( op)IN op operation (handle)int MPI op free( MPI Op *op)
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4.9. GLOBAL REDUCTION OPERATIONS 121MPI OP FREE( OP, IERROR)INTEGER OP, IERRORMarks a user-de�ned reduction operation for deallocation and sets op to MPI OP NULL.Example of User-de�ned ReduceIt is time for an example of user-de�ned reduction.Example 4.20 Compute the product of an array of complex numbers, in C.typedef struct {double real,imag;} Complex;/* the user-defined function*/void myProd( Complex *in, Complex *inout, int *len, MPI_Datatype *dptr ){ int i;Complex c;for (i=0; i< *len; ++i) {c.real = inout->real*in->real -inout->imag*in->imag;c.imag = inout->real*in->imag +inout->imag*in->real;*inout = c;in++; inout++;}}/* and, to call it...*/... /* each process has an array of 100 Complexes*/Complex a[100], answer[100];MPI_Op myOp;MPI_Datatype ctype;/* explain to MPI how type Complex is defined*/MPI_Type_contiguous( 2, MPI_DOUBLE, &ctype );MPI_Type_commit( &ctype );/* create the complex-product user-op*/MPI_Op_create( myProd, True, &myOp );
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122 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI_Reduce( a, answer, 100, ctype, myOp, root, comm );/* At this point, the answer, which consists of 100 Complexes,* resides on process root*/4.9.5 All-ReduceMPI includes variants of each of the reduce operations where the result is returned to allprocesses in the group. MPI requires that all processes participating in these operationsreceive identical results.MPI ALLREDUCE( sendbuf, recvbuf, count, datatype, op, comm)IN sendbuf starting address of send bu�er (choice)OUT recvbuf starting address of receive bu�er (choice)IN count number of elements in send bu�er (integer)IN datatype data type of elements of send bu�er (handle)IN op operation (handle)IN comm communicator (handle)int MPI Allreduce(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, MPI Comm comm)MPI ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, COMM, IERRORSame as MPI REDUCE except that the result appears in the receive bu�er of all thegroup members.Advice to implementors. The all-reduce operations can be implemented as a re-duce, followed by a broadcast. However, a direct implementation can lead to betterperformance. (End of advice to implementors.)Example 4.21 A routine that computes the product of a vector and an array that aredistributed across a group of processes and returns the answer at all nodes (see also Example4.16).SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)REAL a(m), b(m,n) ! local slice of arrayREAL c(n) ! resultREAL sum(n)INTEGER n, comm, i, j, ierr! local sumDO j= 1, n
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4.10. REDUCE-SCATTER 123sum(j) = 0.0DO i = 1, msum(j) = sum(j) + a(i)*b(i,j)END DOEND DO! global sumCALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)! return result at all nodesRETURN4.10 Reduce-ScatterMPI includes variants of each of the reduce operations where the result is scattered to allprocesses in the group on return.MPI REDUCE SCATTER( sendbuf, recvbuf, recvcounts, datatype, op, comm)IN sendbuf starting address of send bu�er (choice)OUT recvbuf starting address of receive bu�er (choice)IN recvcounts integer array specifying the number of elements in re-sult distributed to each process. Array must be iden-tical on all calling processes.IN datatype data type of elements of input bu�er (handle)IN op operation (handle)IN comm communicator (handle)int MPI Reduce scatter(void* sendbuf, void* recvbuf, int *recvcounts,MPI Datatype datatype, MPI Op op, MPI Comm comm)MPI REDUCE SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERRORMPI REDUCE SCATTER �rst does an element-wise reduction on vector of count =Pi recvcounts[i] elements in the send bu�er de�ned by sendbuf, count and datatype. Next,the resulting vector of results is split into n disjoint segments, where n is the number ofmembers in the group. Segment i contains recvcounts[i] elements. The ith segment is sentto process i and stored in the receive bu�er de�ned by recvbuf, recvcounts[i] and datatype.Advice to implementors. TheMPI REDUCE SCATTER routine is functionally equiva-lent to: AMPI REDUCE operation function with count equal to the sum of recvcounts[i]followed by MPI SCATTERV with sendcounts equal to recvcounts. However, a directimplementation may run faster. (End of advice to implementors.)
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124 CHAPTER 4. COLLECTIVE COMMUNICATION4.11 ScanMPI SCAN( sendbuf, recvbuf, count, datatype, op, comm )IN sendbuf starting address of send bu�er (choice)OUT recvbuf starting address of receive bu�er (choice)IN count number of elements in input bu�er (integer)IN datatype data type of elements of input bu�er (handle)IN op operation (handle)IN comm communicator (handle)int MPI Scan(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, MPI Comm comm )MPI SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, COMM, IERRORMPI SCAN is used to perform a pre�x reduction on data distributed across the group.The operation returns, in the receive bu�er of the process with rank i, the reduction ofthe values in the send bu�ers of processes with ranks 0,...,i (inclusive). The type ofoperations supported, their semantics, and the constraints on send and receive bu�ers areas for MPI REDUCE.Rationale. We have de�ned an inclusive scan, that is, the pre�x reduction on processi includes the data from process i. An alternative is to de�ne scan in an exclusivemanner, where the result on i only includes data up to i-1. Both de�nitions are useful.The latter has some advantages: the inclusive scan can always be computed from theexclusive scan with no additional communication; for non-invertible operations suchas max and min, communication is required to compute the exclusive scan from theinclusive scan. There is, however, a complication with exclusive scan since one mustde�ne the \unit" element for the reduction in this case. That is, one must explicitlysay what occurs for process 0. This was thought to be complex for user-de�nedoperations and hence, the exclusive scan was dropped. (End of rationale.)4.11.1 Example using MPI SCANExample 4.22 This example uses a user-de�ned operation to produce a segmented scan.A segmented scan takes, as input, a set of values and a set of logicals, and the logicalsdelineate the various segments of the scan. For example:values v1 v2 v3 v4 v5 v6 v7 v8logicals 0 0 1 1 1 0 0 1result v1 v1 + v2 v3 v3 + v4 v3 + v4 + v5 v6 v6 + v7 v8The operator that produces this e�ect is,

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



4.11. SCAN 125 ui ! �  vj ! =  wj ! ;where, w = ( u+ v if i = jv if i 6= j :Note that this is a non-commutative operator. C code that implements it is givenbelow.typedef struct {double val;int log;} SegScanPair;/* the user-defined function*/void segScan( SegScanPair *in, SegScanPair *inout, int *len,MPI_Datatype *dptr ){ int i;SegScanPair c;for (i=0; i< *len; ++i) {if ( in->log == inout->log )c.val = in->val + inout->val;elsec.val = inout->val;c.log = inout->log;*inout = c;in++; inout++;}} Note that the inout argument to the user-de�ned function corresponds to the right-hand operand of the operator. When using this operator, we must be careful to specify thatit is non-commutative, as in the following.int i,base;SeqScanPair a, answer;MPI_Op myOp;MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};MPI_Aint disp[2];int blocklen[2] = { 1, 1};MPI_Datatype sspair;/* explain to MPI how type SegScanPair is defined*/
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126 CHAPTER 4. COLLECTIVE COMMUNICATIONMPI_Address( a, disp);MPI_Address( a.log, disp+1);base = disp[0];for (i=0; i<2; ++i) disp[i] -= base;MPI_Type_struct( 2, blocklen, disp, type, &sspair );MPI_Type_commit( &sspair );/* create the segmented-scan user-op*/MPI_Op_create( segScan, False, &myOp );...MPI_Scan( a, answer, 1, sspair, myOp, root, comm );4.12 CorrectnessA correct, portable programmust invoke collective communications so that deadlock will notoccur, whether collective communications are synchronizing or not. The following examplesillustrate dangerous use of collective routines.Example 4.23 The following is erroneous.switch(rank) {case 0:MPI_Bcast(buf1, count, type, 0, comm);MPI_Bcast(buf2, count, type, 1, comm);break;case 1:MPI_Bcast(buf2, count, type, 1, comm);MPI_Bcast(buf1, count, type, 0, comm);break;} We assume that the group of comm is f0,1g. Two processes execute two broadcastoperations in reverse order. If the operation is synchronizing then a deadlock will occur.Collective operations must be executed in the same order at all members of the com-munication group.Example 4.24 The following is erroneous.switch(rank) {case 0:MPI_Bcast(buf1, count, type, 0, comm0);MPI_Bcast(buf2, count, type, 2, comm2);break;case 1:MPI_Bcast(buf1, count, type, 1, comm1);MPI_Bcast(buf2, count, type, 0, comm0);break;case 2:

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



4.12. CORRECTNESS 127MPI_Bcast(buf1, count, type, 2, comm2);MPI_Bcast(buf2, count, type, 1, comm1);break;} Assume that the group of comm0 is f0,1g, of comm1 is f1, 2g and of comm2 is f2,0g. Ifthe broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcastin comm2 completes only after the broadcast in comm0; the broadcast in comm0 completesonly after the broadcast in comm1; and the broadcast in comm1 completes only after thebroadcast in comm2. Thus, the code will deadlock.Collective operations must be executed in an order so that no cyclic dependences occur.Example 4.25 The following is erroneous.switch(rank) {case 0:MPI_Bcast(buf1, count, type, 0, comm);MPI_Send(buf2, count, type, 1, tag, comm);break;case 1:MPI_Recv(buf2, count, type, 0, tag, comm);MPI_Bcast(buf1, count, type, 0, comm);break;} Process zero executes a broadcast, followed by a blocking send operation. Process one�rst executes a blocking receive that matches the send, followed by broadcast call thatmatches the broadcast of process zero. This program may deadlock. The broadcast call onprocess zero may block until process one executes the matching broadcast call, so that thesend is not executed. Process one will de�nitely block on the receive and so, in this case,never executes the broadcast.The relative order of execution of collective operations and point-to-point operationsshould be such, so that even if the collective operations and the point-to-point operationsare synchronizing, no deadlock will occur.Example 4.26 A correct, but non-deterministic program.switch(rank) {case 0:MPI_Bcast(buf1, count, type, 0, comm);MPI_Send(buf2, count, type, 1, tag, comm);break;case 1:MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm);MPI_Bcast(buf1, count, type, 0, comm);MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm);break;case 2:MPI_Send(buf2, count, type, 1, tag, comm);
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128 CHAPTER 4. COLLECTIVE COMMUNICATION
First Execution

Second Execution

0 1 2

recv

broadcast broadcast broadcast

send

recv

process:

send

match

match

broadcast

recv

recv send

broadcast

send

broadcast
match

matchFigure 4.10: A race condition causes non-deterministic matching of sends and receives. Onecannot rely on synchronization from a broadcast to make the program deterministic.MPI_Bcast(buf1, count, type, 0, comm);break;} All three processes participate in a broadcast. Process 0 sends a message to process1 after the broadcast, and process 2 sends a message to process 1 before the broadcast.Process 1 receives before and after the broadcast, with a wildcard source argument.Two possible executions of this program, with di�erent matchings of sends and receives,are illustrated in �gure 4.10. Note that the second execution has the peculiar e�ect that asend executed after the broadcast is received at another node before the broadcast. Thisexample illustrates the fact that one should not rely on collective communication functionsto have particular synchronization e�ects. A program that works correctly only when the�rst execution occurs (only when broadcast is synchronizing) is erroneous.Finally, in multithreaded implementations, one can have more than one, concurrentlyexecuting, collective communication call at a process. In these situations, it is the user's re-sponsibility to ensure that the same communicator is not used concurrently by two di�erentcollective communication calls at the same process.Advice to implementors. Assume that broadcast is implemented using point-to-pointMPI communication. Suppose the following two rules are followed.1. All receives specify their source explicitly (no wildcards).2. Each process sends all messages that pertain to one collective call before sendingany message that pertain to a subsequent collective call.
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4.12. CORRECTNESS 129Then, messages belonging to successive broadcasts cannot be confused, as the orderof point-to-point messages is preserved.It is the implementor's responsibility to ensure that point-to-point messages are notconfused with collective messages. One way to accomplish this is, whenever a commu-nicator is created, to also create a \hidden communicator" for collective communica-tion. One could achieve a similar e�ect more cheaply, for example, by using a hiddentag or context bit to indicate whether the communicator is used for point-to-point orcollective communication. (End of advice to implementors.)123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



Chapter 5Groups, Contexts, andCommunicators5.1 IntroductionThis chapter introduces MPI features that support the development of parallel libraries.Parallel libraries are needed to encapsulate the distracting complications inherent in paral-lel implementations of key algorithms. They help to ensure consistent correctness of suchprocedures, and provide a \higher level" of portability than MPI itself can provide. Assuch, libraries prevent each programmer from repeating the work of de�ning consistentdata structures, data layouts, and methods that implement key algorithms (such as matrixoperations). Since the best libraries come with several variations on parallel systems (dif-ferent data layouts, di�erent strategies depending on the size of the system or problem, ortype of 
oating point), this too needs to be hidden from the user.We refer the reader to [26] and [3] for further information on writing libraries in MPI,using the features described in this chapter.5.1.1 Features Needed to Support LibrariesThe key features needed to support the creation of robust parallel libraries are as follows:� Safe communication space, that guarantees that libraries can communicate as theyneed to, without con
icting with communication extraneous to the library,� Group scope for collective operations, that allow libraries to avoid unnecessarily syn-chronizing uninvolved processes (potentially running unrelated code),� Abstract process naming to allow libraries to describe their communication in termssuitable to their own data structures and algorithms,� The ability to \adorn" a set of communicating processes with additional user-de�nedattributes, such as extra collective operations. This mechanism should provide ameans for the user or library writer e�ectively to extend a message-passing notation.In addition, a uni�ed mechanism or object is needed for conveniently denoting communica-tion context, the group of communicating processes, to house abstract process naming, andto store adornments.
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5.1. INTRODUCTION 1315.1.2 MPI's Support for LibrariesThe corresponding concepts that MPI provides, speci�cally to support robust libraries, areas follows:� Contexts of communication,� Groups of processes,� Virtual topologies,� Attribute caching,� Communicators.Communicators (see [16, 24, 27]) encapsulate all of these ideas in order to provide theappropriate scope for all communication operations in MPI. Communicators are dividedinto two kinds: intra-communicators for operations within a single group of processes, andinter-communicators, for point-to-point communication between two groups of processes.Caching. Communicators (see below) provide a \caching" mechanism that allows one toassociate new attributes with communicators, on a par with MPI built-in features. Thiscan be used by advanced users to adorn communicators further, and by MPI to implementsome communicator functions. For example, the virtual-topology functions described inChapter 6 are likely to be supported this way.Groups. Groups de�ne an ordered collection of processes, each with a rank, and it is thisgroup that de�nes the low-level names for inter-process communication (ranks are used forsending and receiving). Thus, groups de�ne a scope for process names in point-to-pointcommunication. In addition, groups de�ne the scope of collective operations. Groups maybe manipulated separately from communicators in MPI, but only communicators can beused in communication operations.Intra-communicators. The most commonly used means for message passing in MPI is viaintra-communicators. Intra-communicators contain an instance of a group, contexts ofcommunication for both point-to-point and collective communication, and the ability toinclude virtual topology and other attributes. These features work as follows:� Contexts provide the ability to have separate safe \universes" of message passing inMPI. A context is akin to an additional tag that di�erentiates messages. The systemmanages this di�erentiation process. The use of separate communication contextsby distinct libraries (or distinct library invocations) insulates communication internalto the library execution from external communication. This allows the invocation ofthe library even if there are pending communications on \other" communicators, andavoids the need to synchronize entry or exit into library code. Pending point-to-pointcommunications are also guaranteed not to interfere with collective communicationswithin a single communicator.� Groups de�ne the participants in the communication (see above) of a communicator.
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132 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS� A virtual topology de�nes a special mapping of the ranks in a group to and from atopology. Special constructors for communicators are de�ned in chapter 6 to providethis feature. Intra-communicators as described in this chapter do not have topologies.� Attributes de�ne the local information that the user or library has added to a com-municator for later reference.Advice to users. The current practice in many communication libraries is that thereis a unique, prede�ned communication universe that includes all processes availablewhen the parallel program is initiated; the processes are assigned consecutive ranks.Participants in a point-to-point communication are identi�ed by their rank; a collec-tive communication (such as broadcast) always involves all processes. This practicecan be followed in MPI by using the prede�ned communicator MPI COMM WORLD.Users who are satis�ed with this practice can plug in MPI COMM WORLD wherevera communicator argument is required, and can consequently disregard the rest of thischapter. (End of advice to users.)Inter-communicators. The discussion has dealt so far with intra-communication: com-munication within a group. MPI also supports inter-communication: communicationbetween two non-overlapping groups. When an application is built by composing severalparallel modules, it is convenient to allow one module to communicate with another usinglocal ranks for addressing within the second module. This is especially convenient in aclient-server computing paradigm, where either client or server are parallel. The supportof inter-communication also provides a mechanism for the extension of MPI to a dynamicmodel where not all processes are preallocated at initialization time. In such a situation,it becomes necessary to support communication across \universes." Inter-communicationis supported by objects called inter-communicators. These objects bind two groups to-gether with communication contexts shared by both groups. For inter-communicators, thesefeatures work as follows:� Contexts provide the ability to have a separate safe \universe" of message passingbetween the two groups. A send in the local group is always a receive in the re-mote group, and vice versa. The system manages this di�erentiation process. Theuse of separate communication contexts by distinct libraries (or distinct library in-vocations) insulates communication internal to the library execution from externalcommunication. This allows the invocation of the library even if there are pendingcommunications on \other" communicators, and avoids the need to synchronize entryor exit into library code. There is no general-purpose collective communication oninter-communicators, so contexts are used just to isolate point-to-point communica-tion.� A local and remote group specify the recipients and destinations for an inter-com-municator.� Virtual topology is unde�ned for an inter-communicator.� As before, attributes cache de�nes the local information that the user or library hasadded to a communicator for later reference.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



