
Supporting Heterogeneous Network Computing:PVMJack J. DongarraOak Ridge National Laboratory and University of TennesseeG. A. GeistOak Ridge National LaboratoryRobert ManchekUniversity of TennesseeV. S. SunderamEmory UniversityMarch 12, 1993AbstractThe Parallel Virtual Machine (PVM), an integrated framework forheterogeneous network computing, lets scientists exploit collections ofnetworked machines when carrying out complex scienti�c computa-tions. Under PVM, a user-de�ned grouping of serial, parallel, andvector computers appears as one large distributed-memory machine.Con�guring a personal parallel virtual computer involves simply listingthe names of the machines in a �le that is read when PVM is started.Applications can be written in Fortran 77 or C and parallelized by useof message-passing constructs common to most distributed-memorycomputers. With the use of messages sent over the network, multipletasks of an application can cooperate to solve a problem in parallel.This article discusses components of PVM, including the programsand library of interface routines. It summarizes the characteristics ofappropriate applications and discusses the current status and availabil-ity of PVM. In addition, the article introduces a recent extension toPVM known as the Heterogeneous Network Computing Environment(HeNCE). 1



1 IntroductionTwo developments promise to revolutionize scienti�c problem solving. The�rst is the development of massively parallel computers. Massively par-allel systems o�er the enormous computational power needed for solvingGrand Challenge problems. Unfortunately, software development has notkept pace with hardware advances. In order to fully exploit the power ofthese massively parallel machines, new programming paradigms, languages,scheduling and partitioning techniques, and algorithms are needed.The second major development a�ecting scienti�c problem solving isdistributed computing. Many scientists are discovering that their compu-tational requirements are best served not by a single, monolithic machinebut by a variety of distributed computing resources, linked by high-speednetworks.Heterogeneous network computing o�ers several advantages: By usingexisting hardware the cost of this computing can be very low. Performancecan be optimized by assigning each individual task to the most appropriatearchitecture. Network computing also o�ers the potential for partitioning acomputing task along lines of service functions. Typically, networked com-puting environments possess a variety of capabilities; the ability to executesubtasks of a computation on the processor most suited to a particularfunction both enhances performance and improves utilization. Another ad-vantage in network-based concurrent computing is the ready availability ofdevelopment and debugging tools, and the potential fault tolerance of thenetwork(s) and the processing elements. Typically, systems that operate onloosely coupled networks permit the direct use of editors, compilers, anddebuggers that are available on individual machines. These individual ma-chines are quite stable, and substantial expertise in their use is readily avail-able. These factors translate into reduced development and debugging timeand e�ort for the user, and reduced contention for resources and possiblymore e�ective implementations of the application. Yet another attractivefeature of loosely coupled computing environments is the potential for user-level or program-level fault tolerance that can be implemented with littlee�ort either in the application or in the underlying operating system. Mostmultiprocessors do not support such a facility; hardware or software failuresin one of the processing elements often lead to a complete crash.Despite the advantages of heterogeneous network computing, however,many issues remain to be addressed. Of especial importance are issues re-lating to the user interface, e�ciency, compatibility, and administration. In



some cases, individual researchers have attempted to address these issuesby developing ad hoc approaches to the implementation of concurrent ap-plications. Recognizing the growing need for a more systematic approach,several research groups have recently attempted to develop programmingparadigms, languages, scheduling and partitioning techniques, and algo-rithms.Our approach is more pragmatic. We discuss the development of an inte-grated framework for heterogeneous network computing, in which a collectionof interrelated components provides a coherent high-performance computingenvironment. In particular, we analyze several of the design features of thePVM (Parallel Virtual Machine) system. Figure 1 gives an overview of thesystem.The paper is organized as follows. In Section 2, we give a brief look at thegeneral �eld of heterogeneous network computing and discuss some of theresearch issues remaining before network-based heterogeneous computingis truly e�ective. In Section 3, we focuses on the PVM system, which isdesigned to help scientists write programs for such heterogeneous systems.In Section 4, we discuss a recent extension of PVM that further aids in theimplementation of concurrent applications.2 Connecting Heterogeneous ComputersIn the past, researchers have conducted experiments linking workstationsthat provide on the order of 1 to 10 MIPS. Such experiments have includedremote execution, computer farms, and migration of computations.More recently, experiments have focused on linking higher-performanceworkstations (those providing on the order of 10 to 100 MFLOPS) togetherwith multiprocessors and conventional supercomputers.To fully exploit these multiple computer con�gurations, researchers havedeveloped various software packages that enable scientists to write truly het-erogeneous programs. Examples of such software packages include Express,P4, Linda, and PVM. Each package is layered over the native operating sys-tems, exploits distributed concurrent processing, and is 
exible and general-purpose; all exhibit comparable performance. Their di�erences lie in theirprogramming model, their implementation schemes, and their e�ciency.