5.2. BASIC CONCEPTS 133MPI provides mechanisms for creating and manipulating inter-communicators. Theyare used for point-to-point communication in an related manner to intra-communicators.Users who do not need inter-communication in their applications can safely ignore thisextension. Users who need collective operations via inter-communicators must layer it ontop of MPI. Users who require inter-communication between overlapping groups must alsolayer this capability on top of MPI.5.2 Basic ConceptsIn this section, we turn to a more formal de�nition of the concepts introduced above.5.2.1 GroupsA group is an ordered set of process identi�ers (henceforth processes); processes areimplementation-dependent objects. Each process in a group is associated with an inte-ger rank. Ranks are contiguous and start from zero. Groups are represented by opaquegroup objects, and hence cannot be directly transferred from one process to another. Agroup is used within a communicator to describe the participants in a communication \uni-verse" and to rank such participants (thus giving them unique names within that \universe"of communication).There is a special pre-de�ned group: MPI GROUP EMPTY, which is a group with nomembers. The prede�ned constant MPI GROUP NULL is the value used for invalid grouphandles.Advice to users. MPI GROUP EMPTY, which is a valid handle to an empty group,should not be confused with MPI GROUP NULL, which in turn is an invalid handle.The former may be used as an argument to group operations; the latter, which isreturned when a group is freed, in not a valid argument. (End of advice to users.)Advice to implementors. A group may be represented by a virtual-to-real process-address-translation table. Each communicator object (see below) would have a pointerto such a table.Simple implementations of MPI will enumerate groups, such as in a table. However,more advanced data structures make sense in order to improve scalability and memoryusage with large numbers of processes. Such implementations are possible with MPI.(End of advice to implementors.)5.2.2 ContextsA context is a property of communicators (de�ned next) that allows partitioning of thecommunication space. A message sent in one context cannot be received in another context.Furthermore, where permitted, collective operations are independent of pending point-to-point operations. Contexts are not explicit MPI objects; they appear only as part of therealization of communicators (below).Advice to implementors. Distinct communicators in the same process have distinctcontexts. A context is essentially a system-managed tag (or tags) needed to makea communicator safe for point-to-point and MPI-de�ned collective communication.
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134 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSSafety means that collective and point-to-point communication within one commu-nicator do not interfere, and that communication over distinct communicators don'tinterfere.A possible implementation for a context is as a supplemental tag attached to messageson send and matched on receive. Each intra-communicator stores the value of its twotags (one for point-to-point and one for collective communication). Communicator-generating functions use a collective communication to agree on a new group-wideunique context.Analogously, in inter-communication (which is strictly point-to-point communication),two context tags are stored per communicator, one used by group A to send and groupB to receive, and a second used by group B to send and for group A to receive.Since contexts are not explicit objects, other implementations are also possible. (Endof advice to implementors.)5.2.3 Intra-CommunicatorsIntra-communicators bring together the concepts of group and context. To supportimplementation-speci�c optimizations, and application topologies (de�ned in the next chap-ter, chapter 6), communicators may also \cache" additional information (see section 5.7).MPI communication operations reference communicators to determine the scope and the\communication universe" in which a point-to-point or collective operation is to operate.Each communicator contains a group of valid participants; this group always includesthe local process. The source and destination of a message is identi�ed by process rankwithin that group.For collective communication, the intra-communicator speci�es the set of processes thatparticipate in the collective operation (and their order, when signi�cant). Thus, the commu-nicator restricts the \spatial" scope of communication, and provides machine-independentprocess addressing through ranks.Intra-communicators are represented by opaque intra-communicator objects, andhence cannot be directly transferred from one process to another.5.2.4 Prede�ned Intra-CommunicatorsAn initial intra-communicator MPI COMM WORLD of all processes the local process cancommunicate with after initialization (itself included) is de�ned once MPI INIT has beencalled. In addition, the communicator MPI COMM SELF is provided, which includes only theprocess itself.The prede�ned constant MPI COMM NULL is the value used for invalid communicatorhandles.In a static-process-model implementation of MPI, all processes that participate in thecomputation are available after MPI is initialized. For this case, MPI COMM WORLD is acommunicator of all processes available for the computation; this communicator has thesame value in all processes. In an implementation of MPI where processes can dynami-cally join an MPI execution, it may be the case that a process starts an MPI computationwithout having access to all other processes. In such situations, MPI COMM WORLD is acommunicator incorporating all processes with which the joining process can immediatelycommunicate. Therefore, MPI COMM WORLD may simultaneously have di�erent values indi�erent processes.
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5.3. GROUP MANAGEMENT 135All MPI implementations are required to provide the MPI COMM WORLD communica-tor. It cannot be deallocated during the life of a process. The group corresponding tothis communicator does not appear as a pre-de�ned constant, but it may be accessed usingMPI COMM GROUP (see below). MPI does not specify the correspondence between theprocess rank in MPI COMM WORLD and its (machine-dependent) absolute address. Neitherdoes MPI specify the function of the host process, if any. Other implementation-dependent,prede�ned communicators may also be provided.5.3 Group ManagementThis section describes the manipulation of process groups in MPI. These operations arelocal and their execution do not require interprocess communication.5.3.1 Group AccessorsMPI GROUP SIZE(group, size)IN group group (handle)OUT size number of processes in the group (integer)int MPI Group size(MPI Group group, int *size)MPI GROUP SIZE(GROUP, SIZE, IERROR)INTEGER GROUP, SIZE, IERRORMPI GROUP RANK(group, rank)IN group group (handle)OUT rank rank of the calling process in group, orMPI UNDEFINED if the process is not a member (in-teger)int MPI Group rank(MPI Group group, int *rank)MPI GROUP RANK(GROUP, RANK, IERROR)INTEGER GROUP, RANK, IERROR
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136 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSMPI GROUP TRANSLATE RANKS (group1, n, ranks1, group2, ranks2)IN group1 group1 (handle)IN n number of ranks in ranks1 and ranks2 arrays (integer)IN ranks1 array of zero or more valid ranks in group1IN group2 group2 (handle)OUT ranks2 array of corresponding ranks in group2, MPI UNDE-FINED when no correspondence exists.int MPI Group translate ranks (MPI Group group1, int n, int *ranks1,MPI Group group2, int *ranks2)MPI GROUP TRANSLATE RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERRORThis function is important for determining the relative numbering of the same processesin two di�erent groups. For instance, if one knows the ranks of certain processes in the groupof MPI COMM WORLD, one might want to know their ranks in a subset of that group.MPI GROUP COMPARE(group1, group2, result)IN group1 �rst group (handle)IN group2 second group (handle)OUT result result (integer)int MPI Group compare(MPI Group group1,MPI Group group2, int *result)MPI GROUP COMPARE(GROUP1, GROUP2, RESULT, IERROR)INTEGER GROUP1, GROUP2, RESULT, IERRORMPI IDENT results if the group members and group order is exactly the same in both groups.This happens for instance if group1 and group2 are the same handle. MPI SIMILAR results ifthe group members are the same but the order is di�erent. MPI UNEQUAL results otherwise.5.3.2 Group ConstructorsGroup constructors are used to subset and superset existing groups. These constructorsconstruct new groups from existing groups. These are local operations, and distinct groupsmay be de�ned on di�erent processes; a process may also de�ne a group that does notinclude itself. Consistent de�nitions are required when groups are used as arguments incommunicator-building functions. MPI does not provide a mechanism to build a groupfrom scratch, but only from other, previously de�ned groups. The base group, uponwhich all other groups are de�ned, is the group associated with the initial communica-tor MPI COMM WORLD (accessible through the function MPI COMM GROUP).Rationale. In what follows, there is no group duplication function analogous toMPI COMM DUP, de�ned later in this chapter. There is no need for a group dupli-cator. A group, once created, can have several references to it by making copies of
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5.3. GROUP MANAGEMENT 137the handle. The following constructors address the need for subsets and supersets ofexisting groups. (End of rationale.)Advice to implementors. Each group constructor behaves as if it returned a newgroup object. When this new group is a copy of an existing group, then one canavoid creating such new objects, using a reference-count mechanism. (End of adviceto implementors.)MPI COMM GROUP(comm, group)IN comm communicator (handle)OUT group group corresponding to comm (handle)int MPI Comm group(MPI Comm comm, MPI Group *group)MPI COMM GROUP(COMM, GROUP, IERROR)INTEGER COMM, GROUP, IERRORMPI COMM GROUP returns in group a handle to the group of comm.MPI GROUP UNION(group1, group2, newgroup)IN group1 �rst group (handle)IN group2 second group (handle)OUT newgroup union group (handle)int MPI Group union(MPI Group group1, MPI Group group2, MPI Group *newgroup)MPI GROUP UNION(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERRORMPI GROUP INTERSECTION(group1, group2, newgroup)IN group1 �rst group (handle)IN group2 second group (handle)OUT newgroup intersection group (handle)int MPI Group intersection(MPI Group group1, MPI Group group2,MPI Group *newgroup)MPI GROUP INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERROR
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138 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSMPI GROUP DIFFERENCE(group1, group2, newgroup)IN group1 �rst group (handle)IN group2 second group (handle)OUT newgroup di�erence group (handle)int MPI Group difference(MPI Group group1, MPI Group group2,MPI Group *newgroup)MPI GROUP DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERRORThe set-like operations are de�ned as follows:union All elements of the �rst group (group1), followed by all elements of second group(group2) not in �rst.intersect all elements of the �rst group that are also in the second group, ordered as in�rst group.di�erence all elements of the �rst group that are not in the second group, ordered as inthe �rst group.Note that for these operations the order of processes in the output group is determinedprimarily by order in the �rst group (if possible) and then, if necessary, by order in thesecond group. Neither union nor intersection are commutative, but both are associative.The new group can be empty, that is, equal to MPI GROUP EMPTY.MPI GROUP INCL(group, n, ranks, newgroup)IN group group (handle)IN n number of elements in array ranks (and size of new-group) (integer)IN ranks ranks of processes in group to appear in newgroup (ar-ray of integers)OUT newgroup new group derived from above, in the order de�ned byranks (handle)int MPI Group incl(MPI Group group, int n, int *ranks, MPI Group *newgroup)MPI GROUP INCL(GROUP, N, RANKS, NEWGROUP, IERROR)INTEGER GROUP, N, RANKS(*), NEWGROUP, IERRORThe function MPI GROUP INCL creates a group newgroup that consists of the n pro-cesses in group with ranks rank[0],: : :, rank[n-1]; the process with rank i in newgroup is theprocess with rank ranks[i] in group. Each of the n elements of ranks must be a valid rankin group and all elements must be distinct, or else the program is erroneous. If n = 0,then newgroup is MPI GROUP EMPTY. This function can, for instance, be used to reorderthe elements of a group. See also MPI GROUP COMPARE.
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5.3. GROUP MANAGEMENT 139MPI GROUP EXCL(group, n, ranks, newgroup)IN group group (handle)IN n number of elements in array ranks (integer)IN ranks array of integer ranks in group not to appear in new-groupOUT newgroup new group derived from above, preserving the orderde�ned by group (handle)int MPI Group excl(MPI Group group, int n, int *ranks, MPI Group *newgroup)MPI GROUP EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)INTEGER GROUP, N, RANKS(*), NEWGROUP, IERRORThe function MPI GROUP EXCL creates a group of processes newgroup that is obtainedby deleting from group those processes with ranks ranks[0] ,: : : ranks[n-1]. The ordering ofprocesses in newgroup is identical to the ordering in group. Each of the n elements of ranksmust be a valid rank in group and all elements must be distinct; otherwise, the program iserroneous. If n = 0, then newgroup is identical to group.MPI GROUP RANGE INCL(group, n, ranges, newgroup)IN group group (handle)IN n number of triplets in array ranges (integer)IN ranges an array of integer triplets, of the form (�rst rank, lastrank, stride) indicating ranks in group of processes tobe included in newgroupOUT newgroup new group derived from above, in the order de�ned byranges (handle)int MPI Group range incl(MPI Group group, int n, int ranges[][3],MPI Group *newgroup)MPI GROUP RANGE INCL(GROUP, N, RANGES, NEWGROUP, IERROR)INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERRORIf ranges consist of the triplets(first1; last1; stride1); :::; (firstn; lastn; striden)then newgroup consists of the sequence of processes in group with ranksfirst1; first1 + stride1; :::; first1+ � last1 � first1stride1 � stride1; :::firstn; firstn + striden; :::; firstn + � lastn � firstnstriden � striden:Each computed rank must be a valid rank in group and all computed ranks must bedistinct, or else the program is erroneous. Note that we may have firsti > lasti, and strideimay be negative, but cannot be zero.
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140 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSThe functionality of this routine is speci�ed to be equivalent to expanding the arrayof ranges to an array of the included ranks and passing the resulting array of ranks andother arguments to MPI GROUP INCL. A call to MPI GROUP INCL is equivalent to a callto MPI GROUP RANGE INCL with each rank i in ranks replaced by the triplet (i,i,1) inthe argument ranges.MPI GROUP RANGE EXCL(group, n, ranges, newgroup)IN group group (handle)IN n number of elements in array ranks (integer)IN ranges a one-dimensional array of integer triplets of the form(�rst rank, last rank, stride), indicating the ranks ingroup of processes to be excluded from the outputgroup newgroup.OUT newgroup new group derived from above, preserving the orderin group (handle)int MPI Group range excl(MPI Group group, int n, int ranges[][3],MPI Group *newgroup)MPI GROUP RANGE EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROREach computed rank must be a valid rank in group and all computed ranks must be distinct,or else the program is erroneous.The functionality of this routine is speci�ed to be equivalent to expanding the arrayof ranges to an array of the excluded ranks and passing the resulting array of ranks andother arguments to MPI GROUP EXCL. A call to MPI GROUP EXCL is equivalent to a callto MPI GROUP RANGE EXCL with each rank i in ranks replaced by the triplet (i,i,1) inthe argument ranges.Advice to users. The range operations do not explicitly enumerate ranks, andtherefore are more scalable if implemented e�ciently. Hence, we recommend MPIprogrammers to use them whenenever possible, as high-quality implementations willtake advantage of this fact. (End of advice to users.)Advice to implementors. The range operations should be implemented, if possible,without enumerating the group members, in order to obtain better scalability (timeand space). (End of advice to implementors.)5.3.3 Group DestructorsMPI GROUP FREE(group)INOUT group group (handle)int MPI Group free(MPI Group *group)
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5.4. COMMUNICATOR MANAGEMENT 141MPI GROUP FREE(GROUP, IERROR)INTEGER GROUP, IERRORThis operation marks a group object for deallocation. The handle group is set toMPI GROUP NULL by the call. Any on-going operation using this group will complete nor-mally.Advice to implementors. One can keep a reference count that is incremented for eachcall to MPI COMM CREATE and MPI COMM DUP, and decremented for each call toMPI GROUP FREE or MPI COMM FREE; the group object is ultimately deallocatedwhen the reference count drops to zero. (End of advice to implementors.)5.4 Communicator ManagementThis section describes the manipulation of communicators in MPI. Operations that accesscommunicators are local and their execution does not require interprocess communication.Operations that create communicators are collective and may require interprocess commu-nication.Advice to implementors. High-quality implementations should amortize the over-heads associated with the creation of communicators (for the same group, or subsetsthereof) over several calls, by allocating multiple contexts with one collective commu-nication. (End of advice to implementors.)5.4.1 Communicator AccessorsThe following are all local operations.MPI COMM SIZE(comm, size)IN comm communicator (handle)OUT size number of processes in the group of comm (integer)int MPI Comm size(MPI Comm comm, int *size)MPI COMM SIZE(COMM, SIZE, IERROR)INTEGER COMM, SIZE, IERRORRationale. This function is equivalent to accessing the communicator's group withMPI COMM GROUP (see below), computing the size using MPI GROUP SIZE, andthen freeing the group temporary via MPI GROUP FREE. However, this function is socommonly used, that this shortcut was introduced. (End of rationale.)Advice to users. This function indicates the number of processes involved in acommunicator. For MPI COMM WORLD, it indicates the total number of processesavailable (for this version of MPI, there is no standard way to change the number ofprocesses once initialization has taken place).This call is often used with the next call to determine the amount of concurrencyavailable for a speci�c library or program. The following call, MPI COMM RANK
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142 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSindicates the rank of the process that calls it in the range from 0 : : :size�1, where sizeis the return value of MPI COMM SIZE.(End of advice to users.)MPI COMM RANK(comm, rank)IN comm communicator (handle)OUT rank rank of the calling process in group of comm (integer)int MPI Comm rank(MPI Comm comm, int *rank)MPI COMM RANK(COMM, RANK, IERROR)INTEGER COMM, RANK, IERRORRationale. This function is equivalent to accessing the communicator's group withMPI COMM GROUP (see below), computing the size using MPI GROUP RANK, andthen freeing the group temporary via MPI GROUP FREE. However, this function is socommonly used, that this shortcut was introduced. (End of rationale.)Advice to users. This function gives the rank of the process in the particular commu-nicator's group. It is useful, as noted above, in conjunction with MPI COMM SIZE.Many programs will be written with the master-slave model, where one process (suchas the rank-zero process) will play a supervisory role, and the other processes willserve as compute nodes. In this framework, the two preceding calls are useful fordetermining the roles of the various processes of a communicator. (End of advice tousers.)MPI COMM COMPARE(comm1, comm2, result)IN comm1 �rst communicator (handle)IN comm2 second communicator (handle)OUT result result (integer)int MPI Comm compare(MPI Comm comm1,MPI Comm comm2, int *result)MPI COMM COMPARE(COMM1, COMM2, RESULT, IERROR)INTEGER COMM1, COMM2, RESULT, IERRORMPI IDENT results if and only if comm1 and comm2 are handles for the same object (identicalgroups and same contexts). MPI CONGRUENT results if the underlying groups are identicalin constituents and rank order; these communicators di�er only by context. MPI SIMILARresults if the group members of both communicators are the same but the rank order di�ers.MPI UNEQUAL results otherwise.5.4.2 Communicator ConstructorsThe following are collective functions that are invoked by all processes in the group associ-ated with comm.
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5.4. COMMUNICATOR MANAGEMENT 143Rationale. Note that there is a chicken-and-egg aspect toMPI in that a communicatoris needed to create a new communicator. The base communicator for all MPI com-municators is prede�ned outside of MPI, and is MPI COMM WORLD. This model wasarrived at after considerable debate, and was chosen to increase \safety" of programswritten in MPI. (End of rationale.)MPI COMM DUP(comm, newcomm)IN comm communicator (handle)OUT newcomm copy of comm (handle)int MPI Comm dup(MPI Comm comm, MPI Comm *newcomm)MPI COMM DUP(COMM, NEWCOMM, IERROR)INTEGER COMM, NEWCOMM, IERRORMPI COMM DUP Duplicates the existing communicator commwith associated key val-ues. For each key value, the respective copy callback function determines the attribute valueassociated with this key in the new communicator; one particular action that a copy callbackmay take is to delete the attribute from the new communicator. Returns in newcomm anew communicator with the same group, any copied cached information, but a new context(see section 5.7.1).Advice to users. This operation is used to provide a parallel library call with a dupli-cate communication space that has the same properties as the original communicator.This includes any attributes (see below), and topologies (see chapter 6). This call isvalid even if there are pending point-to-point communications involving the commu-nicator comm. A typical call might involve a MPI COMM DUP at the beginning ofthe parallel call, and an MPI COMM FREE of that duplicated communicator at theend of the call. Other models of communicator management are also possible.This call applies to both intra- and inter-communicators. (End of advice to users.)Advice to implementors. One need not actually copy the group information, but onlyadd a new reference and increment the reference count. Copy on write can be usedfor the cached information.(End of advice to implementors.)MPI COMM CREATE(comm, group, newcomm)IN comm communicator (handle)IN group Group, which is a subset of the group of comm (han-dle)OUT newcomm new communicator (handle)int MPI Comm create(MPI Comm comm, MPI Group group, MPI Comm *newcomm)MPI COMM CREATE(COMM, GROUP, NEWCOMM, IERROR)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



144 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSINTEGER COMM, GROUP, NEWCOMM, IERRORThis function creates a new communicator newcommwith communication group de�ned bygroup and a new context. No cached information propagates from comm to newcomm. Thefunction returns MPI COMM NULL to processes that are not in group. The call is erroneousif not all group arguments have the same value, or if group is not a subset of the groupassociated with comm. Note that the call is to be executed by all processes in comm, evenif they do not belong to the new group. This call applies only to intra-communicators.Rationale. The requirement that the entire group of comm participate in the callstems from the following considerations:� It allows the implementation to layer MPI COMM CREATE on top of regularcollective communications.� It provides additional safety, in particular in the case where partially overlappinggroups are used to create new communicators.� It permits implementations sometimes to avoid communication related to contextcreation.(End of rationale.)Advice to users. MPI COMM CREATE provides a means to subset a group of pro-cesses for the purpose of separate MIMD computation, with separate communicationspace. newcomm, which emerges from MPI COMM CREATE can be used in subse-quent calls to MPI COMM CREATE (or other communicator constructors) further tosubdivide a computation into parallel sub-computations. A more general service isprovided by MPI COMM SPLIT, below. (End of advice to users.)Advice to implementors. Since all processes calling MPI COMM DUP orMPI COMM CREATE provide the same group argument, it is theoretically possibleto agree on a group-wide unique context with no communication. However, local exe-cution of these functions requires use of a larger context name space and reduces errorchecking. Implementations may strike various compromises between these con
ictinggoals, such as bulk allocation of multiple contexts in one collective operation.Important: If new communicators are created without synchronizing the processesinvolved then the communication system should be able to cope with messages arrivingin a context that has not yet been allocated at the receiving process. (End of adviceto implementors.)MPI COMM SPLIT(comm, color, key, newcomm)IN comm communicator (handle)IN color control of subset assignment (integer)IN key control of rank assigment (integer)OUT newcomm new communicator (handle)int MPI Comm split(MPI Comm comm, int color, int key, MPI Comm *newcomm)
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5.4. COMMUNICATOR MANAGEMENT 145MPI COMM SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)INTEGER COMM, COLOR, KEY, NEWCOMM, IERRORThis function partitions the group associated with comm into disjoint subgroups, one foreach value of color. Each subgroup contains all processes of the same color. Within eachsubgroup, the processes are ranked in the order de�ned by the value of the argumentkey, with ties broken according to their rank in the old group. A new communicator iscreated for each subgroup and returned in newcomm. A process may supply the color valueMPI UNDEFINED, in which case newcomm returns MPI COMM NULL. This is a collectivecall, but each process is permitted to provide di�erent values for color and key.A call to MPI COMM CREATE(comm, group, newcomm) is equivalent toa call to MPI COMM SPLIT(comm, color, key, newcomm), where all members of group pro-vide color = 0 and key = rank in group, and all processes that are not members of groupprovide color = MPI UNDEFINED. The function MPI COMM SPLIT allows more generalpartitioning of a group into one or more subgroups with optional reordering. This callapplies only intra-communicators.Advice to users. This is an extremely powerful mechanism for dividing a single com-municating group of processes into k subgroups, with k chosen implicitly by the user(by the number of colors asserted over all the processes). Each resulting communica-tor will be non-overlapping. Such a division could be useful for de�ning a hierarchyof computations, such as for multigrid, or linear algebra.Multiple calls to MPI COMM SPLIT can be used to overcome the requirement thatany call have no overlap of the resulting communicators (each process is of only onecolor per call). In this way, multiple overlapping communication structures can becreated. Creative use of the color and key in such splitting operations is encouraged.Note that, for a �xed color, the keys need not be unique. It is MPI COMM SPLIT'sresponsibility to sort processes in ascending order according to this key, and to breakties in a consistent way. If all the keys are speci�ed in the same way, then all theprocesses in a given color will have the relative rank order as they did in their parentgroup. (In general, they will have di�erent ranks.)Essentially, making the key value zero for all processes of a given color means that onedoesn't really care about the rank-order of the processes in the new communicator.(End of advice to users.)5.4.3 Communicator DestructorsMPI COMM FREE(comm)INOUT comm communicator to be destroyed (handle)int MPI Comm free(MPI Comm *comm)MPI COMM FREE(COMM, IERROR)INTEGER COMM, IERRORThis collective operation marks the communication object for deallocation. The handleis set toMPI COMM NULL. Any pending operations that use this communicator will complete
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146 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSnormally; the object is actually deallocated only if there are no other active references toit. This call applies to intra- and inter-communicators. The delete callback functions forall cached attributes (see section 5.7) are called in arbitrary order.Advice to implementors. A reference-count mechanism may be used: the referencecount is incremented by each call to MPI COMM DUP, and decremented by each callto MPI COMM FREE. The object is ultimately deallocated when the count reacheszero.Though collective, it is anticipated that this operation will normally be implemented tobe local, though the debugging version of an MPI library might choose to synchronize.(End of advice to implementors.)5.5 Motivating Examples5.5.1 Current Practice #1Example #1a:main(int argc, char **argv){ int me, size;...MPI_Init ( &argc, &argv );MPI_Comm_rank (MPI_COMM_WORLD, &me);MPI_Comm_size (MPI_COMM_WORLD, &size);(void)printf ("Process %d size %d\n", me, size);...MPI_Finalize();}Example #1a is a do-nothing program that initializes itself legally, and refers to the the\all" communicator, and prints a message. It terminates itself legally too. This exampledoes not imply that MPI supports printf-like communication itself.Example #1b (supposing that size is even):main(int argc, char **argv){ int me, size;int SOME_TAG = 0;...MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */if((me % 2) == 0){ /* send unless highest-numbered process */
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5.5. MOTIVATING EXAMPLES 147if((me + 1) < size)MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);}elseMPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD);...MPI_Finalize();}Example #1b schematically illustrates message exchanges between \even" and \odd" pro-cesses in the \all" communicator.5.5.2 Current Practice #2main(int argc, char **argv){ int me, count;void *data;...MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &me);if(me == 0){ /* get input, create buffer ``data'' */...}MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);...MPI_Finalize();}This example illustrates the use of a collective communication.5.5.3 (Approximate) Current Practice #3main(int argc, char **argv){ int me, count, count2;void *send_buf, *recv_buf, *send_buf2, *recv_buf2;MPI_Group MPI_GROUP_WORLD, grprem;MPI_Comm commslave;static int ranks[] = {0};...
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148 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSMPI_Init(&argc, &argv);MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */MPI_Group_excl(MPI_GROUP_WORLD, 1, ranks, &grprem); /* local */MPI_Comm_create(MPI_COMM_WORLD, grprem, &commslave);if(me != 0){ /* compute on slave */...MPI_Reduce(send_buf,recv_buff,count, MPI_INT, MPI_SUM, 1, commslave);...}/* zero falls through immediately to this reduce, others do later... */MPI_Reduce(send_buf2, recv_buff2, count2,MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);MPI_Comm_free(&commslave);MPI_Group_free(&MPI_GROUP_WORLD);MPI_Group_free(&grprem);MPI_Finalize();}This example illustrates how a group consisting of all but the zeroth process of the \all"group is created, and then how a communicator is formed ( commslave) for that new group.The new communicator is used in a collective call, and all processes execute a collective callin the MPI COMM WORLD context. This example illustrates how the two communicators(that inherently possess distinct contexts) protect communication. That is, communicationin MPI COMM WORLD is insulated from communication in commslave, and vice versa.In summary, \group safety" is achieved via communicators because distinct contextswithin communicators are enforced to be unique on any process.5.5.4 Example #4The following example is meant to illustrate \safety" between point-to-point and collectivecommunication. MPI guarantees that a single communicator can do safe point-to-point andcollective communication.#define TAG_ARBITRARY 12345#define SOME_COUNT 50main(int argc, char **argv){ int me;MPI_Request request[2];MPI_Status status[2];MPI_Group MPI_GROUP_WORLD, subgroup;int ranks[] = {2, 4, 6, 8};
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5.5. MOTIVATING EXAMPLES 149MPI_Comm the_comm;...MPI_Init(&argc, &argv);MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);MPI_Group_incl(MPI_GROUP_WORLD, 4, ranks, &subgroup); /* local */MPI_Group_rank(subgroup, &me); /* local */MPI_Comm_create(MPI_COMM_WORLD, subgroup, &the_comm);if(me != MPI_UNDEFINED){ MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE, TAG_ARBITRARY,the_comm, request);MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,the_comm, request+1);}for(i = 0; i < SOME_COUNT, i++)MPI_Reduce(..., the_comm);MPI_Waitall(2, request, status);MPI_Comm_free(t&he_comm);MPI_Group_free(&MPI_GROUP_WORLD);MPI_Group_free(&subgroup);MPI_Finalize();}5.5.5 Library Example #1The main program:main(int argc, char **argv){ int done = 0;user_lib_t *libh_a, *libh_b;void *dataset1, *dataset2;...MPI_Init(&argc, &argv);...init_user_lib(MPI_COMM_WORLD, &libh_a);init_user_lib(MPI_COMM_WORLD, &libh_b);...user_start_op(libh_a, dataset1);user_start_op(libh_b, dataset2);...while(!done){ /* work */
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150 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS...MPI_Reduce(..., MPI_COMM_WORLD);.../* see if done */...}user_end_op(libh_a);user_end_op(libh_b);uninit_user_lib(libh_a);uninit_user_lib(libh_b);MPI_Finalize();}The user library initialization code:void init_user_lib(MPI_Comm *comm, user_lib_t **handle){ user_lib_t *save;user_lib_initsave(&save); /* local */MPI_Comm_dup(comm, &(save -> comm));/* other inits */...*handle = save;}User start-up code:void user_start_op(user_lib_t *handle, void *data){ MPI_Irecv( ..., handle->comm, &(handle -> irecv_handle) );MPI_Isend( ..., handle->comm, &(handle -> isend_handle) );}User communication clean-up code:void user_end_op(user_lib_t *handle){ MPI_Status *status;MPI_Wait(handle -> isend_handle, status);MPI_Wait(handle -> irecv_handle, status);}User object clean-up code:void uninit_user_lib(user_lib_t *handle){ MPI_Comm_free(&(handle -> comm));free(handle);}
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5.5. MOTIVATING EXAMPLES 1515.5.6 Library Example #2The main program:main(int argc, char **argv){ int ma, mb;MPI_Group MPI_GROUP_WORLD, group_a, group_b;MPI_Comm comm_a, comm_b;static int list_a[] = {0, 1};#if defined(EXAMPLE_2B) | defined(EXAMPLE_2C)static int list_b[] = {0, 2 ,3};#else/* EXAMPLE_2A */static int list_b[] = {0, 2};#endifint size_list_a = sizeof(list_a)/sizeof(int);int size_list_b = sizeof(list_b)/sizeof(int);...MPI_Init(&argc, &argv);MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);MPI_Group_incl(MPI_GROUP_WORLD, size_list_a, list_a, &group_a);MPI_Group_incl(MPI_GROUP_WORLD, size_list_b, list_b, &group_b);MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);MPI_Comm_rank(comm_a, &ma);MPI_Comm_rank(comm_b, &mb);if(ma != MPI_UNDEFINED)lib_call(comm_a);if(mb != MPI_UNDEFINED){ lib_call(comm_b);lib_call(comm_b);}MPI_Comm_free(&comm_a);MPI_Comm_free(&comm_b);MPI_Group_free(&group_a);MPI_Group_free(&group_b);MPI_Group_free(&MPI_GROUP_WORLD);MPI_Finalize();}
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152 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSThe library:void lib_call(MPI_Comm comm){ int me, done = 0;MPI_Comm_rank(comm, &me);if(me == 0)while(!done){ MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm);...}else{ /* work */MPI_Send(..., 0, ARBITRARY_TAG, comm);....}#ifdef EXAMPLE_2C/* include (resp, exclude) for safety (resp, no safety): */MPI_Barrier(comm);#endif}The above example is really three examples, depending on whether or not one includes rank3 in list b, and whether or not a synchronize is included in lib call. This example illustratesthat, despite contexts, subsequent calls to lib call with the same context need not be safefrom one another (colloquially, \back-masking"). Safety is realized if the MPI Barrier isadded. What this demonstrates is that libraries have to be written carefully, even withcontexts. When rank 3 is excluded, then the synchronize is not needed to get safety fromback masking.Algorithms like \reduce" and \allreduce" have strong enough source selectivity prop-erties so that they are inherently okay (no backmasking), provided that MPI provides basicguarantees. So are multiple calls to a typical tree-broadcast algorithm with the same rootor di�erent roots (see [28]). Here we rely on two guarantees of MPI: pairwise ordering ofmessages between processes in the same context, and source selectivity | deleting eitherfeature removes the guarantee that backmasking cannot be required.Algorithms that try to do non-deterministic broadcasts or other calls that include wild-card operations will not generally have the good properties of the deterministic implemen-tations of \reduce," \allreduce," and \broadcast." Such algorithms would have to utilizethe monotonically increasing tags (within a communicator scope) to keep things straight.All of the foregoing is a supposition of \collective calls" implemented with point-to-point operations. MPI implementations may or may not implement collective calls usingpoint-to-point operations. These algorithms are used to illustrate the issues of correctnessand safety, independent of how MPI implements its collective calls. See also section 5.8.
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5.6. INTER-COMMUNICATION 1535.6 Inter-CommunicationThis section introduces the concept of inter-communication and describes the portions ofMPI that support it. It describes support for writing programs that contain user-levelservers.All point-to-point communication described thus far has involved communication be-tween processes that are members of the same group. This type of communication is called\intra-communication" and the communicator used is called an \intra-communicator," aswe have noted earlier in the chapter.In modular and multi-disciplinary applications, di�erent process groups execute distinctmodules and processes within di�erent modules communicate with one another in a pipelineor a more general module graph. In these applications, the most natural way for a processto specify a target process is by the rank of the target process within the target group. Inapplications that contain internal user-level servers, each server may be a process group thatprovides services to one or more clients, and each client may be a process group that usesthe services of one or more servers. It is again most natural to specify the target processby rank within the target group in these applications. This type of communication is called\inter-communication" and the communicator used is called an \inter-communicator," asintroduced earlier.An inter-communication is a point-to-point communication between processes in di�er-ent groups. The group containing a process that initiates an inter-communication operationis called the \local group," that is, the sender in a send and the receiver in a receive. Thegroup containing the target process is called the \remote group," that is, the receiver in asend and the sender in a receive. As in intra-communication, the target process is speci�edusing a (communicator, rank) pair. Unlike intra-communication, the rank is relative to asecond, remote group.All inter-communicator constructors are blocking and require that the local and remotegroups be disjoint in order to avoid deadlock.Here is a summary of the properties of inter-communication and inter-communicators:� The syntax of point-to-point communication is the same for both inter- and intra-communication. The same communicator can be used both for send and for receiveoperations.� A target process is addressed by its rank in the remote group, both for sends and forreceives.� Communications using an inter-communicator are guaranteed not to con
ict with anycommunications that use a di�erent communicator.� An inter-communicator cannot be used for collective communication.� A communicator will provide either intra- or inter-communication, never both.The routine MPI COMM TEST INTER may be used to determine if a communicator is aninter- or intra-communicator. Inter-communicators can be used as arguments to some of theother communicator access routines. Inter-communicators cannot be used as input to someof the constructor routines for intra-communicators (for instance, MPI COMM CREATE).Advice to implementors. For the purpose of point-to-point communication, commu-nicators can be represented in each process by a tuple consisting of:
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154 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSgroupsend contextreceive contextsourceFor inter-communicators, group describes the remote group, and source is the rank ofthe process in the local group. For intra-communicators, group is the communicatorgroup (remote=local), source is the rank of the process in this group, and sendcontext and receive context are identical. A group is represented by a rank-to-absolute-address translation table.The inter-communicator cannot be discussed sensibly without considering processes inboth the local and remote groups. Imagine a process P in group P , which has an inter-communicator CP , and a process Q in group Q, which has an inter-communicatorCQ. Then� CP.group describes the group Q and CQ.group describes the group P .� CP.send context = CQ.receive context and the context is unique in Q;CP.receive context = CQ.send context and this context is unique in P .� CP.source is rank of P in P and CQ.source is rank of Q in Q.Assume that P sends a message to Q using the inter-communicator. Then P usesthe group table to �nd the absolute address of Q; source and send context areappended to the message.Assume that Q posts a receive with an explicit source argument using the inter-communicator. Then Q matches receive context to the message context and sourceargument to the message source.The same algorithm is appropriate for intra-communicators as well.In order to support inter-communicator accessors and constructors, it is necessary tosupplement this model with additional structures, that store information about thelocal communication group, and additional safe contexts. (End of advice to imple-mentors.)5.6.1 Inter-communicator AccessorsMPI COMM TEST INTER(comm, 
ag)IN comm communicator (handle)OUT 
ag (logical)int MPI Comm test inter(MPI Comm comm, int *flag)MPI COMM TEST INTER(COMM, FLAG, IERROR)INTEGER COMM, IERRORLOGICAL FLAG
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5.6. INTER-COMMUNICATION 155This local routine allows the calling process to determine if a communicator is an inter-communicator or an intra-communicator. It returns true if it is an inter-communicator,otherwise false.When an inter-communicator is used as an input argument to the communicator ac-cessors described above under intra-communication, the following table describes behavior.MPI COMM * Function Behavior(in Inter-Communication Mode)MPI COMM SIZE returns the size of the local group.MPI COMM GROUP returns the local group.MPI COMM RANK returns the rank in the local groupFurthermore, the operation MPI COMM COMPARE is valid for inter-communicators. Bothcommunicators must be either intra- or inter-communicators, or else MPI UNEQUAL results.Both corresponding local and remote groups must compare correctly to get the resultsMPI CONGRUENT and MPI SIMILAR. In particular, it is possible for MPI SIMILAR to resultbecause either the local or remote groups were similar but not identical.The following accessors provide consistent access to the remote group of an inter-communicator:The following are all local operations.MPI COMM REMOTE SIZE(comm, size)IN comm inter-communicator (handle)OUT size number of processes in the remote group of comm(integer)int MPI Comm remote size(MPI Comm comm, int *size)MPI COMM REMOTE SIZE(COMM, SIZE, IERROR)INTEGER COMM, SIZE, IERRORMPI COMM REMOTE GROUP(comm, group)IN comm inter-communicator (handle)OUT group remote group corresponding to comm (handle)int MPI Comm remote group(MPI Comm comm, MPI Group *group)MPI COMM REMOTE GROUP(COMM, GROUP, IERROR)INTEGER COMM, GROUP, IERRORRationale. Symmetric access to both the local and remote groups of an inter-communicator is important, so this function, as well as MPI COMM REMOTE SIZEhave been provided. (End of rationale.)
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156 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS5.6.2 Inter-communicator OperationsThis section introduces four blocking inter-communicator operations. MPI INTERCOMM-CREATE is used to bind two intra-communicators into an inter-communicator; the functionMPI INTERCOMM MERGE creates an intra-communicator by merging the local and remotegroups of an inter-communicator. The functionsMPI COMM DUP andMPI COMM FREE,introduced previously, duplicate and free an inter-communicator, respectively.Overlap of local and remote groups that are bound into an inter-communicator isprohibited. If there is overlap, then the program is erroneous and is likely to deadlock. (Ifa process is multithreaded, and MPI calls block only a thread, rather than a process, then\dual membership" can be supported. It is then the user's responsibility to make sure thatcalls on behalf of the two \roles" of a process are executed by two independent threads.)The function MPI INTERCOMM CREATE can be used to create an inter-communicatorfrom two existing intra-communicators, in the following situation: At least one selectedmember from each group (the \group leader") has the ability to communicate with theselected member from the other group; that is, a \peer" communicator exists to which bothleaders belong, and each leader knows the rank of the other leader in this peer communicator(the two leaders could be the same process). Furthermore, members of each group knowthe rank of their leader.Construction of an inter-communicator from two intra-communicators requires separatecollective operations in the local group and in the remote group, as well as a point-to-pointcommunication between a process in the local group and a process in the remote group.In standard MPI implementations (with static process allocation at initialization), theMPI COMM WORLD communicator (or preferably a dedicated duplicate thereof) can bethis peer communicator. In dynamic MPI implementations, where, for example, a processmay spawn new child processes during an MPI execution, the parent process may be the\bridge" between the old communication universe and the new communication world thatincludes the parent and its children.The application topology functions described in chapter 6 do not apply to inter-communicators. Users that require this capability should utilize MPI INTERCOMM MERGEto build an intra-communicator, then apply the graph or cartesian topology capabilities tothat intra-communicator, creating an appropriate topology-oriented intra-communicator.Alternatively, it may be reasonable to devise one's own application topology mechanismsfor this case, without loss of generality.