2.1 Ongoing TrendsIn the next section of this paper, we focus on the basic features of PVM anddiscuss our experiences with that system. PVM as well as the systems de-scribed above have evolved over the past several years, but none of them canbe considered fully mature. The �eld of network based concurrent comput-ing is relatively young, and research on various aspects is ongoing. Althoughbasic infrastructures have been developed, many of the re�nements that arenecessary are still evolving. Some of the ongoing research projects relatedto heterogeneous network-based computing are brie
y outlined here.Standalone systems delivering several tens of millions of operations persecond are commonplace, and continuing increases in power are predicted.For network computing systems, this presents many challenges. One aspectconcerns scaling to hundreds and perhaps thousands of independent ma-chines; it is conjectured that functionality and performance equivalent tomassively parallel machines can be supported on cluster environments. Aproject at Fermilab has demonstrated the feasibility of scaling to hundredsof processors for some classes of problems. Research in protocols to supportscaling and other system issues are currently under investigation. Further,under the right circumstances, the network based approach can be e�ectivein coupling several similar multiprocessors, resulting in a con�guration thatmight be economically and technically di�cult to achieve with hardware.Applications with large execution times will bene�t greatly from mech-anisms that make them resilient to failures. Currently few platforms (espe-cially among multiprocessors) support application level fault tolerance. In anetwork based computing environment application resilience to failures canbe supported without specialized enhancements to hardware or operatingsystems. Research is in progress to investigate and develop strategies forenabling applications to run to completion, in the presence of hardware,system software, or network faults. Approaches based on checkpointing,shadow execution, and process migration are being investigated.The performance and e�ectiveness of network based concurrent comput-ing environments depends to a large extent on the e�ciency of the supportsoftware, and on minimization of overheads. Experiences with the PVMsystem have identi�ed several key factors in the system that are being fur-ther analyzed and improved to increase overall e�ciency. E�cient protocolsto support high level concurrency primitives is a subgoal of work in thisarea. Particular attention is being given to exploiting the full potential ofimminent �ber optic connections, using an experimental �ber network that



is available. In preliminary experiments with a �ber optic network, severalimportant issues have been identi�ed. For example, the operating systeminterfaces to �ber networks, its reliability characteristics, and factors suchas maximum packet size are signi�cantly di�erent from those for Ethernet.When the concurrent computing environment is executed on a combinationof both types of networks, the system algorithms have to be modi�ed to caterto these di�erences, in an optimal manner and with minimized overheads.Another issue to be addressed concerns data conversions that are neces-sary in networked heterogeneous systems. Heuristics to perform conversionsonly when necessary and minimizing overheads have been developed andtheir e�ectiveness is being evaluated. Recent experiences with a Cray-2have also identi�ed the need to handle di�erences in wordsize and precision,when operating in a heterogeneous environment; general mechanisms to dealwith arbitrary precision arithmetic (when desired by applications) are alsobeing developed. A third aspect concerns the e�cient implementation ofinherently expensive parallel computing operations such as barrier synchro-nization. Particularly in an irregular environment (where interconnectionswithin hardware multiprocessors are much faster than network channels),such operations can cause bottlenecks and severe load imbalances. Otherdistributed primitives for which algorithm development and implementationstrategies are being investigated include polling, distributed fetch-and-add,global operations, automatic data decomposition and distribution, and mu-tual exclusion.3 PVMPVM [2] was produced by the Heterogeneous Network Project|a collabora-tive e�ort by researchers at Oak Ridge National Laboratory, the Universityof Tennessee, and Emory University speci�cally to facilitate heterogeneousparallel computing. PVM was one of the �rst software systems to enablemachines with widely di�erent architectures and 
oating-point representa-tions to work together on a single computational task. It can be used on itsown or as a foundation upon which other heterogeneous network softwarecan be built.The PVM package is small (about than 1 Mbytes of C source code) andeasy to install. It needs to be installed only once on each machine to beaccessible to all users. Moreover, the installation does not require specialprivileges on any of the machines and thus can be done by any user.



The PVM user-interface requires that all message data be explicitlytyped. PVMperforms machine-independent data conversions when required,thus allowing machines with di�erent integer and 
oating-point representa-tions to pass data.3.1 Various Levels of HeterogeneityPVM supports heterogeneity at the application, machine, and network level.At the application level, subtasks can exploit the architecture best suitedto the their solution. At the machine level, computers with di�erent dataformats are supported as well as di�erent serial, vector, and parallel ar-chitectures. At the network level, di�erent network types can make up aParallel Virtual Machine, for example, Ethernet, FDDI, token ring, etc.Under PVM, a user-de�ned collection of serial, parallel, and vector com-puters appears as one large distributed-memory computer; we use the termvirtual machine to designate this logical distributed-memory computer. Thehardware that composes the user's personal PVM may be any Unix-basedmachine on which the user has a valid login and that is accessible over somenetwork.Using PVM, users can also con�gure their own parallel virtual machine,which can overlap with other users' virtual machines. Con�guring a personalparallel virtual machine involves simply listing the names of the machines ina �le that is read when PVM is started. Applications, which can be writtenin Fortran 77 or C, can be parallelized by using message-passing constructscommon to most distributed-memory computers. By sending and receivingmessages, multiple tasks of an application can cooperate to solve a problemin parallel.PVM supplies the functions to automatically start up tasks on the virtualmachine and allows the tasks to communicate and synchronize with eachother. In particular, PVM handles all message conversion that may berequired if two computers use di�erent data representations. PVM alsoincludes many control and debugging features in its user-friendly interface.For instance, PVM ensures that error messages generated on some remotecomputer get displayed on the user's local screen.3.2 Components of PVMThe PVM system is composed of two parts. The �rst part is a daemon,called pvmd3, that resides on all the computers making up the virtual com-



puter. (An example of a daemon program is sendmail, which handles all theincoming and outgoing electronic mail on a Unix system.) pvmd3 is designedso that any user with a valid login can install this daemon on a machine.When a user wishes to run a PVM application, he executes pvmd3 on oneof the computers which in turn starts up pvmd3 on each of the computersmaking up the user-de�ned virtual machine. A PVM application can thenbe started from a Unix prompt on any of these computers.The second part of the system is a library of PVM interface routines.This library contains user-callable routines for passing messages, spawningprocesses, coordinating tasks, and modifying the virtual machine. Applica-tion programs must be linked with this library to use PVM.3.3 ApplicationsApplication programs that use PVM are composed of subtasks at a mod-erately high level of granularity. The subtasks can be generic serial codes,or they can be speci�c to a particular machine. In PVM, resources may beaccessed at three di�erent levels: the transparent mode in which subtasksare automatically located at the most appropriate sites, the architecture-dependent mode in which the user may indicate speci�c architectures onwhich particular subtasks are to execute, and the machine-speci�c mode inwhich a particular machine may be speci�ed. Such 
exibility allows di�er-ent subtasks of a heterogeneous application to exploit particular strengthsof individual machines on the network.Applications access PVM resources via a library of standard interfaceroutines. These routines allow the initiation and termination of processesacross the network, as well as communication and synchronization betweenprocesses. Communication constructs include those for the exchange of datastructures as well as high-level primitives such as broadcast, barrier synchro-nization, and event synchronization.Application programs under PVM may possess arbitrary control anddependency structures. In other words, at any point in the execution of aconcurrent application, the processes in existence may have arbitrary rela-tionships between each other; furthermore, any process may communicateand/or synchronize with any other.