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5.6. INTER-COMMUNICATION 157MPI INTERCOMM CREATE(local comm, local leader, peer comm, remote leader, tag,newintercomm)IN local comm local intra-communicator (handle)IN local leader rank of local group leader in local comm (integer)IN peer comm \peer" intra-communicator; signi�cant only at the lo-cal leader (handle)IN remote leader rank of remote group leader in peer comm; signi�cantonly at the local leader (integer)IN tag \safe" tag (integer)OUT newintercomm new inter-communicator (handle)int MPI Intercomm create(MPI Comm local comm, int local leader,MPI Comm peer comm, int remote leader, int tag,MPI Comm *newintercomm)MPI INTERCOMM CREATE(LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,NEWINTERCOMM, IERROR)INTEGER LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,NEWINTERCOMM, IERRORThis call creates an inter-communicator. It is collective over the union of the local andremote groups. Processes should provide identical local comm and local leader argumentswithin each group. Wildcards are not permitted for remote leader, local leader, and tag.This call uses point-to-point communication with communicator peer comm, and withtag tag between the leaders. Thus, care must be taken that there be no pending communi-cation on peer comm that could interfere with this communication.Advice to users. We recommend using a dedicated peer communicator, such as aduplicate of MPI COMM WORLD, to avoid trouble with peer communicators. (Endof advice to users.)MPI INTERCOMM MERGE(intercomm, high, newintracomm)IN intercomm Inter-Communicator (handle)IN high (logical)OUT newintracomm new intra-communicator (handle)int MPI Intercomm merge(MPI Comm intercomm, int high,MPI Comm *newintracomm)MPI INTERCOMM MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)INTEGER INTERCOMM, INTRACOMM, IERRORLOGICAL HIGHThis function creates an intra-communicator from the union of the two groups that areassociated with intercomm. All processes should provide the same high value within each
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158 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS
Group 1 Group 2Group 0 Figure 5.1: Three-group pipeline.of the two groups. If processes in one group provided the value high = false and processesin the other group provided the value high = true then the union orders the \low" groupbefore the \high" group. If all processes provided the same high argument then the orderof the union is arbitrary. This call is blocking and collective within the union of the twogroups.Advice to implementors. The implementation of MPI INTERCOMM MERGE,MPI COMM FREE and MPI COMM DUP are similar to the implementation ofMPI INTERCOMM CREATE, except that contexts private to the input inter-commun-icator are used for communication between group leaders rather than contexts insidea bridge communicator. (End of advice to implementors.)5.6.3 Inter-Communication ExamplesExample 1: Three-Group \Pipeline"Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requiresone inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1inter-communicator.main(int argc, char **argv){ MPI_Comm myComm; /* intra-communicator of local sub-group */MPI_Comm myFirstComm; /* inter-communicator */MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */int membershipKey;int rank;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);/* User code must generate membershipKey in the range [0, 1, 2] */membershipKey = rank % 3;/* Build intra-communicator for local sub-group */MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);/* Build inter-communicators. Tags are hard-coded. */if (membershipKey == 0){ /* Group 0 communicates with group 1. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,
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5.6. INTER-COMMUNICATION 159
Group 1 Group 2Group 0 Figure 5.2: Three-group ring.1, &myFirstComm);}else if (membershipKey == 1){ /* Group 1 communicates with groups 0 and 2. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,1, &myFirstComm);MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,12, &mySecondComm);}else if (membershipKey == 2){ /* Group 2 communicates with group 1. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,12, &myFirstComm);}/* Do work ... */switch(membershipKey) /* free communicators appropriately */{case 1:MPI_Comm_free(&mySecondComm);case 0:case 2:MPI_Comm_free(&myFirstComm);break;}MPI_Finalize();}Example 2: Three-Group \Ring"Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate.Therefore, each requires two inter-communicators.main(int argc, char **argv){ MPI_Comm myComm; /* intra-communicator of local sub-group */MPI_Comm myFirstComm; /* inter-communicators */
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160 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSMPI_Comm mySecondComm;MPI_Status status;int membershipKey;int rank;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);.../* User code must generate membershipKey in the range [0, 1, 2] */membershipKey = rank % 3;/* Build intra-communicator for local sub-group */MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);/* Build inter-communicators. Tags are hard-coded. */if (membershipKey == 0){ /* Group 0 communicates with groups 1 and 2. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,1, &myFirstComm);MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,2, &mySecondComm);}else if (membershipKey == 1){ /* Group 1 communicates with groups 0 and 2. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,1, &myFirstComm);MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2,12, &mySecondComm);}else if (membershipKey == 2){ /* Group 2 communicates with groups 0 and 1. */MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0,2, &myFirstComm);MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1,12, &mySecondComm);}/* Do some work ... *//* Then free communicators before terminating... */MPI_Comm_free(&myFirstComm);MPI_Comm_free(&mySecondComm);MPI_Comm_free(&myComm);MPI_Finalize();}
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5.6. INTER-COMMUNICATION 161Example 3: Building Name Service for IntercommunicationThe following procedures exemplify the process by which a user could create name servicefor building intercommunicators via a rendezvous involving a server communicator, and atag name selected by both groups.After all MPI processes execute MPI INIT, every process calls the example function,Init server(), de�ned below. Then, if the new world returned is NULL, the process gettingNULL is required to implement a server function, in a reactive loop, Do server(). Everyoneelse just does their prescribed computation, using new world as the new e�ective \global"communicator. One designated process calls Undo Server() to get rid of the server when itis not needed any longer.Features of this approach include:� Support for multiple name servers� Ability to scope the name servers to speci�c processes� Ability to make such servers come and go as desired.#define INIT_SERVER_TAG_1 666#define UNDO_SERVER_TAG_1 777static int server_key_val;/* for attribute management for server_comm, copy callback: */void handle_copy_fn(MPI_Comm *oldcomm, int *keyval, void *extra_state,void *attribute_val_in, void **attribute_val_out, int *flag){ /* copy the handle */*attribute_val_out = attribute_val_in;*flag = 1; /* indicate that copy to happen */}int Init_server(peer_comm, rank_of_server, server_comm, new_world)MPI_Comm peer_comm;int rank_of_server;MPI_Comm *server_comm;MPI_Comm *new_world; /* new effective world, sans server */{ MPI_Comm temp_comm, lone_comm;MPI_Group peer_group, temp_group;int rank_in_peer_comm, size, color, key = 0;int peer_leader, peer_leader_rank_in_temp_comm;MPI_Comm_rank(peer_comm, &rank_in_peer_comm);MPI_Comm_size(peer_comm, &size);if ((size < 2) || (0 > rank_of_server) || (rank_of_server >= size))return (MPI_ERR_OTHER);
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162 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS/* create two communicators, by splitting peer_comminto the server process, and everyone else */peer_leader = (rank_of_server + 1) % size; /* arbitrary choice */if ((color = (rank_in_peer_comm == rank_of_server))){ MPI_Comm_split(peer_comm, color, key, &lone_comm);MPI_Intercomm_create(lone_comm, 0, peer_comm, peer_leader,INIT_SERVER_TAG_1, server_comm);MPI_Comm_free(&lone_comm);*new_world = (MPI_Comm) 0;}else{ MPI_Comm_Split(peer_comm, color, key, &temp_comm);MPI_Comm_group(peer_comm, &peer_group);MPI_Comm_group(temp_comm, &temp_group);MPI_Group_translate_ranks(peer_group, 1, &peer_leader,temp_group, &peer_leader_rank_in_temp_comm);MPI_Intercomm_create(temp_comm, peer_leader_rank_in_temp_comm,peer_comm, rank_of_server,INIT_SERVER_TAG_1, server_comm);/* attach new_world communication attribute to server_comm: *//* CRITICAL SECTION FOR MULTITHREADING */if(server_keyval == MPI_KEYVAL_INVALID){ /* acquire the process-local name for the server keyval */MPI_Attr_keyval_create(handle_copy_fn, NULL,&server_keyval, NULL);}*new_world = temp_comm;/* Cache handle of intra-communicator on inter-communicator: */MPI_Attr_put(server_comm, server_keyval, (void *)(*new_world));}return (MPI_SUCCESS);}
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5.6. INTER-COMMUNICATION 163The actual server process would commit to running the following code:int Do_server(server_comm)MPI_Comm server_comm;{ void init_queue();int en_queue(), de_queue(); /* keep triplets of integersfor later matching (fns not shown) */MPI_Comm comm;MPI_Status status;int client_tag, client_source;int client_rank_in_new_world, pairs_rank_in_new_world;int buffer[10], count = 1;void *queue;init_queue(&queue);for (;;){ MPI_Recv(buffer, count, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,server_comm, &status); /* accept from any client *//* determine client: */client_tag = status.MPI_TAG;client_source = status.MPI_SOURCE;client_rank_in_new_world = buffer[0];if (client_tag == UNDO_SERVER_TAG_1) /* client thatterminates server */{ while (de_queue(queue, MPI_ANY_TAG, &pairs_rank_in_new_world,&pairs_rank_in_server));MPI_Intercomm_free(&server_comm);break;}if (de_queue(queue, client_tag, &pairs_rank_in_new_world,&pairs_rank_in_server)){ /* matched pair with same tag, tell themabout each other! */buffer[0] = pairs_rank_in_new_world;MPI_Send(buffer, 1, MPI_INT, client_src, client_tag,server_comm);
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164 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSbuffer[0] = client_rank_in_new_world;MPI_Send(buffer, 1, MPI_INT, pairs_rank_in_server, client_tag,server_comm);}elseen_queue(queue, client_tag, client_source,client_rank_in_new_world);}} A particular process would be responsible for ending the server when it is no longerneeded. Its call to Undo server would terminate server function.int Undo_server(server_comm) /* example client that ends server */MPI_Comm *server_comm;{ int buffer = 0;MPI_Send(&buffer, 1, MPI_INT, 0, UNDO_SERVER_TAG_1, *server_comm);MPI_Intercomm_free(server_comm);} The following is a blocking name-service for inter-communication, with same semanticrestrictions as MPI Intercomm create, but simpli�ed syntax. It uses the functionality justde�ned to create the name service.int Intercomm_name_create(local_comm, server_comm, tag, comm)MPI_Comm local_comm, server_comm;int tag;MPI_Comm *comm;{ int error;int found; /* attribute acquisition mgmt for new_world *//* comm in server_comm */void *val;MPI_Comm new_world;int buffer[10], rank;int local_leader = 0;MPI_Attr_get(server_comm, server_keyval, &val, &found);new_world = (MPI_Comm)val; /* retrieve cached handle */MPI_Comm_rank(server_comm, &rank); /* rank in local group */if (rank == local_leader){
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5.7. CACHING 165buffer[0] = rank;MPI_Send(&buffer, 1, MPI_INT, 0, tag, server_comm);MPI_Recv(&buffer, 1, MPI_INT, 0, tag, server_comm);}error = MPI_Intercomm_create(local_leader, local_comm, buffer[0],new_world, tag, comm);return(error);}5.7 CachingMPI provides a \caching" facility that allows an application to attach arbitrary pieces ofinformation, called attributes, to communicators. More precisely, the caching facilityallows a portable library to do the following:� pass information between calls by associating it with an MPI intra- or inter-commun-icator,� quickly retrieve that information, and� be guaranteed that out-of-date information is never retrieved, even if the communi-cator is freed and its handle subsequently reused by MPI.The caching capabilities, in some form, are required by built-in MPI routines such ascollective communication and application topology. De�ning an interface to these capa-bilities as part of the MPI standard is valuable because it permits routines like collectivecommunication and application topologies to be implemented as portable code, and alsobecause it makes MPI more extensible by allowing user-written routines to use standardMPI calling sequences.Advice to users. The communicator MPI COMM SELF is a suitable choice for postingprocess-local attributes, via this attributing-caching mechanism. (End of advice tousers.)5.7.1 FunctionalityAttributes are attached to communicators. Attributes are local to the process and speci�cto the communicator to which they are attached. Attributes are not propagated by MPIfrom one communicator to another except when the communicator is duplicated usingMPI COMM DUP (and even then the application must give speci�c permission throughcallback functions for the attribute to be copied).Advice to implementors. Attributes are scalar values, equal in size to, or larger thana C-language pointer. Attributes can always hold an MPI handle. (End of advice toimplementors.)The caching interface de�ned here represents that attributes be stored byMPI opaquelywithin a communicator. Accessor functions include the following:
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166 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORS� obtain a key value (used to identify an attribute); the user speci�es \callback" func-tions by which MPI informs the application when the communicator is destroyed orcopied.� store and retrieve the value of an attribute;Advice to implementors. Caching and callback functions are only called synchronously,in response to explicit application requests. This avoid problems that result from re-peated crossings between user and system space. (This synchronous calling rule is ageneral property of MPI.)The choice of key values is under control of MPI. This allows MPI to optimize itsimplementation of attribute sets. It also avoids con
ict between independent modulescaching information on the same communicators.A much smaller interface, consisting of just a callback facility, would allow the entirecaching facility to be implemented by portable code. However, with the minimal call-back interface, some form of table searching is implied by the need to handle arbitrarycommunicators. In contrast, the more complete interface de�ned here permits rapidaccess to attributes through the use of pointers in communicators (to �nd the attributetable) and cleverly chosen key values (to retrieve individual attributes). In light of thee�ciency \hit" inherent in the minimal interface, the more complete interface de�nedhere is seen to be superior. (End of advice to implementors.)MPI provides the following services related to caching. They are all process local.MPI KEYVAL CREATE(copy fn, delete fn, keyval, extra state)IN copy fn Copy callback function for keyvalIN delete fn Delete callback function for keyvalOUT keyval key value for future access (integer)IN extra state Extra state for callback functionsint MPI Keyval create(MPI Copy function *copy fn, MPI Delete function*delete fn, int *keyval, void* extra state)MPI KEYVAL CREATE(COPY FN, DELETE FN, KEYVAL, EXTRA STATE, IERROR)EXTERNAL COPY FN, DELETE FNINTEGER KEYVAL, EXTRA STATE, IERRORGenerates a new attribute key. Keys are locally unique in a process, and opaque touser, though they are explicitly stored in integers. Once allocated, the key value can beused to associate attributes and access them on any locally de�ned communicator.The copy fn function is invoked when a communicator is duplicated byMPI COMM DUP.copy fn should be of type MPI Copy function, which is de�ned as follows:typedef int MPI_Copy_function(MPI_Comm *oldcomm, int *keyval,void *extra_state, void *attribute_val_in,void **attribute_val_out, int *flag)
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5.7. CACHING 167A Fortran declaration for such a function is as follows:FUNCTION COPY FUNCTION(OLDCOMM, KEYVAL, EXTRA STATE, ATTRIBUTE VAL IN,ATTRIBUTE VAL OUT, FLAG)INTEGER OLDCOMM, KEYVAL, EXTRA STATE, ATTRIBUTE VAL IN,ATTRIBUTE VAL OUTLOGICAL FLAGThe copy callback function is invoked for each key value in oldcomm in arbitrary order.Each call to the copy callback is made with a key value and its corresponding attribute.If it returns 
ag = 0, then the attribute is deleted in the duplicated communicator. Oth-erwise (
ag = 1), the new attribute value is set via attribute val out. The function returnsMPI SUCCESS on success and an error code on failure (in which case MPI COMM DUP willfail).copy fn may be speci�ed as MPI NULL FN from either C or FORTRAN, in which caseno copy callback occurs for keyval; MPI NULL FN is a function that does nothing otherthan returning 
ag = 0. In C, the NULL function pointer has the same behavior as usingMPI NULL FN. As a further convenience, MPI DUP FN is a simple-minded copy callbackavailable from C and FORTRAN; it sets 
ag = 1, and returns the value of attribute val inin attribute val out.Note that the C version of this MPI COMM DUP assumes that the callback functionsfollow the C prototype, while the corresponding FORTRAN version assumes the FORTRANprototype.Advice to users. A valid copy function is one that completely duplicates the in-formation by making a full duplicate copy of the data structures implied by an at-tribute; another might just make another reference to that data structure, while usinga reference-count mechanism. Other types of attributes might not copy at all (theymight be speci�c to oldcomm only). (End of advice to users.)Analogous to copy fn is a callback deletion function, de�ned as follows. The delete fnfunction is invoked when a communicator is deleted by MPI COMM FREE or when a callis made explicitly to MPI ATTR DELETE. delete fn should be of type MPI Delete function,which is de�ned as follows:typedef int MPI_Delete_function(MPI_Comm *comm, int *keyval,void *attribute_val, void *extra_state);A Fortran declaration for such a function is as follows:FUNCTION DELETE FUNCTION(COMM, KEYVAL, ATTRIBUTE VAL, EXTRA STATE)INTEGER COMM, KEYVAL, ATTRIBUTE VAL, EXTRA STATEThis function is called by MPI COMM FREE and MPI ATTR DELETE to do whateveris needed to remove an attribute. It may be speci�ed as the null function pointer in C oras MPI NULL FN from either C or FORTRAN, in which case no delete callback occurs forkeyval.The special key value MPI KEYVAL INVALID is never returned byMPI KEYVAL CREATE.Therefore, it can be used for static initialization of key values.
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168 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSMPI KEYVAL FREE(keyval)INOUT keyval Frees the integer key value (integer)int MPI Keyval free(int *keyval)MPI KEYVAL FREE(KEYVAL, IERROR)INTEGER KEYVAL, IERRORFrees an extant attribute key. This function sets the value of keyval toMPI KEYVAL INVALID. Note that it is not erroneous to free an attribute key that is in use,because the actual free does not transpire until after all references (in other communicatorson the process) to the key have been freed. These references need to be explictly freedby the program, either via calls to MPI ATTR DELETE that free one attribute instance,or by calls to MPI COMM FREE that free all attribute instances associated with the freedcommunicator.Advice to implementors. The function MPI NULL FN need not be aliased to (void(*))0 in C, though this is �ne. It could be a legitimately callable function thatpro�les and so on. For FORTRAN, it is most convenient to have MPI NULL FN be alegitimate do-nothing function call.(End of advice to implementors.)MPI ATTR PUT(comm, keyval, attribute val)IN comm communicator to which attribute will be attached (han-dle)IN keyval key value, as returned byMPI KEYVAL CREATE (integer)IN attribute val attribute valueint MPI Attr put(MPI Comm comm, int keyval, void* attribute val)MPI ATTR PUT(COMM, KEYVAL, ATTRIBUTE VAL, IERROR)INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERRORThis function stores the stipulated attribute value attribute val for subsequent retrievalby MPI ATTR GET. If the value is already present, then the outcome is as if MPI ATTR-DELETE was �rst called to delete the previous value (and the callback function delete fnwas executed), and a new value was next stored. The call is erroneous if there is no keywith value keyval; in particular MPI KEYVAL INVALID is an erroneous key value.
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5.7. CACHING 169MPI ATTR GET(comm, keyval, attribute val, 
ag)IN comm communicator to which attribute is attached (handle)IN keyval key value (integer)OUT attribute val attribute value, unless 
ag = falseOUT 
ag true if an attribute value was extracted; false if noattribute is associated with the keyint MPI Attr get(MPI Comm comm, int keyval, void **attribute val, int *flag)MPI ATTR GET(COMM, KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERRORLOGICAL FLAGRetrieves attribute value by key. The call is erroneous if there is no key with valuekeyval. On the other hand, the call is correct if the key value exists, but no attribute isattached on comm for that key; in such case, the call returns flag = false. In particularMPI KEYVAL INVALID is an erroneous key value.MPI ATTR DELETE(comm, keyval)IN comm communicator to which attribute is attached (handle)IN keyval The key value of the deleted attribute (integer)int MPI Attr delete(MPI Comm comm, int keyval)MPI ATTR DELETE(COMM, KEYVAL, IERROR)INTEGER COMM, KEYVAL, IERRORDelete attribute from cache by key. This function invokes the attribute delete functiondelete fn speci�ed when the keyval was created.Whenever a communicator is replicated using the function MPI COMM DUP, all call-back copy functions for attributes that are currently set are invoked (in arbitrary order).Whenever a communicator is deleted using the function MPI COMM FREE all callbackdelete functions for attributes that are currently set are invoked.5.7.2 Attributes ExampleRationale. (End of rationale.)Advice to users. This example shows how to write a collective communicationoperation that uses caching to be more e�cient after the �rst call. The coding styleassumes that MPI function results return only error statuses. (End of advice to users.)/* key for this module's stuff: */static int gop_key = MPI_KEYVAL_INVALID;typedef struct{
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170 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORSint ref_count; /* reference count *//* other stuff, whatever else we want */} gop_stuff_type;Efficient_Collective_Op (comm, ...)MPI_Comm comm;{ gop_stuff_type *gop_stuff;MPI_Group group;int foundflag;MPI_Comm_group(comm, &group);if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */{ if ( ! MPI_Attr_keyval_create( gop_stuff_copier,gop_stuff_destructor,&gop_key, (void *)0));/* get the key while assigning its copy and delete callbackbehavior. */MPI_Abort ("Insufficient keys available");}MPI_Attr_get (comm, gop_key, &gop_stuff, &foundflag);if (foundflag){ /* This module has executed in this group before.We will use the cached information */}else{ /* This is a group that we have not yet cached anything in.We will now do so.*//* First, allocate storage for the stuff we want,and initialize the reference count */gop_stuff = (gop_stuff_type *) malloc (sizeof(gop_stuff_type));if (gop_stuff == NULL) { /* abort on out-of-memory error */ }gop_stuff -> ref_count = 1;/* Second, fill in *gop_stuff with whatever we want.This part isn't shown here *//* Third, store gop_stuff as the attribute value */MPI_Attr_put ( comm, gop_key, gop_stuff);}
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5.8. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 171/* Then, in any case, use contents of *gop_stuffto do the global op ... */}/* The following routine is called by MPI when a group is freed */gop_stuff_destructor (comm, keyval, gop_stuff, extra)MPI_Comm comm;int keyval;gop_stuff_type *gop_stuff;void *extra;{ if (keyval != gop_key) { /* abort -- programming error */ }/* The group's being freed removes one reference to gop_stuff */gop_stuff -> ref_count -= 1;/* If no references remain, then free the storage */if (gop_stuff -> ref_count == 0) {free((void *)gop_stuff);}}/* The following routine is called by MPI when a group is copied */gop_stuff_copier (comm, keyval, gop_stuff, extra)MPI_Comm comm;int keyval;gop_stuff_type *gop_stuff;void *extra;{ if (keyval != gop_key) { /* abort -- programming error */ }/* The new group adds one reference to this gop_stuff */gop_stuff -> ref_count += 1;}5.8 Formalizing the Loosely Synchronous ModelIn this section, we make further statements about the loosely synchronous model, withparticular attention to intra-communication.5.8.1 Basic StatementsWhen a caller passes a communicator (that contains a context and group) to a callee, thatcommunicator must be free of side e�ects throughout execution of the subprogram: thereshould be no active operations on that communicator that might involve the process. Thisprovides one model in which libraries can be written, and work \safely." For librariesso designated, the callee has permission to do whatever communication it likes with the
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172 CHAPTER 5. GROUPS, CONTEXTS, AND COMMUNICATORScommunicator, and under the above guarantee knows that no other communications willinterfere. Since we permit good implementations to create new communicators withoutsynchronization (such as by preallocated contexts on communicators), this does not imposea signi�cant overhead.This form of safety is analogous to other common computer-science usages, such aspassing a descriptor of an array to a library routine. The library routine has every right toexpect such a descriptor to be valid and modi�able.5.8.2 Models of ExecutionIn the loosely synchronous model, transfer of control to a parallel procedure is e�ected byhaving each executing process invoke the procedure. The invocation is a collective operation:it is executed by all processes in the execution group, and invocations are similarly orderedat all processes. However, the invocation need not be synchronized.We say that a parallel procedure is active in a process if the process belongs to a groupthat may collectively execute the procedure, and some member of that group is currentlyexecuting the procedure code. If a parallel procedure is active in a process, then this processmay be receiving messages pertaining to this procedure, even if it does not currently executethe code of this procedure.Static communicator allocationThis covers the case where, at any point in time, at most one invocation of a parallelprocedure can be active at any process, and the group of executing processes is �xed. Forexample, all invocations of parallel procedures involve all processes, processes are single-threaded, and there are no recursive invocations.In such a case, a communicator can be statically allocated to each procedure. Thestatic allocation can be done in a preamble, as part of initialization code. If the parallelprocedures can be organized into libraries, so that only one procedure of each library canbe concurrently active in each processor, then it is su�cient to allocate one communicatorper library.Dynamic communicator allocationCalls of parallel procedures are well-nested if a new parallel procedure is always invoked ina subset of a group executing the same parallel procedure. Thus, processes that executethe same parallel procedure have the same execution stack.In such a case, a new communicator needs to be dynamically allocated for each newinvocation of a parallel procedure. The allocation is done by the caller. A new communicatorcan be generated by a call to MPI COMM DUP, if the callee execution group is identical tothe caller execution group, or by a call to MPI COMM SPLIT if the caller execution groupis split into several subgroups executing distinct parallel routines. The new communicatoris passed as an argument to the invoked routine.The need for generating a new communicator at each invocation can be alleviated oravoided altogether in some cases: If the execution group is not split, then one can allocatea stack of communicators in a preamble, and next manage the stack in a way that mimicsthe stack of recursive calls.
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5.8. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 173One can also take advantage of the well-ordering property of communication to avoidconfusing caller and callee communication, even if both use the same communicator. To doso, one needs to abide by the following two rules:� messages sent before a procedure call (or before a return from the procedure) are alsoreceived before the matching call (or return) at the receiving end;� messages are always selected by source (no use is made of MPI ANY SOURCE).The General caseIn the general case, there may be multiple concurrently active invocations of the sameparallel procedure within the same group; invocations may not be well-nested. A newcommunicator needs to be created for each invocation. It is the user's responsibility to makesure that, should two distinct parallel procedures be invoked concurrently on overlappingsets of processes, then communicator creation be properly coordinated.
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Chapter 6Process Topologies6.1 IntroductionThis chapter discusses the MPI topology mechanism. A topology is an extra, optionalattribute that one can give to an intra-communicator; topologies cannot be added to inter-communicators. A topology can provide a convenient naming mechanism for the processesof a group (within a communicator), and additionally, may assist the runtime system inmapping the processes onto hardware.As stated in chapter 5, a process group in MPI is a collection of n processes. Eachprocess in the group is assigned a rank between 0 and n-1. In many parallel applicationsa linear ranking of processes does not adequately re
ect the logical communication patternof the processes (which is usually determined by the underlying problem geometry andthe numerical algorithm used). Often the processes are arranged in topological patternssuch as two- or three-dimensional grids. More generally, the logical process arrangement isdescribed by a graph. In this chapter we will refer to this logical process arrangement asthe \virtual topology."A clear distinction must be made between the virtual process topology and the topologyof the underlying, physical hardware. The virtual topology can be exploited by the systemin the assignment of processes to physical processors, if this helps to improve the commu-nication performance on a given machine. How this mapping is done, however, is outsidethe scope of MPI. The description of the virtual topology, on the other hand, depends onlyon the application, and is machine-independent. The functions that are proposed in thischapter deal only with machine-independent mapping.Rationale. Though physical mapping is not discussed, the existence of the virtualtopology information may be used as advice by the runtime system. There are well-known techniques for mapping grid/torus structures to hardware topologies such ashypercubes or grids. For more complicated graph structures good heuristics oftenyield nearly optimal results [20]. On the other hand, if there is no way for the userto specify the logical process arrangement as a \virtual topology," a random mappingis most likely to result. On some machines, this will lead to unnecessary contentionin the interconnection network. Some details about predicted and measured perfor-mance improvements that result from good process-to-processor mapping on modernwormhole-routing architectures can be found in [10, 9].Besides possible performance bene�ts, the virtual topology can function as a con-venient, process-naming structure, with tremendous bene�ts for program readability
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6.2. VIRTUAL TOPOLOGIES 175and notational power in message-passing programming. (End of rationale.)6.2 Virtual TopologiesThe communication pattern of a set of processes can be represented by a graph. Thenodes stand for the processes, and the edges connect processes that communicate with eachother. MPI provides message-passing between any pair of processes in a group. Thereis no requirement for opening a channel explicitly. Therefore, a \missing link" in theuser-de�ned process graph does not prevent the corresponding processes from exchangingmessages. It means rather that this connection is neglected in the virtual topology. Thisstrategy implies that the topology gives no convenient way of naming this pathway ofcommunication. Another possible consequence is that an automatic mapping tool (if oneexists for the runtime environment) will not take account of this edge when mapping. Edgesin the communication graph are not weighted, so that processes are either simply connectedor not connected at all.Rationale. Experience with similar techniques in PARMACS [5, 8] show that thisinformation is usually su�cient for a good mapping. Additionally, a more precisespeci�cation is more di�cult for the user to set up, and it would make the interfacefunctions substantially more complicated. (End of rationale.)Specifying the virtual topology in terms of a graph is su�cient for all applications.However, in many applications the graph structure is regular, and the detailed set-up of thegraph would be inconvenient for the user and might be less e�cient at run time. A large frac-tion of all parallel applications use process topologies like rings, two- or higher-dimensionalgrids, or tori. These structures are completely de�ned by the number of dimensions andthe numbers of processes in each coordinate direction. Also, the mapping of grids and toriis generally an easier problem then that of general graphs. Thus, it is desirable to addressthese cases explicitly.Process coordinates in a cartesian structure begin their numbering at 0. Row-majornumbering is always used for the processes in a cartesian structure. This means that, forexample, the relation between group rank and coordinates for four processes in a (2 � 2)grid is as follows.coord (0,0): rank 0coord (0,1): rank 1coord (1,0): rank 2coord (1,1): rank 36.3 Embedding in MPIThe support for virtual topologies as de�ned in this chapter is consistent with other parts ofMPI, and, whenever possible, makes use of functions that are de�ned elsewhere. Topologyinformation is associated with communicators. It is added to communicators using thecaching mechanism described in Chapter 5.
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176 CHAPTER 6. PROCESS TOPOLOGIES6.4 Overview of the FunctionsThe functions MPI GRAPH CREATE and MPI CART CREATE are used to create general(graph) virtual topologies and cartesian topologies, respectively. These topology creationfunctions are collective. As with other collective calls, the program must be written to workcorrectly, whether the call synchronizes or not.The topology creation functions take as input an existing communicator comm old,which de�nes the set of processes on which the topology is to be mapped. A new communi-cator comm topol is created that carries the topological structure as cached information (seeChapter 5). In analogy to function MPI COMM CREATE, no cached information propagatesfrom comm old to comm topol.MPI CART CREATE can be used to describe cartesian structures of arbitrary dimen-sion. For each coordinate direction one speci�es whether the process structure is periodic ornot. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes percoordinate direction. Thus, special support for hypercube structures is not necessary. Thelocal auxiliary function MPI DIMS CREATE can be used to compute a balanced distributionof processes among a given number of dimensions.Rationale. Similar functions are contained in EXPRESS [22] and PARMACS. (Endof rationale.)The function MPI TOPO TEST can be used to inquire about the topology associatedwith a communicator. The topological information can be extracted from the communica-tor using the functions MPI GRAPHDIMS GET and MPI GRAPH GET, for general graphs,and MPI CARTDIM GET and MPI CART GET, for cartesian topologies. Several additionalfunctions are provided to manipulate cartesian topologies: the functions MPI CART RANKand MPI CART COORDS translate cartesian coordinates into a group rank, and vice-versa;the function MPI CART SUB can be used to extract a cartesian subspace (analogous toMPI COMM SPLIT). The function MPI CART SHIFT provides the information needed tocommunicate with neighbors in a cartesian dimension. The two functionsMPI GRAPH NEIGHBORS COUNT and MPI GRAPH NEIGHBORS can be used to extractthe neighbors of a node in a graph. The function MPI CART SUB is collective over theinput communicator's group; all other functions are local.Two additional functions, MPI GRAPH MAP andMPI CART MAP are presented in thelast section. In general these functions are not called by the user directly. However, togetherwith the communicator manipulation functions presented in Chapter 5, they are su�cientto implement all other topology functions. Section 6.5.7 outlines such an implementation.
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6.5. TOPOLOGY CONSTRUCTORS 1776.5 Topology Constructors6.5.1 Cartesian ConstructorMPI CART CREATE(comm old, ndims, dims, periods, reorder, comm cart)IN comm old input communicator (handle)IN ndims number of dimensions of cartesian grid (integer)IN dims integer array of size ndims specifying the number ofprocesses in each dimensionIN periods logical array of size ndims specifying whether the gridis periodic (true) or not (false) in each dimensionIN reorder ranking may be reordered (true) or not (false) (logical)OUT comm cart communicator with new cartesian topology (handle)int MPI Cart create(MPI Comm comm old, int ndims, int *dims, int *periods,int reorder, MPI Comm *comm cart)MPI CART CREATE(COMM OLD, NDIMS, DIMS, PERIODS, REORDER, COMM CART, IERROR)INTEGER COMM OLD, NDIMS, DIMS(*), COMM CART, IERRORLOGICAL PERIODS(*), REORDERMPI CART CREATE returns a handle to a new communicator to which the cartesiantopology information is attached. If reorder = false then the rank of each process in the newgroup is identical to its rank in the old group. Otherwise, the function may reorder the pro-cesses (possibly so as to choose a good embedding of the virtual topology onto the physicalmachine). If the total size of the cartesian grid is smaller than the size of the group of comm,then some processes are returned MPI COMM NULL, in analogy to MPI COMM SPLIT. Thecall is erroneous if it speci�es a grid that is larger than the group size.6.5.2 Cartesian Convenience Function: MPI DIMS CREATEFor cartesian topologies, the function MPI DIMS CREATE helps the user select a balanceddistribution of processes per coordinate direction, depending on the number of processesin the group to be balanced and optional constraints that can be speci�ed by the user.One use is to partition all the processes (the size of MPI COMM WORLD's group) into ann-dimensional topology.MPI DIMS CREATE(nnodes, ndims, dims)IN nnodes number of nodes in a grid (integer)IN ndims number of cartesian dimensions (integer)INOUT dims integer array of size ndims specifying the number ofnodes in each dimensionint MPI Dims create(int nnodes, int ndims, int *dims)
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178 CHAPTER 6. PROCESS TOPOLOGIESMPI DIMS CREATE(NNODES, NDIMS, DIMS, IERROR)INTEGER NNODES, NDIMS, DIMS(*), IERRORThe entries in the array dims are set to describe a cartesian grid with ndims dimensionsand a total of nnodes nodes. The dimensions are set to be as close to each other as possible,using an appropriate divisibility algorithm. The caller may further constrain the operationof this routine by specifying elements of array dims. If dims[i] is set to a positive number,the routine will not modify the number of nodes in dimension i; only those entries wheredims[i] = 0 are modi�ed by the call.Negative input values of dims[i] are erroneous. An error will occur if nnodes is not amultiple of Yi;dims[i]6=0 dims[i].For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Arraydims is suitable for use as input to routine MPI CART CREATE. MPI DIMS CREATE islocal.Example 6.1 dims function call dimsbefore call on return(0,0) MPI DIMS CREATE(6, 2, dims) (3,2)(0,0) MPI DIMS CREATE(7, 2, dims) (7,1)(0,3,0) MPI DIMS CREATE(6, 3, dims) (2,3,1)(0,3,0) MPI DIMS CREATE(7, 3, dims) erroneous call6.5.3 General (Graph) ConstructorMPI GRAPH CREATE(comm old, nnodes, index, edges, reorder, comm graph)IN comm old input communicator without topology (handle)IN nnodes number of nodes in graph (integer)IN index array of integers describing node degrees (see below)IN edges array of integers describing graph edges (see below)IN reorder ranking may be reordered (true) or not (false) (logical)OUT comm graph communicator with graph topology added (handle)int MPI Graph create(MPI Comm comm old, int nnodes, int *index, int *edges,int reorder, MPI Comm *comm graph)MPI GRAPH CREATE(COMM OLD, NNODES, INDEX, EDGES, REORDER, COMM GRAPH,IERROR)INTEGER COMM OLD, NNODES, INDEX(*), EDGES(*), COMM GRAPH, IERRORLOGICAL REORDERMPI GRAPH CREATE returns a handle to a new communicator to which the graphtopology information is attached. If reorder = false then the rank of each process in thenew group is identical to its rank in the old group. Otherwise, the function may reorder the
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6.5. TOPOLOGY CONSTRUCTORS 179processes. If the size, nnodes, of the graph is smaller than the size of the group of comm,then some processes are returned MPI COMM NULL, in analogy to MPI CART CREATE andMPI COMM SPLIT. The call is erroneous if it speci�es a graph that is larger than the groupsize of the input communicator.The three parameters nnodes, index and edges de�ne the graph structure. nnodes is thenumber of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The ith entryof array index stores the total number of neighbors of the �rst i graph nodes. The lists ofneighbors of nodes 0, 1, : : :, nnodes-1 are stored in consecutive locations in array edges.The array edges is a 
attened representation of the edge lists. The total number of entriesin index is nnodes and the total number of entries in edges is equal to the number of graphedges.The de�nitions of the arguments nnodes, index, and edges are illustrated with thefollowing simple example.Example 6.2 Assume there are four processes 0, 1, 2, 3 with the following adjacencymatrix:process neighbors0 1, 31 02 33 0, 2Then, the input arguments are:nnodes = 4index = 2, 3, 4, 6edges = 1, 3, 0, 3, 0, 2Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is thedegree of node i, i=1, : : :, nnodes-1; the list of neighbors of node zero is stored inedges[j], for 0 � j � index[0]� 1 and the list of neighbors of node i, i > 0, is stored inedges[j], index[i� 1] � j � index[i]� 1.In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is thedegree of node i, i=1, : : :, nnodes-1; the list of neighbors of node zero is stored inedges(j), for 1 � j � index(1) and the list of neighbors of node i, i > 0, is stored inedges(j), index(i) + 1 � j � index(i+ 1).Advice to implementors. The following topology information is likely to be storedwith a communicator:� Type of topology (cartesian/graph),� For a cartesian topology:1. ndims (number of dimensions),2. dims (numbers of processes per coordinate direction),3. periods (periodicity information),4. own_position (own position in grid, could also be computed from rank anddims)� For a graph topology:
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180 CHAPTER 6. PROCESS TOPOLOGIES1. index,2. edges,which are the vectors de�ning the graph structure.For a graph structure the number of nodes is equal to the number of processes inthe group. Therefore, the number of nodes does not have to be stored explicitly.An additional zero entry at the start of array index simpli�es access to the topologyinformation. (End of advice to implementors.)6.5.4 Topology inquiry functionsIf a topology has been de�ned with one of the above functions, then the topology informationcan be looked up using inquiry functions. They all are local calls.MPI TOPO TEST(comm, status)IN comm communicator (handle)OUT status topology type of communicator comm (choice)int MPI Topo test(MPI Comm comm, int *status)MPI TOPO TEST(COMM, STATUS, IERROR)INTEGER COMM, STATUS, IERRORThe function MPI TOPO TEST returns the type of topology that is assigned to acommunicator.The output value status is one of the following:MPI GRAPH graph topologyMPI CART cartesian topologyMPI UNDEFINED no topologyMPI GRAPHDIMS GET(comm, nnodes, nedges)IN comm communicator for group with graph structure (handle)OUT nnodes number of nodes in graph (integer) (same as numberof processes in the group)OUT nedges number of edges in graph (integer)int MPI Graphdims get(MPI Comm comm, int *nnodes, int *nedges)MPI GRAPHDIMS GET(COMM, NNODES, NEDGES, IERROR)INTEGER COMM, NNODES, NEDGES, IERRORFunctions MPI GRAPHDIMS GET and MPI GRAPH GET retrieve the graph-topologyinformation that was associated with a communicator by MPI GRAPH CREATE.The information provided by MPI GRAPHDIMS GET can be used to dimension thevectors index and edges correctly for the following call to MPI GRAPH GET.
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6.5. TOPOLOGY CONSTRUCTORS 181MPI GRAPH GET(comm, maxindex, maxedges, index, edges)IN comm communicator with graph structure (handle)IN maxindex length of vector index in the calling program(integer)IN maxedges length of vector edges in the calling program(integer)OUT index array of integers containing the graph structure (fordetails see the de�nition of MPI GRAPH CREATE)OUT edges array of integers containing the graph structureint MPI Graph get(MPI Comm comm, int maxindex, int maxedges, int *index,int *edges)MPI GRAPH GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERRORMPI CARTDIM GET(comm, ndims)IN comm communicator with cartesian structure (handle)OUT ndims number of dimensions of the cartesian structure (inte-ger)int MPI Cartdim get(MPI Comm comm, int *ndims)MPI CARTDIM GET(COMM, NDIMS, IERROR)INTEGER COMM, NDIMS, IERRORThe functions MPI CARTDIM GET and MPI CART GET return the cartesian topologyinformation that was associated with a communicator by MPI CART CREATE.MPI CART GET(comm, maxdims, dims, periods, coords)IN comm communicator with cartesian structure (handle)IN maxdims length of vectors dims, periods, and coords in thecalling program (integer)OUT dims number of processes for each cartesian dimension (ar-ray of integer)OUT periods periodicity (true/false) for each cartesian dimension(array of logical)OUT coords coordinates of calling process in cartesian structure(array of integer)int MPI Cart get(MPI Comm comm, int maxdims, int *dims, int *periods,int *coords)
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182 CHAPTER 6. PROCESS TOPOLOGIESMPI CART GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERRORLOGICAL PERIODS(*)MPI CART RANK(comm, coords, rank)IN comm communicator with cartesian structure (handle)IN coords integer array (of size ndims) specifying the cartesiancoordinates of a processOUT rank rank of speci�ed process (integer)int MPI Cart rank(MPI Comm comm, int *coords, int *rank)MPI CART RANK(COMM, COORDS, RANK, IERROR)INTEGER COMM, COORDS(*), RANK, IERRORFor a process group with cartesian structure, the function MPI CART RANK translatesthe logical process coordinates to process ranks as they are used by the point-to-pointroutines.For dimension i with periods(i) = true, if the coordinate, coords(i), is out ofrange, that is, coords(i) < 0 or coords(i) � dims(i), it is shifted back to the interval0 � coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous fornon-periodic dimensions.MPI CART COORDS(comm, rank, maxdims, coords)IN comm communicator with cartesian structure (handle)IN rank rank of a process within group of comm (integer)IN maxdims length of vector coord in the calling program (integer)OUT coords integer array (of size ndims) containing the cartesiancoordinates of speci�ed process (integer)int MPI Cart coords(MPI Comm comm, int rank, int maxdims, int *coords)MPI CART COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERRORThe inverse mapping, rank-to-coordinates translation is provided by MPI CART-COORDS.
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6.5. TOPOLOGY CONSTRUCTORS 183MPI GRAPH NEIGHBORS COUNT(comm, rank, nneighbors)IN comm communicator with graph topology (handle)IN rank rank of process in group of comm (integer)OUT nneighbors number of neighbors of speci�ed process (integer)int MPI Graph neighbors count(MPI Comm comm, int rank, int *nneighbors)MPI GRAPH NEIGHBORS COUNT(COMM, RANK, NNEIGHBORS, IERROR)INTEGER COMM, RANK, NNEIGHBORS, IERRORMPI GRAPH NEIGHBORS COUNT and MPI GRAPH NEIGHBORS provide adjacencyinformation for a general, graph topology.MPI GRAPH NEIGHBORS(comm, rank, maxneighbors, neighbors)IN comm communicator with graph topology (handle)IN rank rank of process in group of comm (integer)IN maxneighbors size of array neighbors (integer)OUT neighbors ranks of processes that are neighbors to speci�ed pro-cess (array of integer)int MPI Graph neighbors(MPI Comm comm, int rank, int maxneighbors,int *neighbors)MPI GRAPH NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERRORExample 6.3 Suppose that comm is a communicator with a shu�e-exchange topology. Thegroup has 2n members. Each process is labeled by a1; : : : ; an with ai 2 f0; 1g, and hasthree neighbors: exchange(a1; : : : ; an) = a1; : : : ; an�1; �an (�a = 1 � a), shu�e(a1; : : : ; an) =a2; : : : ; an; a1, and unshu�e(a1; : : : ; an) = an; a1; : : : ; an�1. The graph adjacency list isillustrated below for n = 3.node exchange shu�e unshu�eneighbors(1) neighbors(2) neighbors(3)0 (000) 1 0 01 (001) 0 2 42 (010) 3 4 13 (011) 2 6 54 (100) 5 1 25 (101) 4 3 66 (110) 7 5 37 (111) 6 7 7Suppose that the communicator comm has this topology associated with it. The follow-ing code fragment cycles through the three types of neighbors and performs an appropriatepermutation for each.