3.4 Grand Challenge Application Experiences with PVMOver the past few years a number of applications have been developed usingPVM. The table below list some of the applications.Materials ScienceGlobal Climate ModelingAtmospheric, oceanic, and space studiesMeterorological forcasting3-D groundwater modelingWeather modelingSuperconductivity, molecular dynamicsMonte Carlo CFD application2-D and 3-D seismic imaging3-D underground 
ow �eldsParticle simulationDistributed AVS 
ow visualizationThese implementations have been done on various platforms.During the last few years, ORNL material scientists and their collabora-tors at the University of Cincinnati, SERC at Daresbury, and the Universityof Bristol have been developing an algorithm for studying the physical prop-erties of complex substitutionally disordered materials. A few importantexamples of physical systems and situations in which substitutional disorderplays a critical role in determining material properties include: high-strengthalloys, high-temperature superconductors, magnetic phase transitions, andmetal/insulator transitions. The algorithm being developed is an implemen-tation of the Korringa, Kohn and Rostoker coherent potential approximation(KKR-CPA) method for calculating the electronic properties, energetics andother ground state properties of substitutionally disordered alloys [10]. TheKKR-CPA method extends the usual implementation of density functionaltheory (LDA-DFT) [11] to substitutionally disordered materials [7]. In thissense it is a completely �rst principles theory of the properties of substitu-tionally disordered materials requiring as input only the atomic numbers ofthe species making up the solid.The KKR-CPA algorithm contains several locations where parallelismcan be exploited. These locations correspond to integrations in the KKR-CPA algorithm. Evaluating integrals typically involves the independent eval-uation of a function at di�erent locations and the merging of these data intoa �nal value. The integration over energy was parallelized. The parallel



implementation is based on a master/slave paradigm to reduce memory re-quirements and synchronization overhead. In the implementation one pro-cessor is responsible for reading the main input �le, which contains thenumber of nodes to be used on each multiprocessor as well as the numberand type of workstations to include, the problem description, and the lo-cation of relevant data �les. This master processor also manages dynamicload balancing of the tasks through a simple pool-of-tasks scheme.Using PVM the KKRCPA code is able to achieve over 200 M
ops utiliz-ing a network of ten IBM RS/6000 workstations. Given this capability, theKKRCPA code is being used as a research code to solve important materialsscience problems. Since its development the KKRCPA code has been usedto compare the electronic structure of two high temperature superconduc-tors, Ba(Bi:3Pb:7)O3 and (Ba:6K:4)BiO3, to explain anomalous experimentalresults from a high strength alloy, NiAl, and to study the e�ect of magneticmultilayers in CrV and CrMo alloys for their possible use in magnetic storagedevices.The goal of the groundwater modeling group is to develop state of the artparallel models for today's high performance parallel computers, which willenable researchers to model 
ow with higher resolution and greater accuracythan ever before. As a �rst step researchers at ORNL have developed aparallel 3-D �nite element code called PFEM that models water 
ow throughsaturated-unsaturated media. PFEM solves the system of equationsF @h@t = r � [KsKr(rh+rz)] + q;where h is the pressure head, t is time, Ks is the saturated hydraulic con-ductivity tensor, Kr is the relative hydraulic conductivity or relative per-meability, z is the potential head, q is the source/sink and F is the watercapacity (F = d�=dh, with � the moisture content) after neglecting thecompressibility of the water and of the media.Parallelization was accomplished by partitioning the physical domainand statically assigning subdomains to tasks. The present version uses onlystatic load-balancing and relies on the user to de�ne the partitioning. In eachstep of the solution the boundary region of each subdomain is exchangedwith its neighboring regions.Originally developed on an Intel iPSC/860 multiprocessor, a PVM ver-sion of PFEM was straightforward to create requiring an undergraduate stu-dent less than 3 weeks to complete. Presently, the PVM version of PFEMhas been delivered to several members of the groundwater modeling group