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184 CHAPTER 6. PROCESS TOPOLOGIESC assume: each process has stored a real number A.C extract neighborhood informationCALL MPI_COMM_RANK(comm, myrank, ierr)CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)C perform exchange permutationCALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0,+ neighbors(1), 0, comm, status, ierr)C perform shuffle permutationCALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0,+ neighbors(3), 0, comm, status, ierr)C perform unshuffle permutationCALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0,+ neighbors(2), 0, comm, status, ierr)6.5.5 Cartesian Shift CoordinatesIf the process topology is a cartesian structure, a MPI SENDRECV operation is likely to beused along a coordinate direction to perform a shift of data. As input, MPI SENDRECVtakes the rank of a source process for the receive, and the rank of a destination process forthe send. If the functionMPI CART SHIFT is called for a cartesian process group, it providesthe calling process with the above identi�ers, which then can be passed to MPI SENDRECV.The user speci�es the coordinate direction and the size of the step (positive or negative).The function is local.MPI CART SHIFT(comm, direction, disp, rank source, rank dest)IN comm communicator with cartesian structure (handle)IN direction coordinate dimension of shift (integer)IN disp displacement (> 0: upwards shift, < 0: downwardsshift) (integer)OUT rank source rank of source process (integer)OUT rank dest rank of destination process (integer)int MPI Cart shift(MPI Comm comm, int direction, int disp, int *rank source,int *rank dest)MPI CART SHIFT(COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR)INTEGER COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERRORDepending on the periodicity of the cartesian group in the speci�ed coordinate direc-tion, MPI CART SHIFT provides the identi�ers for a circular or an end-o� shift. In the caseof an end-o� shift, the value MPI PROC NULL may be returned in rank source or rank dest,indicating that the source or the destination for the shift is out of range.Example 6.4 The communicator, comm, has a two-dimensional, periodic, cartesian topol-ogy associated with it. A two-dimensional array of REALs is stored one element per process,in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along thecolumn) by i steps.
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6.5. TOPOLOGY CONSTRUCTORS 185....C find process rankCALL MPI_COMM_RANK(comm, rank, ierr))C find cartesian coordinatesCALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)C compute shift source and destinationCALL MPI_CART_SHIFT(comm, 1, coords(2), source, dest, ierr)C skew arrayCALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm,+ status, ierr)6.5.6 Partitioning of Cartesian structuresMPI CART SUB(comm, remain dims, newcomm)IN comm communicator with cartesian structure (handle)IN remain dims the ith entry of remain dims speci�es whether theith dimension is kept in the subgrid (true) or is drop-ped (false) (logical vector)OUT newcomm communicator containing the subgrid that includesthe calling process (handle)int MPI Cart sub(MPI Comm comm, int *remain dims, MPI Comm *newcomm)MPI CART SUB(COMM, REMAIN DIMS, NEWCOMM, IERROR)INTEGER COMM, NEWCOMM, IERRORLOGICAL REMAIN DIMS(*)If a cartesian topology has been created with MPI CART CREATE, the functionMPI CART SUB can be used to partition the communicator group into subgroups thatform lower-dimensional cartesian subgrids, and to build for each subgroup a communica-tor with the associated subgrid cartesian topology. (This function is closely related toMPI COMM SPLIT.)Example 6.5 Assume thatMPI CART CREATE(..., comm) has de�ned a (2�3�4) grid.Let remain dims = (true, false, true). Then a call to,MPI_CART_SUB(comm, remain_dims, comm_new),will create three communicators each with eight processes in a 2 � 4 cartesian topol-ogy. If remain dims = (false, false, true) then the call to MPI CART SUB(comm,remain dims, comm new) will create six non-overlapping communicators, each with fourprocesses, in a one-dimensional cartesian topology.6.5.7 Low-level topology functionsThe two additional functions introduced in this section can be used to implement all othertopology functions. In general they will not be called by the user directly, unless he or sheis creating additional virtual topology capability other than that provided by MPI.
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186 CHAPTER 6. PROCESS TOPOLOGIESMPI CART MAP(comm, ndims, dims, periods, newrank)IN comm input communicator (handle)IN ndims number of dimensions of cartesian structure (integer)IN dims integer array of size ndims specifying the number ofprocesses in each coordinate directionIN periods logical array of size ndims specifying the periodicityspeci�cation in each coordinate directionOUT newrank reordered rank of the calling process; MPI UNDEFINEDif calling process does not belong to grid (integer)int MPI Cart map(MPI Comm comm, int ndims, int *dims, int *periods,int *newrank)MPI CART MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERRORLOGICAL PERIODS(*)MPI CART MAP computes an \optimal" placement for the calling process on the phys-ical machine. A possible implementation of this function is to always return the rank of thecalling process, that is, not to perform any reordering.Advice to implementors. The function MPI CART CREATE(comm, ndims, dims,periods, reorder, comm cart), with reorder = true can be implemented by callingMPI CART MAP(comm, ndims, dims, periods, newrank), then callingMPI COMM SPLIT(comm, color, key, comm cart), with color = 0 if newrank 6=MPI UNDEFINED, color = MPI UNDEFINED otherwise, and key = newrank.The function MPI CART SUB(comm, remain dims, comm new) can be implementedby a call to MPI COMM SPLIT(comm, color, key, comm new), using a single numberencoding of the lost dimensions as color and a single number encoding of the preserveddimensions as key.All other cartesian topology functions can be implemented locally, using the topologyinformation that is cached with the communicator. (End of advice to implementors.)The corresponding new function for general graph structures is as follows.
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6.6. AN APPLICATION EXAMPLE 187MPI GRAPH MAP(comm, nnodes, index, edges, newrank)IN comm input communicator (handle)IN nnodes number of graph nodes (integer)IN index integer array specifying the graph structure, seeMPI GRAPH CREATEIN edges integer array specifying the graph structureOUT newrank reordered rank of the calling process; MPI UNDEFINEDif the calling process does not belong to graph (inte-ger)int MPI Graph map(MPI Comm comm, int nnodes, int *index, int *edges,int *newrank)MPI GRAPH MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERRORAdvice to implementors. The function MPI GRAPH CREATE(comm, nnodes, index,edges, reorder, comm graph), with reorder = true can be implemented by callingMPI GRAPH MAP(comm, nnodes, index, edges, newrank), then callingMPI COMM SPLIT(comm, color, key, comm graph), with color = 0 if newrank 6=MPI UNDEFINED, color = MPI UNDEFINED otherwise, and key = newrank.All other graph topology functions can be implemented locally, using the topologyinformation that is cached with the communicator. (End of advice to implementors.)6.6 An Application ExampleExample 6.6 The example in �gure 6.1 shows how the grid de�nition and inquiry functionscan be used in an application program. A partial di�erential equation, for instance thePoisson equation, is to be solved on a rectangular domain. First, the processes organizethemselves in a two-dimensional structure. Each process then inquires about the ranks ofits neighbors in the four directions (up, down, right, left). The numerical problem is solvedby an iterative method, the details of which are hidden in the subroutine relax.In each relaxation step each process computes new values for the solution grid functionat all points owned by the process. Then the values at inter-process boundaries have to beexchanged with neighboring processes. For example, the exchange subroutine might containa call like MPI SEND(...,neigh rank(1),...) to send updated values to the left-hand neighbor(i-1,j).
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188 CHAPTER 6. PROCESS TOPOLOGIESinteger ndims, num neighlogical reorderparameter (ndims=2, num neigh=4, reorder=.true.)integer comm, comm cart, dims(ndims), neigh def(ndims), ierrinteger neigh rank(num neigh), own position(ndims), i, jlogical periods(ndims)real�8 u(0:101,0:101), f(0:101,0:101)data dims / ndims � 0 /comm = MPI COMM WORLDC Set process grid size and periodicitycall MPI DIMS CREATE(comm, ndims, dims,ierr)periods(1) = .TRUE.periods(2) = .TRUE.C Create a grid structure in WORLD group and inquire about own positioncall MPI CART CREATE (comm, ndims, dims, periods, reorder, comm cart,ierr)call MPI CART GET (comm cart, ndims, dims, periods, own position,ierr)C Look up the ranks for the neighbors. Own process coordinates are (i,j).C Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1)i = own position(1)j = own position(2)neigh def(1) = i-1neigh def(2) = jcall MPI CART RANK (comm cart, neigh def, neigh rank(1),ierr)neigh def(1) = i+1neigh def(2) = jcall MPI CART RANK (comm cart, neigh def, neigh rank(2),ierr)neigh def(1) = ineigh def(2) = j-1call MPI CART RANK (comm cart, neigh def, neigh rank(3),ierr)neigh def(1) = ineigh def(2) = j+1call MPI CART RANK (comm cart, neigh def, neigh rank(4),ierr)C Initialize the grid functions and start the iterationcall init (u, f)do 10 it=1,100call relax (u, f)C Exchange data with neighbor processescall exchange (u, comm cart, neigh rank, num neigh)10 continuecall output (u)endFigure 6.1: Set-up of process structure for two-dimensional parallel Poisson solver.
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Chapter 7MPI Environmental ManagementThis chapter discusses routines for getting and, where appropriate, setting various param-eters that relate to the MPI implementation and the execution environment (such as errorhandling). The procedures for entering and leaving the MPI execution environment are alsodescribed here.7.1 Implementation information7.1.1 Environmental InquiriesA set of attributes that describe the execution environment are attached to the commu-nicator MPI COMM WORLD when MPI is initialized. The value of these attributes can beinquired by using the function MPI ATTR GET described in Chapter 5. It is erroneous todelete these attributes or free their keys.The list of prede�ned attribute keys includeMPI TAG UB Upper bound for tag value.MPI HOST Host process rank, if such exists, MPI PROC NULL, otherwise.MPI IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the samecommunicator may return di�erent values for this parameter.Vendors may add implementation speci�c parameters (such as node number, real mem-ory size, virtual memory size, etc.)The required parameter values are discussed in more detail below:Tag valuesTag values range from 0 to the value returned for MPI TAG UB inclusive. These values areguaranteed to be unchanging during the execution of an MPI program. In addition, the tagupper bound value must be at least 32767. An MPI implementation is free to make thevalue of MPI TAG UB larger than this; for example, the value 230� 1 is also a legal value forMPI TAG UB.
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190 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENTHost rankThe value returned for MPI HOST gets the rank of the HOST process in the group associatedwith communicator MPI COMM WORLD, if there is such. MPI PROC NULL is returned ifthere is no host. MPI does not specify what it means for a process to be a HOST, nor doesit requires that a HOST exists.IO rankThe value returned for MPI IO is the rank of a processor that can provide language-standardI/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported(e.g., OPEN, REWIND, WRITE). For C, this means that all of the ANSI-C I/O operations aresupported (e.g., fopen, fprintf, lseek).If every process can provide language-standard I/O, then the value MPI ANY SOURCEmust be returned. If no process can provide language-standard I/O, then the value MPI-PROC NULL must be returned. If several processes can provide I/O, then any them may bereturned. The same value (rank) need not be returned by all processes.MPI GET PROCESSOR NAME( name, resultlen )OUT name A unique speci�er for the actual (as opposed to vir-tual) node.OUT resultlen Length (in printable characters) of the result returnedin nameint MPI Get processor name(char *name, int *resultlen)MPI GET PROCESSOR NAME( NAME, RESULTLEN, IERROR)CHARACTER*(*) NAMEINTEGER RESULTLEN,IERRORThis routine returns the name of the processor on which it was called at the momentof the call. The name is a character string for maximum 
exibility. From this value itmust be possible to identify a speci�c piece of hardware; possible values include \processor9 in rack 4 of mpp.cs.org" and \231" (where 231 is the actual processor number in therunning homogeneous system). The argument name must represent storage that is at leastMPI MAX PROCESSOR NAME characters long. MPI GET PROCESSOR NAME may write upto this many characters into name.The number of characters actually written is returned in the output argument, resultlen.Rationale. This function allows MPI implementations that do process migrationto return the current processor. Note that nothing in MPI requires or de�nes pro-cess migration; this de�nition of MPI GET PROCESSOR NAME simply allows suchan implementation. (End of rationale.)Advice to users. The user must provide at least MPI MAX PROCESSOR NAME spaceto write the processor name | processor names can be this long. The user shouldexamine the ouput argument, resultlen, to determine the actual length of the name.(End of advice to users.)
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7.2. ERROR HANDLING 1917.2 Error handlingAn MPI implementation cannot or may choose not to handle some errors that occur duringMPI calls. These can include errors that generate exceptions or traps, such as 
oating pointerrors or access violations. The set of errors that are handled by MPI is implementation-dependent. Each such error generates an MPI exception.A user can associate an error handler with a communicator. The speci�ed error han-dling routine will be used for any MPI exception that occurs during a call to MPI for acommunication with this communicator. MPI calls that are not related to any communica-tor are considered to be attached to the communicator MPI COMM WORLD. The attachmentof error handlers to communicators is purely local: di�erent processes may attach di�erenterror handlers to the same communicator.A newly created communicator inherits the error handler that is associated with the\parent" communicator. In particular, the user can specify a \global" error handler forall communicators by associating this handler with the communicator MPI COMM WORLDimmediately after initialization.Several prede�ned error handlers are available in MPI:MPI ERRORS ARE FATAL The handler, when called, causes the program to abort on all exe-cuting processes. This has the same e�ect as if MPI ABORT was called by the processthat invoked the handler.MPI ERRORS RETURN The handler has no e�ect.Implementations may provide additional prede�ned error handlers and programmerscan code their own error handlers.The error handler MPI ERRORS ARE FATAL is associated by default with MPI COMM-WORLD after initialization. Thus, if the user chooses not to control error handling, everyerror thatMPI handles is treated as fatal. Since (almost) all MPI calls return an error code,a user may choose to handle errors in its main code, by testing the return code of MPI callsand executing a suitable recovery code when the call was not successful. In this case, theerror handler MPI ERRORS RETURN will be used. Usually it is more convenient and moree�cient not to test for errors after each MPI call, and have such error handled by a nontrivial MPI error handler.After an error is detected, the state of MPI is unde�ned. That is, using a user-de�nederror handler, or MPI ERRORS RETURN, does not necessarily allow the user to continue touse MPI after an error is detected. The purpose of these error handlers is to allow a user toissue user-de�ned error messages and to take actions unrelated to MPI (such as 
ushing I/Obu�ers) before a program exits. An MPI implementation is free to allow MPI to continueafter an error but is not required to do so.Advice to implementors. A good quality implementation will, to the greatest pos-sible, extent, circumscribe the impact of an error, so that normal processing cancontinue after an error handler was invoked. The implementation documentation willprovide information on the possible e�ect of each class of errors. (End of advice toimplementors.)An MPI error handler is an opaque object, which is accessed by a handle. MPI callsare provided to create new error handlers, to associate error handlers with communicators,and to test which error handler is associated with a communicator.
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192 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENTMPI ERRHANDLER CREATE( function, errhandler )IN function user de�ned error handling procedureOUT errhandler MPI error handler (handle)int MPI Errhandler create(MPI Handler function *function,MPI Errhandler *errhandler)MPI ERRHANDLER CREATE(FUNCTION, HANDLER, IERROR)EXTERNAL FUNCTIONINTEGER ERRHANDLER, IERRORRegister the user routine function for use as an MPI exception handler. Returns inerrhandler a handle to the registered exception handler.Advice to implementors. The handle returned may contain the address of the errorhandling routine. This call is super
uous in C, which has a referencing operator, butis necessary in Fortran. (End of advice to implementors.)The user routine should be a C function of type MPI Handler function, which is de�nedas:typedef void (MPI_Handler_function)(MPI_Comm *, int *, ...);The �rst argument is the communicator in use. The second is the error code to be returnedby the MPI routine. The remaining arguments are \stdargs" arguments whose numberand meaning is implementation-dependent. An implementation should clearly documentthese arguments. Addresses are used so that the handler may be written in Fortran.Rationale. The variable argument list is provided because it provides an ANSI-standard hook for providing additional information to the error handler; without thishook, ANSI C prohibits additional arguments. (End of rationale.)MPI ERRHANDLER SET( comm, errhandler )IN comm communicator to set the error handler for (handle)IN errhandler new MPI error handler for communicator (handle)int MPI Errhandler set(MPI Comm comm, MPI Errhandler errhandler)MPI ERRHANDLER SET(COMM, ERRHANDLER, IERROR)INTEGER COMM, ERRHANDLER, IERRORAssociates the new error handler errorhandler with communicator comm at the callingprocess. Note that an error handler is always associated with the communicator.
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7.2. ERROR HANDLING 193MPI ERRHANDLER GET( comm, errhandler )IN comm communicator to get the error handler from (handle)OUT errhandler MPI error handler currently associated with commu-nicator (handle)int MPI Errhandler get(MPI Comm comm, MPI Errhandler *errhandler)MPI ERRHANDLER GET(COMM, ERRHANDLER, IERROR)INTEGER COMM, ERRHANDLER, IERRORReturns in errhandler (a handle to) the error handler that is currently associated withcommunicator comm.Example: A library function may register at its entry point the current error handlerfor a communicator, set its own private error handler for this communicator, and restorebefore exiting the previous error handler.MPI ERRHANDLER FREE( errhandler )IN errhandler MPI error handler (handle)int MPI Errhandler free(MPI Errhandler *errhandler)MPI ERRHANDLER FREE(ERRHANDLER, IERROR)INTEGER ERRHANDLER, IERRORMarks the error handler associated with errhandler for deallocation and sets errhandlerto MPI ERRHANDLER NULL. The error handler will be deallocated after all communicatorsassociated with it have been deallocated.MPI ERROR STRING( errorcode, string, resultlen )IN errorcode Error code returned by an MPI routineOUT string Text that corresponds to the errorcodeOUT resultlen Length (in printable characters) of the result returnedin stringint MPI Error string(int errorcode, char *string, int *resultlen)MPI ERROR STRING(ERRORCODE, STRING, RESULTLEN, IERROR)INTEGER ERRORCODE, RESULTLEN, IERRORCHARACTER*(*) STRINGReturns the error string associated with an error code. The argument string mustrepresent storage that is at least MPI MAX ERROR STRING characters long.The number of characters actually written is returned in the output argument, resultlen.Rationale. The form of this function was chosen to make the Fortran and C bindingssimilar. A version that returns a pointer to a string has two di�culties. First, thereturn string must be statically allocated and di�erent for each error message (allowing
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194 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENTthe pointers returned by successive calls to MPI ERROR STRING to point to the correctmessage). Second, in Fortran, a function declared as returning CHARACTER*(*) cannot be referenced in, for example, a PRINT statement. (End of rationale.)7.3 Error codes and classesThe error codes returned by MPI are left entirely to the implementation (with the exceptionof MPI SUCCESS). This is done to allow an implementation to provide as much informationas possible in the error code (for use with MPI ERROR STRING).To make it possible for an application to interpret an error code, the routine MPI ERR-OR CLASS converts an error code into one of a small set of speci�ed values, called errorclasses. Valid error classes includeMPI SUCCESS No errorMPI ERR BUFFER Invalid bu�er pointerMPI ERR COUNT Invalid count argumentMPI ERR TYPE Invalid datatype argumentMPI ERR TAG Invalid tag argumentMPI ERR COMM Invalid communicatorMPI ERR RANK Invalid rankMPI ERR REQUEST Invalid request (handle)MPI ERR ROOT Invalid rootMPI ERR GROUP Invalid groupMPI ERR OP Invalid operationMPI ERR TOPOLOGY Invalid topologyMPI ERR DIMS Invalid dimension argumentMPI ERR ARG Invalid argument of some other kindMPI ERR UNKNOWN Unknown errorMPI ERR TRUNCATE Message truncated on receiveMPI ERR OTHER Known error not in this listMPI ERR INTERN Internal MPI errorMPI ERR LASTCODE Last standard error codeAn implementation is free to de�ne more error classes; however, the standard errorclasses must be used where appropriate. The error classes satisfy,0 = MPI SUCCESS < MPI ERR ::: � MPI ERR LASTCODE:Rationale. The di�erence between MPI ERR UNKNOWN and MPI ERR OTHER is thatMPI ERROR STRING can return useful information about MPI ERR OTHER.Note that MPI SUCCESS = 0 is necessary to be consistent with C practice; the sepa-ration of error classes and error codes allows us to de�ne the error classes this way.Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)
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7.4. TIMERS 195MPI ERROR CLASS( errorcode, errorclass )IN errorcode Error code returned by an MPI routineOUT errorclass Error class associated with errorcodeint MPI Error class(int errorcode, int *errorclass)MPI ERROR CLASS(ERRORCODE, ERRORCLASS, IERROR)INTEGER ERRORCODE, ERRORCLASS, IERROR7.4 TimersMPI de�nes a timer. A timer is speci�ed even though it is not \message-passing," becausetiming parallel programs is important in \performance debugging" and because existingtimers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-venient or do not provide adequate access to high-resolution timers.MPI WTIME()double MPI Wtime(void)DOUBLE PRECISION MPI WTIME()MPI WTIME returns a 