for validation testing using networks of workstations while they await theavailability of parallel supercomputers.4 Current Status and AvailabilityPVM was publicly released in March 1991 and has gone through a num-ber of updates. The present version of the software, Version 3.0, has beentested with various combinations of the following machines: Sun 3, SPARC-station, Microvax, DECstation, IBM RS/6000, HP-9000, Silicon GraphicsIRIS, NeXT, Sequent Symmetry, Alliant FX, IBM 3090, Intel iPSC/860,Thinking Machines CM-2, KSR-1, Convex, and CRAY Y-MP. Figure 2 givesa complete list of machines PVM has been ported to.Version 3.0 has a number of improvements over the previous version(2.4). A list of new features are itemize below.� Runs on Multiprocessors - Paragon, CM-5, etc. using e�cient vendorspeci�c calls underneath� Dynamic Process Groups - user de�ned grouping� Dynamic Con�guration - able to add and delete hosts� Multiple Message Bu�ers - for interface and library� Improved Routines - receive by source or type automatic multiplespawns with debug and trace options pack and unpack messages usinga stride� Signal handling - PVM processes can pass and catch� New naming convention for routines, (backwards compatability withPVM2.4 is supplied).PVM is available through netlib. To obtain a description of PVM'sfeatures, such as a copy of the PVM User's Guide or source code, one simplysends e-mail to netlib@ornl.gov with the message send index from pvm.5 Future DirectionsThe Heterogeneous Network Project is currently building a second package,called HeNCE (for Heterogeneous Network Computing Environment) [1], ontop of PVM.



HeNCE simpli�es the task of writing, compiling, running, debugging,and analyzing programs on a heterogeneous network. The goal is (1) tomake network computing accessible to scientists and engineers without theneed for extensive training in parallel computing and (2) to enable them touse resources best suited for a particular phase of the computation.In HeNCE, the programmer is responsible for explicitly specifying par-allelism by drawing graphs which express the dependencies and control 
owof a program. Figure 3 provides an example. HeNCE provides a class ofgraphs as a usable yet 
exible way for the programmer to specify parallelism.The user directly inputs the graph using a graph editor which is part of theHeNCE environment. Each node in a HeNCE graph represents a subroutinewritten in either Fortran or C. Arcs in the HeNCE graph represent depen-dencies and control 
ow. An arc from one node to another represents thefact that the tail node of the arc must run before the node at the head ofthe arc. During the execution of a HeNCE graph, procedures are automati-cally executed when their predecessors, as de�ned by dependency arcs, havecompleted. Functions are mapped to machines based on a user de�ned costmatrix.The focus of this work is to provide a paradigm and graphical supporttool for programming a heterogeneous network of computers as a single re-source. HeNCE is the graphical based parallel programming paradigm. InHeNCE the programmer explicitly speci�es parallelism of a computation bydrawing graphs. The nodes in a graph represent user de�ned subroutinesand the edges indicate parallelism and control 
ow. The HeNCE program-ming environment consists of a set of graphical modes which aid in thecreation, compilation, execution, and analysis of HeNCE programs. Themain components consist of a graph editor for writing HeNCE programs,a build tool for creating executables, a con�gure tool for specifying whichmachines to use, an executioner for invoking executables, and a trace toolfor analyzing and debugging a program run. These steps are integrated intoa window based programming environment as shown in Figure 4.An initial version of HeNCE has recently been made available throughnetlib. To obtain a description of its features, one should send e-mail tonetlib@ornl.gov with the message send index from hence.Both PVM and HeNCE o�er researchers a powerful means for attackingscienti�c computational problems through heterogeneous network comput-ing. Continued research and development will ensure that this new areameets the needs of scienti�c computing in the 1990s and beyond.