oating-point number of seconds, representing elapsed wall-clocktime since some time in the past.The \time in the past" is guaranteed not to change during the life of the process.The user is responsible for converting large numbers of seconds to other units if they arepreferred.This function is portable (it returns seconds, not \ticks"), it allows high-resolution,and carries no unnecessary baggage. One would use it like this:{ double starttime, endtime;starttime = double MPI_Wtime();.... stuff to be timed ...endtime = double MPI_Wtime();printf("That took %f seconds\n",endtime-starttime);} The times returned are local to the node that called them. There is no requirementthat di�erent nodes return \the same time."MPI WTICK()double MPI Wtick(void)DOUBLE PRECISION MPI WTICK()
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196 CHAPTER 7. MPI ENVIRONMENTAL MANAGEMENTMPI WTICK returns the resolution of MPI WTIME in seconds. That is, it returns,as a double precision value, the number of seconds between successive clock ticks. Forexample, if the clock is implemented by the hardware as a counter that is incrementedevery millisecond, the value returned by MPI WTICK should be 10�3.7.5 StartupOne goal ofMPI is to achieve source code portability. By this we mean that a programwrittenusing MPI and complying with the relevant language standards is portable as written, andmust not require any source code changes when moved from one system to another. Thisexplicitly does not say anything about how an MPI program is started or launched fromthe command line, nor what the user must do to set up the environment in which an MPIprogram will run. However, an implementation may require some setup to be performedbefore other MPI routines may be called. To provide for this, MPI includes an initializationroutine MPI INIT.MPI INIT()int MPI Init(int *argc, char ***argv)MPI INIT(IERROR)INTEGER IERRORThis routine must be called before any other MPI routine. It must be called at mostonce; subsequent calls are erroneous (see MPI INITIALIZED).All MPI programs must contain a call to MPI init; this routine must be called beforeany other MPI routine (apart from MPI INITIALIZED) is called. The version for ANSI Caccepts the argc and argv that are provided by the arguments to main:MPI_init( argc, argv );The Fortran version takes only IERROR.MPI FINALIZE()int MPI Finalize(void)MPI FINALIZE(IERROR)INTEGER IERRORThis routines cleans up all MPI state. Once this routine is called, no MPI routine (evenMPI INIT) may be called. The user must ensure that all pending communications involvinga process complete before the process calls MPI FINALIZE.
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7.5. STARTUP 197MPI INITIALIZED( 
ag )OUT 
ag Flag is true if MPI INIT has been called and falseotherwise.int MPI Initialized(int *flag)MPI INITIALIZED(FLAG, IERROR)LOGICAL FLAGINTEGER IERRORThis routine may be used to determine whether MPI INIT has been called. It is theonly routine that may be called before MPI INIT is called.MPI ABORT( comm, errorcode )IN comm communicator of tasks to abortIN errorcode error code to return to invoking environmentint MPI Abort(MPI Comm comm, int errorcode)MPI ABORT(COMM, ERRORCODE, IERROR)INTEGER COMM, ERRORCODE, IERRORThis routine makes a \best attempt" to abort all tasks in the group of comm. Thisfunction does not require that the invoking environment take any action with the errorcode. However, a Unix or POSIX environment should handle this as a return errorcodefrom the main program or an abort(errorcode).MPI implementations are required to de�ne the behavior of MPI ABORT at least for acomm of MPI COMM WORLD. MPI implementations may ignore the comm argument and actas if the comm was MPI COMM WORLD.
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Chapter 8Pro�ling Interface8.1 RequirementsTo meet the MPI pro�ling interface, an implementation of the MPI functions must1. provide a mechanism through which all of the MPI de�ned functions may be accessedwith a name shift. Thus all of the MPI functions (which normally start with the pre�x\MPI ") should also be accessible with the pre�x \PMPI ".2. ensure that those MPI functions which are not replaced may still be linked into anexecutable image without causing name clashes.3. document the implementation of di�erent language bindings of the MPI interface ifthey are layered on top of each other, so that the pro�ler developer knows whethershe must implement the pro�le interface for each binding, or can economise by imple-menting it only for the lowest level routines.4. where the implementation of di�erent language bindings is is done through a layeredapproach (e.g. the Fortran binding is a set of \wrapper" functions which call the Cimplementation), ensure that these wrapper functions are separable from the rest ofthe library.This is necessary to allow a separate pro�ling library to be correctly implemented,since (at least with Unix linker semantics) the pro�ling library must contain thesewrapper functions if it is to perform as expected. This requirement allows the personwho builds the pro�ling library to extract these functions from the original MPI libraryand add them into the pro�ling library without bringing along any other unnecessarycode.5. provide a no-op routine MPI PCONTROL in the MPI library.8.2 DiscussionThe objective of the MPI pro�ling interface is to ensure that it is relatively easy for authorsof pro�ling (and other similar) tools to interface their codes to MPI implementations ondi�erent machines.Since MPI is a machine independent standard with many di�erent implementations,it is unreasonable to expect that the authors of pro�ling tools for MPI will have access to
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8.3. LOGIC OF THE DESIGN 199the source code which implements MPI on any particular machine. It is therefore necessaryto provide a mechanism by which the implementors of such tools can collect whateverperformance information they wish without access to the underlying implementation.We believe that having such an interface is important if MPI is to be attractive to endusers, since the availability of many di�erent tools will be a signi�cant factor in attractingusers to the MPI standard.The pro�ling interface is just that, an interface. It says nothing about the way in whichit is used. There is therefore no attempt to lay down what information is collected throughthe interface, or how the collected information is saved, �ltered, or displayed.While the initial impetus for the development of this interface arose from the desire topermit the implementation of pro�ling tools, it is clear that an interface like that speci�edmay also prove useful for other purposes, such as \internetworking" multiple MPI imple-mentations. Since all that is de�ned is an interface, there is no objection to its being usedwherever it is useful.As the issues being addressed here are intimately tied up with the way in which ex-ecutable images are built, which may di�er greatly on di�erent machines, the examplesgiven below should be treated solely as one way of implementing the objective of the MPIpro�ling interface. The actual requirements made of an implementation are those detailedin the Requirements section above, the whole of the rest of this chapter is only present asjusti�cation and discussion of the logic for those requirements.The examples below show one way in which an implementation could be constructedto meet the requirements on a Unix system (there are doubtless others which would beequally valid).8.3 Logic of the designProvided that an MPI implementation meets the requirements above, it is possible for theimplementor of the pro�ling system to intercept all of the MPI calls which are made bythe user program. She can then collect whatever information she requires before callingthe underlying MPI implementation (through its name shifted entry points) to achieve thedesired e�ects.8.3.1 Miscellaneous control of pro�lingThere is a clear requirement for the user code to be able to control the pro�ler dynamicallyat run time. This is normally used for (at least) the purposes of� Enabling and disabling pro�ling depending on the state of the calculation.� Flushing trace bu�ers at non-critical points in the calculation� Adding user events to a trace �le.These requirements are met by use of the MPI PCONTROL.MPI PCONTROL(level, : : : )IN level Pro�ling levelint MPI Pcontrol(const int level, : : :)
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200 CHAPTER 8. PROFILING INTERFACEMPI PCONTROL(level)INTEGER LEVEL, : : :MPI libraries themselves make no use of this routine, and simply return immediatelyto the user code. However the presence of calls to this routine allows a pro�ling package tobe explicitly called by the user.Since MPI has no control of the implementation of the pro�ling code, we are unableto specify precisely the semantics which will be provided by calls to MPI PCONTROL. Thisvagueness extends to the number of arguments to the function, and their datatypes.However to provide some level of portability of user codes to di�erent pro�ling libraries,we request the following meanings for certain values of level.� level==0 Pro�ling is disabled.� level==1 Pro�ling is enabled at a normal default level of detail.� level==2 Pro�le bu�ers are 
ushed. (This may be a no-op in some pro�lers).� All other values of level have pro�le library de�ned e�ects and additional arguments.We also request that the default state after MPI INIT has been called is for pro�lingto be enabled at the normal default level. (i.e. as if MPI PCONTROL had just been calledwith the argument 1). This allows users to link with a pro�ling library and obtain pro�leoutput without having to modify their source code at all.The provision of MPI PCONTROL as a no-op in the standard MPI library allows themto modify their source code to obtain more detailed pro�ling information, but still be ableto link exactly the same code against the standard MPI library.8.4 Examples8.4.1 Pro�ler implementationSuppose that the pro�ler wishes to accumulate the total amount of data sent by theMPI SEND function, along with the total elapsed time spent in the function. This couldtrivially be achieved thusstatic int totalBytes;static double totalTime;int MPI_SEND(void * buffer, const int count, MPI_Datatype datatype,int dest, int tag, MPI_comm comm){ double tstart = MPI_Wtime(); /* Pass on all the arguments */int extent;int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);/* Accumulate byte count */totalBytes += count * MPI_Type_size(datatype,&extent);/* and time */totalTime += MPI_Wtime() - tstart;
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8.4. EXAMPLES 201return result;}8.4.2 MPI library implementationOn a Unix system, in which the MPI library is implemented in C, then there are variouspossible options, of which two of the most obvious are presented here. Which is betterdepends on whether the linker and compiler support weak symbols.Systems with weak symbolsIf the compiler and linker support weak external symbols (e.g. Solaris 2.x, other systemV.4 machines), then only a single library is required through the use of #pragma weak thus#pragma weak MPI_Example = PMPI_Exampleint PMPI_Example(/* appropriate args */){ /* Useful content */} The e�ect of this #pragma is to de�ne the external symbol MPI Example as a weakde�nition. This means that the linker will not complain if there is another de�nition of thesymbol (for instance in the pro�ling library), however if no other de�nition exists, then thelinker will use the weak de�nition.Systems without weak symbolsIn the absence of weak symbols then one possible solution would be to use the C macropre-processor thus#ifdef PROFILELIB# ifdef __STDC__# define FUNCTION(name) P##name# else# define FUNCTION(name) P/**/name# endif#else# define FUNCTION(name) name#endifEach of the user visible functions in the library would then be declared thusint FUNCTION(MPI_Example)(/* appropriate args */){ /* Useful content */}
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202 CHAPTER 8. PROFILING INTERFACEThe same source �le can then be compiled to produce both versions of the library,depending on the state of the PROFILELIB macro symbol.It is required that the standard MPI library be built in such a way that the inclusion ofMPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,since it may mean that each external function has to be compiled from a separate �le.However this is necessary so that the author of the pro�ling library need only de�ne thoseMPI functions which she wishes to intercept, references to any others being ful�lled by thenormal MPI library. Therefore the link step can look something like this% cc ... -lmyprof -lpmpi -lmpiHere libmyprof.a contains the pro�ler functions which intercept some of the MPIfunctions. libpmpi.a contains the \name shifted" MPI functions, and libmpi.a containsthe normal de�nitions of the MPI functions.8.4.3 ComplicationsMultiple countingSince parts of the MPI library may themselves be implemented using more basic MPI func-tions (e.g. a portable implementation of the collective operations implemented using pointto point communications), there is potential for pro�ling functions to be called from withinan MPI function which was called from a pro�ling function. This could lead to \doublecounting" of the time spent in the inner routine. Since this e�ect could actually be usefulunder some circumstances (e.g. it might allow one to answer the question \How much timeis spent in the point to point routines when they're called from collective functions ?"), wehave decided not to enforce any restrictions on the author of the MPI library which wouldovercome this. Therefore the author of the pro�ling library should be aware of this problem,and guard against it herself. In a single threaded world this is easily achieved through use ofa static variable in the pro�ling code which remembers if you are already inside a pro�lingroutine. It becomes more complex in a multi-threaded environment (as does the meaningof the times recorded !)Linker odditiesThe Unix linker traditionally operates in one pass : the e�ect of this is that functions fromlibraries are only included in the image if they are needed at the time the library is scanned.When combined with weak symbols, or multiple de�nitions of the same function, this cancause odd (and unexpected) e�ects.Consider, for instance, an implementation of MPI in which the Fortran binding isachieved by using wrapper functions on top of the C implementation. The author of thepro�le library then assumes that it is reasonable only to provide pro�le functions for the Cbinding, since Fortran will eventually call these, and the cost of the wrappers is assumedto be small. However, if the wrapper functions are not in the pro�ling library, then noneof the pro�led entry points will be unde�ned when the pro�ling library is called. Thereforenone of the pro�ling code will be included in the image. When the standard MPI libraryis scanned, the Fortran wrappers will be resolved, and will also pull in the base versions ofthe MPI functions. The overall e�ect is that the code will link successfully, but will not bepro�led.
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8.5. MULTIPLE LEVELS OF INTERCEPTION 203To overcome this we must ensure that the Fortran wrapper functions are included inthe pro�ling version of the library. We ensure that this is possible by requiring that thesebe separable from the rest of the base MPI library. This allows them to be ared out of thebase library and into the pro�ling one.8.5 Multiple levels of interceptionThe scheme given here does not directly support the nesting of pro�ling functions, since itprovides only a single alternative name for each MPI function. Consideration was given toan implementation which would allow multiple levels of call interception, however we wereunable to construct an implementation of this which did not have the following disadvan-tages� assuming a particular implementation language.� imposing a run time cost even when no pro�ling was taking place.Since one of the objectives of MPI is to permit e�cient, low latency implementations, andit is not the business of a standard to require a particular implementation language, wedecided to accept the scheme outlined above.Note, however, that it is possible to use the scheme above to implement a multi-levelsystem, since the function called by the user may call many di�erent pro�ling functionsbefore calling the underlying MPI function.Unfortunately such an implementation may require more cooperation between the dif-ferent pro�ling libraries than is required for the single level implementation detailed above.
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Annex ALanguage BindingA.1 IntroductionIn this section we summarize the speci�c bindings for both Fortran and C. We present �rstthe C bindings, then the Fortran bindings. Listings are alphabetical within chapter.A.2 De�ned Constants for C and FortranThese are required de�ned constants, to be de�ned in the �les mpi.h (for C) and mpif.h(for Fortran)./* return codes (both C and Fortran) */MPI_SUCCESSMPI_ERR_BUFFERMPI_ERR_COUNTMPI_ERR_TYPEMPI_ERR_TAGMPI_ERR_COMMMPI_ERR_RANKMPI_ERR_REQUESTMPI_ERR_ROOTMPI_ERR_GROUPMPI_ERR_OPMPI_ERR_TOPOLOGYMPI_ERR_DIMSMPI_ERR_ARGMPI_ERR_UNKNOWNMPI_ERR_TRUNCATEMPI_ERR_OTHERMPI_ERR_INTERNMPI_ERR_LASTCODE/* assorted constants (both C and Fortran) */MPI_BOTTOMMPI_PROC_NULL
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208 ANNEX A. LANGUAGE BINDINGMPI_ANY_SOURCEMPI_ANY_TAGMPI_UNDEFINEDMPI_UBMPI_LB/* status size and reserved index values (Fortran) */MPI_STATUS_SIZEMPI_SOURCEMPI_TAG/* Error-handling specifiers (C and Fortran) */MPI_ERRORS_ARE_FATALMPI_ERRORS_RETURN/* Maximum sizes for strings */MPI_MAX_PROCESSOR_NAMEMPI_MAX_ERROR_STRING/* elementary datatypes (C) */MPI_CHARMPI_SHORTMPI_INTMPI_LONGMPI_UNSIGNED_CHARMPI_UNSIGNED_SHORTMPI_UNSIGNEDMPI_UNSIGNED_LONGMPI_FLOATMPI_DOUBLEMPI_LONG_DOUBLEMPI_BYTEMPI_PACKED/* elementary datatypes (Fortran) */MPI_INTEGERMPI_REALMPI_DOUBLE_PRECISIONMPI_COMPLEXMPI_DOUBLE_COMPLEXMPI_LOGICALMPI_CHARACTERMPI_BYTEMPI_PACKED/* datatypes for reduction functions (C) */
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A.2. DEFINED CONSTANTS FOR C AND FORTRAN 209MPI_FLOAT_INTMPI_DOUBLE_INTMPI_LONG_INTMPI_2INTMPI_SHORT_INTMPI_LONG_DOUBLE_INT/* datatypes for reduction functions (Fortran) */MPI_2REALMPI_2DOUBLE_PRECISIONMPI_2INTEGERMPI_2COMPLEX/* optional datatypes (Fortran) */MPI_INTEGER1MPI_INTEGER2MPI_INTEGER4MPI_REAL2MPI_REAL4MPI_REAL8/* optional datatypes (C) */MPI_LONG_LONG_INT/* reserved communicators (C and Fortran) */MPI_COMM_WORLDMPI_COMM_SELF/* results of communicator and group comparisons */MPI_IDENTMPI_CONGRUENTMPI_SIMILARMPI_UNEQUAL/* environmental inquiry keys (C and Fortran) */MPI_TAG_UBMPI_IOMPI_HOST/* collective operations (C and Fortran) */MPI_MAXMPI_MINMPI_SUMMPI_PRODMPI_MAXLOCMPI_MINLOC
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210 ANNEX A. LANGUAGE BINDINGMPI_BANDMPI_BORMPI_BXORMPI_LANDMPI_LORMPI_LXOR/* Null handles */MPI_GROUP_NULLMPI_COMM_NULLMPI_DATATYPE_NULLMPI_REQUEST_NULLMPI_OP_NULLMPI_ERRHANDLER_NULL/* Empty group */MPI_GROUP_EMPTY/* topologies (C and Fortran) */MPI_GRAPHMPI_CARTThe following are de�ned C type de�nitions, also included in the �le mpi.h./* opaque types (C) */MPI_AintMPI_Status/* handles to assorted structures (C) */MPI_GroupMPI_CommMPI_DatatypeMPI_RequestMPI_Op/* prototypes for user-defined functions (C) */typedef int MPI_Copy_function(MPI_Comm *oldcomm, *newcomm, int *keyval,void *extra_state)typedef int MPI_Delete_function(MPI_Comm *comm, int *keyval,void *extra_state)}typedef void MPI_Handler_function(MPI_Comm *, int *, ...);typedef void MPI_User_function( void *invec, void *inoutvec, int *len,MPI_Datatype *datatype);For Fortran, here are examples of how each of the user-de�ned functions should bedeclared.The user-function argument to MPI OP CREATE should be declared like this:
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A.3. C BINDINGS FOR POINT-TO-POINT COMMUNICATION 211FUNCTION USER_FUNCTION( INVEC(*), INOUTVEC(*), LEN, TYPE)<type> INVEC(LEN), INOUTVEC(LEN)INTEGER LEN, TYPEThe copy-function argument to MPI KEYVAL CREATE should be declared like this:FUNCTION COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,ATTRIBUTE_VAL_OUT, FLAG)INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUTLOGICAL FLAGThe delete-function argument to MPI KEYVAL CREATE should be declared like this:FUNCTION DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE)INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATEA.3 C bindings for Point-to-Point CommunicationThese are presented here in the order of their appearance in the chapter.int MPI Send(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)int MPI Recv(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Status *status)int MPI Get count(MPI Status status, MPI Datatype datatype, int *count)int MPI Bsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)int MPI Ssend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)int MPI Rsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm)int MPI Buffer attach( void* buffer, int size)int MPI Buffer detach( void** buffer, int* size)int MPI Isend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Ibsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Issend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Irsend(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Request *request)
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212 ANNEX A. LANGUAGE BINDINGint MPI Wait(MPI Request *request, MPI Status *status)int MPI Test(MPI Request *request, int *flag, MPI Status *status)int MPI Request free(MPI Request *request)int MPI Waitany(int count, MPI Request *array of requests, int *index,MPI Status *status)int MPI Testany(int count, MPI Request *array of requests, int *index,int *flag, MPI Status *status)int MPI Waitall(int count, MPI Request *array of requests,MPI Status *array of statuses)int MPI Testall(int count, MPI Request *array of requests, int *flag,MPI Status *array of statuses)int MPI Waitsome(int incount, MPI Request *array of requests, int *outcount,int *array of indices, MPI Status *array of statuses)int MPI Testsome(int incount, MPI Request *array of requests, int *outcount,int *array of indices, MPI Status *array of statuses)int MPI Iprobe(int source, int tag, MPI Comm comm, int *flag,MPI Status *status)int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)int MPI Cancel(MPI Request *request)int MPI Test cancelled(MPI Status status, int *flag)int MPI Send init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Bsend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Ssend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Rsend init(void* buf, int count, MPI Datatype datatype, int dest,int tag, MPI Comm comm, MPI Request *request)int MPI Recv init(void* buf, int count, MPI Datatype datatype, int source,int tag, MPI Comm comm, MPI Request *request)int MPI Start(MPI Request *request)int MPI Startall(int count, MPI Request *array of requests)int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,int dest, int sendtag, void *recvbuf, int recvcount,MPI Datatype recvtype, int source, MPI Datatype recvtag,MPI Comm comm, MPI Status *status)
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A.3. C BINDINGS FOR POINT-TO-POINT COMMUNICATION 213int MPI Sendrecv replace(void* buf, int count, MPI Datatype datatype,int dest, int sendtag, int source, int recvtag, MPI Comm comm,MPI Status *status)int MPI Type contiguous(int count, MPI Datatype oldtype,MPI Datatype *newtype)int MPI Type vector(int count, int blocklength, int stride,MPI Datatype oldtype, MPI Datatype *newtype)int MPI Type hvector(int count, int blocklength, MPI Aint stride,MPI Datatype oldtype, MPI Datatype *newtype)int MPI Type indexed(int count, int *array of blocklengths,int *array of displacements, MPI Datatype oldtype,MPI Datatype *newtype)int MPI Type hindexed(int count, int *array of blocklengths,MPI Aint *array of displacements, MPI Datatype oldtype,MPI Datatype *newtype)int MPI Type struct(int count, int *array of blocklengths,MPI Aint *array of displacements, MPI Datatype *array of types,MPI Datatype *newtype)int MPI Address(void* location, MPI Aint *address)int MPI Type extent(MPI Datatype datatype, int *extent)int MPI Type size(MPI Datatype datatype, int *size)int MPI Type count(MPI Datatype datatype, int *count)int MPI Type lb(MPI Datatype datatype, int* displacement)int MPI Type ub(MPI Datatype datatype, int* displacement)int MPI Type commit(MPI Datatype *datatype)int MPI Type free(MPI Datatype *datatype)int MPI Get elements(MPI Status status, MPI Datatype datatype, int *count)int MPI Pack(void* inbuf, int incount, MPI Datatype datatype, void *outbuf,int outsize, int *position, MPI Comm comm)int MPI Unpack(void* inbuf, int insize, int *position, void *outbuf,int outcount, MPI Datatype datatype, MPI Comm comm)int MPI Pack size(int incount, MPI Datatype datatype, MPI Comm comm,int *size)