References[1] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sunderam,\Solving Computational Grand Challenges Using a Network of Super-computers." Proceedings of the Fifth SIAM Conference on Parallel Pro-cessing, Danny Sorensen, ed., SIAM, Philadelphia, 1991.[2] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sun-deram. A Users' Guide to PVM Parallel Virtual Machine. TechnicalReport ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.[3] J. Boyle, et. al., Portable Programs for Parallel Processors. Holt, Rine-hart, and Winston, 1987.[4] D. Gelernter, \Domesticating Parallelism", IEEE Computer, 19(8):12-16, August 1986.[5] V. Herrarte and E. Lusk, Studying Parallel Program Behavior withUpshot, Argonne National Laboratory, Technical Report ANL{91/15,1991.[6] R. Hempel The ANL/GMD MAcros (Parmacs) in Fortran for PortableParallel Programming Using Message Passing, GMD Technical Report,November 1991.[7] D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gy�or�y, G. M.Stocks, Total energy and pressure calculations for random substitutionalalloys, Phys. Rev. B, Vol. 41, 9701 (1990).[8] A. Kolawa, \The Express Programming Environment", \The ExpressProgramming Environment", Workshop on Heterogeneous Network-Based Concurrent Computing, Tallahassee, October 1991.[9] L. Patterson, et. al., \Construction of a Fault-Tolerant DistributedTuple-Space", 1993 Symposium on Applied Computing, Indianapolis,February 1993.[10] G. M. Stocks, W. M. Temmerman, B. L. Gy�or�y Complete solution ofthe Korringa-Kohn-Rostoker coherent potential approximation: Cu-Nialloys, Phys. Rev. Letter, Vol. 41, 339 (1978).



[11] Ulf von Barth Density Functional Theory for Solids, Electronic struc-ture of complex systems, ed. Phariseau and Temmerman, NATO ASISeries, Plenum Press, (1984).



SIDEBAR ON Message Passing Interface ForumDuring the past year there has been quite a bit of activity in the communityto develop a standard interface for message passing [1]. The main advantagesof establishing a message passing standard are portability and ease-of-use.In a distributed memory communication environment in which the higherlevel routines and/or abstractions are built upon lower level message passingroutines the bene�ts of standardization are particularly apparent. Further-more, the de�nition of a message passing standard provides vendors with aclearly de�ned base set of routines that they can implement e�ciently, orin some cases provide hardware support for, thereby enhancing scalability.The standards activity goes by the name Message Passing Interface Forum(MPI Forum) and is composed of the major hardware and software vendors,as well as researchers from universities and laboratories around the world.The goal of the Message Passing Interface simply stated is to developa standard for writing message-passing programs. As such the interfaceshould establishing a practical, portable, e�cient, and 
exible standard formessage passing.A complete list of goals follow.� Design an application programming interface (not necessarily for com-pilers or a system implementation library).� Allow e�cient communication: Avoid memory to memory copyingand allow overlap of computation and communication and o�oad tocommunication coprocessor, where available.� Allow (but no mandate) extensions for use in heterogeneous environ-ment.� Allow convenient C, Fortran 77, Fortran 90, and C++ bindings forinterface.� Provide a reliable communication interface: User need not cope withcommunication failures. Such failures are dealt by the underlying com-munication subsystem.� Focus on a proposal that can be agreed upon in 6 months.� De�ne an interface that is not too di�erent from current practice, suchas PVM, Express, Parmacs, etc.



� De�ne an interface that can be quickly implemented on many vendor'splatforms, with no signi�cant changes in the underlying communica-tion and system software.� The interface should not contain more functions than are really nec-essary.This standard is intended for use by all those who want to write portablemessage-passing programs in Fortran 77 and/or C. This includes individualapplication programmers, developers of software designed to run on paral-lel machines, and creators of higher-level programming languages, environ-ments, and tools. In order to be attractive to this wide audience, the stan-dard must provide a simple, easy-to-use interface for the basic user whilenot semantically precluding the high-performance message-passing opera-tions available on advanced machines.The standard includes (this is temporarily as inclusive as possible):� Point-to-point communication in a variety of modes, including modesthat allow fast communication and heterogeneous communication� Collective operations� Process groups� Communication contexts� A simple way to create processes for the SPMD model� Bindings for both Fortran and C� A model implementation� A formal speci�cation.One of the objectives of the activity is to have a de�nition completedby the Summer 1993. If you are interested in �nding out more about theMPI e�ort contact David Walker (walker@msr.epm.ornl.gov) at Oak RidgeNational Laboratory.



References[1] Jack J. Dongarra, Rolf Hempel, Anthony J. G. Hey, and David W.Walker. A Proposal for a User-Level, Message-Passing Interface in aDistributed Memory Environment Technical Report ORNL/TM-??, OakRidge National Laboratory, 1992.