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



214 ANNEX A. LANGUAGE BINDINGA.4 C Bindings for Collective Communicationint MPI Barrier(MPI Comm comm )int MPI Bcast(void* buffer, int count, MPI Datatype datatype, int root,MPI Comm comm )int MPI Gather(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype, int root,MPI Comm comm)int MPI Gatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int *recvcounts, int *displs,MPI Datatype recvtype, int root, MPI Comm comm)int MPI Scatter(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype, int root,MPI Comm comm)int MPI Scatterv(void* sendbuf, int *sendcounts, int *displs,MPI Datatype sendtype, void* recvbuf, int recvcount,MPI Datatype recvtype, int root, MPI Comm comm)int MPI Allgather(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype,MPI Comm comm)int MPI Allgatherv(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int *recvcounts, int *displs,MPI Datatype recvtype, MPI Comm comm)int MPI Alltoall(void* sendbuf, int sendcount, MPI Datatype sendtype,void* recvbuf, int recvcount, MPI Datatype recvtype,MPI Comm comm)int MPI Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,MPI Datatype sendtype, void* recvbuf, int *recvcounts,int *rdispls, MPI Datatype recvtype, MPI Comm comm)int MPI Reduce(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)int MPI Op create(MPI User function *function, int commute, MPI Op *op)int MPI Op free( MPI Op *op)int MPI Allreduce(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, MPI Comm comm)int MPI Reduce scatter(void* sendbuf, void* recvbuf, int *recvcounts,MPI Datatype datatype, MPI Op op, MPI Comm comm)int MPI Scan(void* sendbuf, void* recvbuf, int count,MPI Datatype datatype, MPI Op op, MPI Comm comm )
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A.5. C BINDINGS FOR GROUPS, CONTEXTS, AND COMMUNICATORS 215A.5 C Bindings for Groups, Contexts, and Communicatorsint MPI Group size(MPI Group group, int *size)int MPI Group rank(MPI Group group, int *rank)int MPI Group translate ranks (MPI Group group1, int n, int *ranks1,MPI Group group2, int *ranks2)int MPI Group compare(MPI Group group1,MPI Group group2, int *result)int MPI Comm group(MPI Comm comm, MPI Group *group)int MPI Group union(MPI Group group1, MPI Group group2, MPI Group *newgroup)int MPI Group intersection(MPI Group group1, MPI Group group2,MPI Group *newgroup)int MPI Group difference(MPI Group group1, MPI Group group2,MPI Group *newgroup)int MPI Group incl(MPI Group group, int n, int *ranks, MPI Group *newgroup)int MPI Group excl(MPI Group group, int n, int *ranks, MPI Group *newgroup)int MPI Group range incl(MPI Group group, int n, int ranges[][3],MPI Group *newgroup)int MPI Group range excl(MPI Group group, int n, int ranges[][3],MPI Group *newgroup)int MPI Group free(MPI Group *group)int MPI Comm size(MPI Comm comm, int *size)int MPI Comm rank(MPI Comm comm, int *rank)int MPI Comm compare(MPI Comm comm1, comm2, int *result)int MPI Comm dup(MPI Comm comm, MPI Comm *newcomm)int MPI Comm create(MPI Comm comm, MPI Group group, MPI Comm *newcomm)int MPI Comm split(MPI Comm comm, int color, int key, MPI Comm *newcomm)int MPI Comm free(MPI Comm *comm)int MPI Comm test inter(MPI Comm comm, int *flag)int MPI Comm remote size(MPI Comm comm, int *size)int MPI Comm remote group(MPI Comm comm, MPI Group *group)int MPI Intercomm create(MPI Comm local comm, int local leader,MPI Comm peer comm, int remote leader, int tag,MPI Comm *newintercomm)int MPI Intercomm merge(MPI Comm intercomm, int high,MPI Comm *newintracomm)
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216 ANNEX A. LANGUAGE BINDINGint MPI Keyval create(MPI Copy function *copy fn, MPI Delete function*delete fn, int *keyval, void* extra state)int MPI Keyval free(int *keyval)int MPI Attr put(MPI Comm comm, int keyval, void* attribute val)int MPI Attr get(MPI Comm comm, int keyval, void **attribute val, int *flag)int MPI Attr delete(MPI Comm comm, int keyval)A.6 C Bindings for Process Topologiesint MPI Cart create(MPI Comm comm old, int ndims, int *dims, int *periods,int reorder, MPI Comm *comm cart)int MPI Dims create(int nnodes, int ndims, int *dims)int MPI Graph create(MPI Comm comm old, int nnodes, int *index, int *edges,int reorder, MPI Comm *comm graph)int MPI Topo test(MPI Comm comm, int *status)int MPI Graphdims get(MPI Comm comm, int *nnodes, int *nedges)int MPI Graph get(MPI Comm comm, int maxindex, int maxedges, int *index,int *edges)int MPI Cartdim get(MPI Comm comm, int *ndims)int MPI Cart get(MPI Comm comm, int maxdims, int *dims, int *periods,int *coords)int MPI Cart rank(MPI Comm comm, int *coords, int *rank)int MPI Cart coords(MPI Comm comm, int rank, int maxdims, int *coords)int MPI Graph neighbors count(MPI Comm comm, int rank, int *nneighbors)int MPI Graph neighbors(MPI Comm comm, int rank, int maxneighbors,int *neighbors)int MPI Cart shift(MPI Comm comm, int direction, int disp, int *rank source,int *rank dest)int MPI Cart sub(MPI Comm comm, int *remain dims, MPI Comm *newcomm)int MPI Cart map(MPI Comm comm, int ndims, int *dims, int *periods,int *newrank)int MPI Graph map(MPI Comm comm, int nnodes, int *index, int *edges,int *newrank)
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A.7. C BINDINGS FOR ENVIRONMENTAL INQUIRY 217A.7 C bindings for Environmental Inquiryint MPI Get processor name(char *name, int *resultlen)int MPI Errhandler create(MPI Handler function *function,MPI Errhandler *errhandler)int MPI Errhandler set(MPI Comm comm, MPI Errhandler errhandler)int MPI Errhandler get(MPI Comm comm, MPI Errhandler *errhandler)int MPI Errhandler free(MPI Errhandler *errhandler)int MPI Error string(int errorcode, char *string, int *resultlen)int MPI Error class(int errorcode, int *errorclass)int double MPI Wtime(void)int double MPI Wtick(void)int MPI Init(int *argc, char ***argv)int MPI Finalize(void)int MPI Initialized(int *flag)int MPI Abort(MPI Comm comm, int errorcode)A.8 C Bindings for Pro�lingint MPI Pcontrol(const int level, : : :)A.9 Fortran Bindings for Point-to-Point CommunicationMPI SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORMPI RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE),IERRORMPI GET COUNT(STATUS, DATATYPE, COUNT, IERROR)INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERRORMPI BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORMPI SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
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218 ANNEX A. LANGUAGE BINDINGMPI RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERRORMPI BUFFER ATTACH( BUFFER, SIZE, IERROR)<type> BUFFER(*)INTEGER SIZE, IERRORMPI BUFFER DETACH( BUFFER, SIZE, IERROR)<type> BUFFER(*)INTEGER SIZE, IERRORMPI ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERRORMPI WAIT(REQUEST, STATUS, IERROR)INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERRORMPI TEST(REQUEST, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER REQUEST, STATUS(MPI STATUS SIZE), IERRORMPI REQUEST FREE(REQUEST, IERROR)INTEGER REQUEST, IERRORMPI WAITANY(COUNT, ARRAY OF REQUESTS, INDEX, STATUS, IERROR)INTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),IERRORMPI TESTANY(COUNT, ARRAY OF REQUESTS, INDEX, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER COUNT, ARRAY OF REQUESTS(*), INDEX, STATUS(MPI STATUS SIZE),IERRORMPI WAITALL(COUNT, ARRAY OF REQUESTS, ARRAY OF STATUSES, IERROR)INTEGER COUNT, ARRAY OF REQUESTS(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERROR
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A.9. FORTRAN BINDINGS FOR POINT-TO-POINT COMMUNICATION 219MPI TESTALL(COUNT, ARRAY OF REQUESTS, FLAG, ARRAY OF STATUSES, IERROR)LOGICAL FLAGINTEGER COUNT, ARRAY OF REQUESTS(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORMPI WAITSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,ARRAY OF STATUSES, IERROR)INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORMPI TESTSOME(INCOUNT, ARRAY OF REQUESTS, OUTCOUNT, ARRAY OF INDICES,ARRAY OF STATUSES, IERROR)INTEGER INCOUNT, ARRAY OF REQUESTS(*), OUTCOUNT, ARRAY OF INDICES(*),ARRAY OF STATUSES(MPI STATUS SIZE,*), IERRORMPI IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)LOGICAL FLAGINTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERRORMPI PROBE(SOURCE, TAG, COMM, STATUS, IERROR)INTEGER SOURCE, TAG, COMM, STATUS(MPI STATUS SIZE), IERRORMPI CANCEL(REQUEST, IERROR)INTEGER REQUEST, IERRORMPI TEST CANCELLED(STATUS, FLAG, IERROR)LOGICAL FLAGINTEGER STATUS(MPI STATUS SIZE), IERRORMPI SEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI BSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI SSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI RSEND INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERRORMPI RECV INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERRORMPI START(REQUEST, IERROR)INTEGER REQUEST, IERRORMPI STARTALL(COUNT, ARRAY OF REQUESTS, IERROR)INTEGER COUNT, ARRAY OF REQUESTS(*), IERROR
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220 ANNEX A. LANGUAGE BINDINGMPI SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,SOURCE, RECVTAG, COMM, STATUS(MPI STATUS SIZE), IERRORMPI SENDRECV REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,COMM, STATUS, IERROR)<type> BUF(*)INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,STATUS(MPI STATUS SIZE), IERRORMPI TYPE CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, OLDTYPE, NEWTYPE, IERRORMPI TYPE VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERRORMPI TYPE HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERRORMPI TYPE INDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),OLDTYPE, NEWTYPE, IERRORMPI TYPE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,OLDTYPE, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),OLDTYPE, NEWTYPE, IERRORMPI TYPE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,ARRAY OF TYPES, NEWTYPE, IERROR)INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(*),ARRAY OF TYPES(*), NEWTYPE, IERRORMPI ADDRESS(LOCATION, ADDRESS, IERROR)<type> LOCATION(*)INTEGER ADDRESS, IERRORMPI TYPE EXTENT(DATATYPE, EXTENT, IERROR)INTEGER DATATYPE, EXTENT, IERRORMPI TYPE SIZE(DATATYPE, SIZE, IERROR)INTEGER DATATYPE, SIZE, IERRORMPI TYPE COUNT(DATATYPE, COUNT, IERROR)INTEGER DATATYPE, COUNT, IERRORMPI TYPE LB( DATATYPE, DISPLACEMENT, IERROR)INTEGER DATATYPE, DISPLACEMENT, IERRORMPI TYPE UB( DATATYPE, DISPLACEMENT, IERROR)INTEGER DATATYPE, DISPLACEMENT, IERROR
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A.10. FORTRAN BINDINGS FOR COLLECTIVE COMMUNICATION 221MPI TYPE COMMIT(DATATYPE, IERROR)INTEGER DATATYPE, IERRORMPI TYPE FREE(DATATYPE, IERROR)INTEGER DATATYPE, IERRORMPI GET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERRORMPI PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTCOUNT, POSITION, COMM,IERROR)<type> INBUF(*), OUTBUF(*)INTEGER INCOUNT, DATATYPE, OUTCOUNT, POSITION, COMM, IERRORMPI UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,IERROR)<type> INBUF(*), OUTBUF(*)INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERRORMPI PACK SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERRORA.10 Fortran Bindings for Collective CommunicationMPI BARRIER(COMM, IERROR)INTEGER COMM, IERRORMPI BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)<type> BUFFER(*)INTEGER COUNT, DATATYPE, ROOT, COMM, IERRORMPI GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERRORMPI GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,RECVTYPE, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,COMM, IERRORMPI SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERRORMPI SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,RECVTYPE, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)
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222 ANNEX A. LANGUAGE BINDINGINTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,COMM, IERRORMPI ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERRORMPI ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,RECVTYPE, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,IERRORMPI ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERRORMPI ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,RDISPLS, RECVTYPE, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),RECVTYPE, COMM, IERRORMPI REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERRORMPI OP CREATE( FUNCTION, COMMUTE, OP, IERROR)EXTERNAL FUNCTIONLOGICAL COMMUTEINTEGER OP, IERRORMPI OP FREE( OP, IERROR)INTEGER OP, IERRORMPI ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, COMM, IERRORMPI REDUCE SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERRORMPI SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)<type> SENDBUF(*), RECVBUF(*)INTEGER COUNT, DATATYPE, OP, COMM, IERROR
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A.11. FORTRAN BINDINGS FOR GROUPS, CONTEXTS, ETC. 223A.11 Fortran Bindings for Groups, Contexts, etc.MPI GROUP SIZE(GROUP, SIZE, IERROR)INTEGER GROUP, SIZE, IERRORMPI GROUP RANK(GROUP, RANK, IERROR)INTEGER GROUP, RANK, IERRORMPI GROUP TRANSLATE RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERRORMPI GROUP COMPARE(GROUP1, GROUP2, RESULT, IERROR)INTEGER GROUP1, GROUP2, RESULT, IERRORMPI COMM GROUP(COMM, GROUP, IERROR)INTEGER COMM, GROUP, IERRORMPI GROUP UNION(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERRORMPI GROUP INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERRORMPI GROUP DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)INTEGER GROUP1, GROUP2, NEWGROUP, IERRORMPI GROUP INCL(GROUP, N, RANKS, NEWGROUP, IERROR)INTEGER GROUP, N, RANKS(*), NEWGROUP, IERRORMPI GROUP EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)INTEGER GROUP, N, RANKS(*), NEWGROUP, IERRORMPI GROUP RANGE INCL(GROUP, N, RANGES, NEWGROUP, IERROR)INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERRORMPI GROUP RANGE EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERRORMPI GROUP FREE(GROUP, IERROR)INTEGER GROUP, IERRORMPI COMM SIZE(COMM, SIZE, IERROR)INTEGER COMM, SIZE, IERRORMPI COMM RANK(COMM, RANK, IERROR)INTEGER COMM, RANK, IERRORMPI COMM COMPARE(COMM1, COMM2, RESULT, IERROR)INTEGER COMM1, COMM2, RESULT, IERRORMPI COMM DUP(COMM, NEWCOMM, IERROR)INTEGER COMM, NEWCOMM, IERRORMPI COMM CREATE(COMM, GROUP, NEWCOMM, IERROR)INTEGER COMM, GROUP, NEWCOMM, IERROR

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748



224 ANNEX A. LANGUAGE BINDINGMPI COMM SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)INTEGER COMM, COLOR, KEY, NEWCOMM, IERRORMPI COMM FREE(COMM, IERROR)INTEGER COMM, IERRORMPI COMM TEST INTER(COMM, FLAG, IERROR)INTEGER COMM, IERRORLOGICAL FLAGMPI COMM REMOTE SIZE(COMM, SIZE, IERROR)INTEGER COMM, SIZE, IERRORMPI COMM REMOTE GROUP(COMM, GROUP, IERROR)INTEGER COMM, GROUP, IERRORMPI INTERCOMM CREATE(LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,NEWINTERCOMM, IERROR)INTEGER LOCAL COMM, LOCAL LEADER, PEER COMM, REMOTE LEADER, TAG,NEWINTERCOMM, IERRORMPI INTERCOMM MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)INTEGER INTERCOMM, INTRACOMM, IERRORLOGICAL HIGHMPI KEYVAL CREATE(COPY FN, DELETE FN, KEYVAL, EXTRA STATE, IERROR)EXTERNAL COPY FN, DELETE FNINTEGER KEYVAL, EXTRA STATE, IERRORMPI KEYVAL FREE(KEYVAL, IERROR)INTEGER KEYVAL, IERRORMPI ATTR PUT(COMM, KEYVAL, ATTRIBUTE VAL, IERROR)INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERRORMPI ATTR GET(COMM, KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)INTEGER COMM, KEYVAL, ATTRIBUTE VAL, IERRORLOGICAL FLAGMPI ATTR DELETE(COMM, KEYVAL, IERROR)INTEGER COMM, KEYVAL, IERRORA.12 Fortran Bindings for Process TopologiesMPI CART CREATE(COMM OLD, NDIMS, DIMS, PERIODS, REORDER, COMM CART, IERROR)INTEGER COMM OLD, NDIMS, DIMS(*), COMM CART, IERRORLOGICAL PERIODS(*), REORDERMPI DIMS CREATE(NNODES, NDIMS, DIMS, IERROR)INTEGER NNODES, NDIMS, DIMS(*), IERRORMPI GRAPH CREATE(COMM OLD, NNODES, INDEX, EDGES, REORDER, COMM GRAPH,IERROR)
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A.13. FORTRAN BINDINGS FOR ENVIRONMENTAL INQUIRY 225INTEGER COMM OLD, NNODES, INDEX(*), EDGES(*), COMM GRAPH, IERRORLOGICAL REORDERMPI TOPO TEST(COMM, STATUS, IERROR)INTEGER COMM, STATUS, IERRORMPI GRAPHDIMS GET(COMM, NNODES, NEDGES, IERROR)INTEGER COMM, NNODES, NEDGES, IERRORMPI GRAPH GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERRORMPI CARTDIM GET(COMM, NDIMS, IERROR)INTEGER COMM, NDIMS, IERRORMPI CART GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERRORLOGICAL PERIODS(*)MPI CART RANK(COMM, COORDS, RANK, IERROR)INTEGER COMM, COORDS(*), RANK, IERRORMPI CART COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERRORMPI GRAPH NEIGHBORS COUNT(COMM, RANK, NNEIGHBORS, IERROR)INTEGER COMM, RANK, NNEIGHBORS, IERRORMPI GRAPH NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERRORMPI CART SHIFT(COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERROR)INTEGER COMM, DIRECTION, DISP, RANK SOURCE, RANK DEST, IERRORMPI CART SUB(COMM, REMAIN DIMS, NEWCOMM, IERROR)INTEGER COMM, NEWCOMM, IERRORLOGICAL REMAIN DIMS(*)MPI CART MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERRORLOGICAL PERIODS(*)MPI GRAPH MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERRORA.13 Fortran Bindings for Environmental InquiryMPI GET PROCESSOR NAME(NAME, RESULTLEN, IERROR)CHARACTER*(*) NAMEINTEGER RESULTLEN, IERRORMPI ERRHANDLER CREATE(FUNCTION, HANDLER, IERROR)EXTERNAL FUNCTION
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226 ANNEX A. LANGUAGE BINDINGINTEGER ERRHANDLER, IERRORMPI ERRHANDLER SET(COMM, ERRHANDLER, IERROR)INTEGER COMM, ERRHANDLER, IERRORMPI ERRHANDLER GET(COMM, ERRHANDLER, IERROR)INTEGER COMM, ERRHANDLER, IERRORMPI ERRHANDLER FREE(ERRHANDLER, IERROR)INTEGER ERRHANDLER, IERRORMPI ERROR STRING(ERRORCODE, STRING, RESULTLEN, IERROR)INTEGER ERRORCODE, RESULTLEN, IERRORCHARACTER*(*) STRINGMPI ERROR CLASS(ERRORCODE, ERRORCLASS, IERROR)INTEGER ERRORCODE, ERRORCLASS, IERRORDOUBLE PRECISION MPI WTIME()DOUBLE PRECISION MPI WTICK()MPI INIT(IERROR)INTEGER IERRORMPI FINALIZE(IERROR)INTEGER IERRORMPI INITIALIZED(FLAG, IERROR)LOGICAL FLAGINTEGER IERRORMPI ABORT(COMM, ERRORCODE, IERROR)INTEGER COMM, ERRORCODE, IERRORA.14 Fortran Bindings for Pro�lingMPI PCONTROL(level)INTEGER LEVEL, : : :
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MPI Function IndexMPI ABORT, 197MPI ADDRESS, 67MPI ALLGATHER, 107MPI ALLGATHERV, 108MPI ALLREDUCE, 122MPI ALLTOALL, 109MPI ALLTOALLV, 110MPI ATTR DELETE, 169MPI ATTR GET, 169MPI ATTR PUT, 168MPI BARRIER, 93MPI BCAST, 93MPI BSEND, 27MPI BSEND INIT, 53MPI BUFFER ATTACH, 33MPI BUFFER DETACH, 33MPI CANCEL, 51MPI CART COORDS, 182MPI CART CREATE, 177MPI CART GET, 181MPI CART MAP, 186MPI CART RANK, 182MPI CART SHIFT, 184MPI CART SUB, 185MPI CARTDIM GET, 181MPI COMM COMPARE, 142MPI COMM CREATE, 143MPI COMM DUP, 143MPI COMM FREE, 145MPI COMM GROUP, 137MPI COMM RANK, 142MPI COMM REMOTE GROUP, 155MPI COMM REMOTE SIZE, 155MPI COMM SIZE, 141MPI COMM SPLIT, 144MPI COMM TEST INTER, 154MPI DIMS CREATE, 177

MPI ERRHANDLER CREATE, 192MPI ERRHANDLER FREE, 193MPI ERRHANDLER GET, 193MPI ERRHANDLER SET, 192MPI ERROR CLASS, 195MPI ERROR STRING, 193MPI FINALIZE, 196MPI GATHER, 94MPI GATHERV, 95MPI GET COUNT, 21MPI GET ELEMENTS, 73MPI GET PROCESSOR NAME, 190MPI GRAPH CREATE, 178MPI GRAPH GET, 181MPI GRAPH MAP, 187MPI GRAPH NEIGHBORS, 183MPI GRAPH NEIGHBORS COUNT, 183MPI GRAPHDIMS GET, 180MPI GROUP COMPARE, 136MPI GROUP DIFFERENCE, 138MPI GROUP EXCL, 139MPI GROUP FREE, 140MPI GROUP INCL, 138MPI GROUP INTERSECTION, 137MPI GROUP RANGE EXCL, 140MPI GROUP RANGE INCL, 139MPI GROUP RANK, 135MPI GROUP SIZE, 135MPI GROUP TRANSLATE RANKS, 136MPI GROUP UNION, 137MPI IBSEND, 37MPI INIT, 196MPI INITIALIZED, 197MPI INTERCOMM CREATE, 157MPI INTERCOMM MERGE, 157MPI IPROBE, 48MPI IRECV, 38MPI IRSEND, 38227



228 MPI Function IndexMPI ISEND, 36MPI ISSEND, 37MPI KEYVAL CREATE, 166MPI KEYVAL FREE, 168MPI OP CREATE, 118MPI OP FREE, 120MPI PACK, 83MPI PACK SIZE, 86MPI PCONTROL, 199MPI PROBE, 49MPI RECV, 19MPI RECV INIT, 55MPI REDUCE, 111MPI REDUCE SCATTER, 123MPI REQUEST FREE, 41MPI RSEND, 28MPI RSEND INIT, 54MPI SCAN, 124MPI SCATTER, 103MPI SCATTERV, 104MPI SEND, 16MPI SEND INIT, 53MPI SENDRECV, 57MPI SENDRECV REPLACE, 58MPI SSEND, 27MPI SSEND INIT, 54MPI START, 55MPI STARTALL, 56MPI TEST, 40MPI TEST CANCELLED, 52MPI TESTALL, 45MPI TESTANY, 44MPI TESTSOME, 46MPI TOPO TEST, 180MPI TYPE COMMIT, 70MPI TYPE CONTIGUOUS, 60MPI TYPE COUNT, 69MPI TYPE EXTENT, 68MPI TYPE FREE, 71MPI TYPE HINDEXED, 65MPI TYPE HVECTOR, 63MPI TYPE INDEXED, 64MPI TYPE LB, 70MPI TYPE SIZE, 68

MPI TYPE STRUCT, 66MPI TYPE UB, 70MPI TYPE VECTOR, 61MPI UNPACK, 84MPI WAIT, 39MPI WAITALL, 44MPI WAITANY, 43MPI WAITSOME, 46MPI WTICK, 195MPI WTIME, 195
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