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A computational method for computing the eigenvalues and eigenvectors of a class of 
matrices that arise in quantum mechanics involving time reversal and inversion symmetry is 
described. The algorithms presented have greatly reduced the computational effort required to 
solve this problem and also produce a stable, more accurate solution. 

1. INTRODUCTION 

Molecules and solids containing heavy atoms require the use of relativistic 
kinematics in the calculation of their electronic structure, because of the large 
velocities acquired by the electrons in the deep potentials near the nuclei. Relativistic 
kinematics introduces effects of two types (1) those that do not change the symmetry 
of the problem, such as the mass-velocity and Darwin terms, and (2) those that do 
modify symmetry, such as the spin-orbit coupling. Because the kinematic effects of 
the first type can easily be included at little or no additional computational expense 
and leave the symmetry analysis on a familiar basis, considerable effort has been 
expended to excise the spin-orbit coupling from the Dirac equation [l--5]. 
Nevertheless, it is important+specially in the case of the fifth series and the 
actinides-to include the spin-orbit effects. Thus, the more. complicated problem 
must be dealt with, at greatly increased effort (and cost). 

The inclusion of spin-orbit coupling into a calculation is not difficult in principle, 
but it does double the size of the matrices involved in the calculation and require that 
the matrices contain complex elements. This has the potential for increasing 
computation times by between one and two orders of magnitude. Such an increase 
need not occur, however, if the system has both time reversal (i.e., no magnetic fields 
or moments) and parity (spatial inversion) symmetry. In that case, all eigenvalues are 
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doubly degenerate. Soven [6] has described a technique to directly evaluate the term 
that, when squared, is the determinant of the secular equation. This scheme has been 
used extensively in relativistic augmented plane wave (RAPW) calculations [7] 
which search for eigenvalues by seeking zeroes of the determinant. Soven’s scheme 
speeds up the calculation to the extent that the cost of including spin-orbit coupling 
is no more than a factor of two over comparable non-relativistic schemes when 
applied to procedures where the nonlinear energy variation is done by searching for 
the zeroes of the determinant of the secular equation. More recently, RAPW schemes 
have been linearized [8-lo] such that it is more appropriate to solve a generalized 
eigenvalue problem than to plot determinants. In fact, even for the standard nonlinear 
APW techniques, it is often better to solve a generalized eigenvalue problem coupled 
with a parameter variation than to plot determinants [ 111. 

Techniques have now been developed and are presented here to make the 
generalized eigenvalue problem more efficient. These techniques are similar to 
methods that the Soven scheme yields for determinants. It should be pointed out that 
there are several equally compelling reasons for incorporating such techniques besides 
the increased speed that is achieved. Most easily perceived is that the memory 
requirements for the problem are reduced by half. Furthermore, for an RAPW basis 
set, the accuracy is greatly enhanced. To understand this latter point, one must 
remember that the RAPW basis set is, in principle, overcomplete. (A full plane wave 
basis-which is complete over all space-labels that part of the basis functions 
applied to the incomplete space of the interstitial region.) In practice, the necessity of 
truncating the expansion removes the problem. For a reasonably converged 
calculation without spin-orbit, the eigenvalue spectrum of the overlap matrix ranges 
from 1 down to 10e6, with one eigenvalue split off at 10-9. With care, one can still 
solve the generalized problem by performing a Cholesky decomposition and 
diagonalization. When spin orbit coupling is included, however, several things 
happen. The matrix is doubled in size and becomes complex. Thus the numerical 
noise is dramatically increased because of the significant increase in operations to be 
performed. In addition, all eigenvalues are doubled, so that the smallest eigenvalue 
occurs twice. The result is that one cannot directly perform a Cholesky decom- 
position on the expanded matrix for an adequate basis set (6’ is, after all, much 
smaller than E as E + O!). This has made it necessary to introduce schemes that, 
although very effective for calculations on elemental systems, are quite expensive for 
compound systems. 

The essential feature of the generalized secular equation with spin-orbit included 
is that it can be written in terms of elements that are real multiples of the SU(2) 
matrices (i.e., quaternions) when one has the required time reversal and parity 
symmetry. This is easily seen for the various forms of RAPW methods, since the 
Hamiltonian can be written as 

H(k,s, ; k,sJ = H&k,) 4,s2 + H,&s, ; k,s,), (1.1) 
ff,,(k,s,; k,s,) = Wk,I, IhI, k^, - k ,̂)(k ,̂ x l2). os,s2, (1.2) 
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where (k, s) labels the plane wave part of the basis function in the interstitial region; 
u are the Pauli spin matrices; H,, is the nonrelativistic matrix with the potential 
parameters replaced by properly averaged relativistic ones; and H, and h are real. 
The overlap matrix S will have an identical structure. We emphasize the structure, 
because it is the crucial feature for the techniques to follow and the precise form of 
H, and h will depend on the details of the augmentation chosen. The spin index in 
Eq. (1.1) does not imply that the basis functions are of a definite spin. They are taken 
to have a definite spin in the interstitial region where the spin-orbit coupling is 
negligible, enabling us to use a definite spin index there. However, as the nucleus is 
approached, the spin-orbit coupling acts and the spin is mixed. For H, and h to be 
real, it is necessary to choose the origin at an inversion site. Fortunately, such a 
choice introduces many additional computational efficiences. 

From Eqs. (1.1) and (1.2), one sees that the effect of including spin-orbit coupling 
is to replace each scalar matrix element in the nonrelativistic or spin-orbitless 
problem with a complex 2 x 2 matrix of the form 

a 
a= -b* (1.3) 

It is quite interesting to view this as a case of replacing the real scalar matrix 
elements in the spin-orbitless case by a set of hypercomplex numbers or quaternions. 
These numbers add and multiply since the resultant will also have the structure of 
(1.3). Further, they have an easy division since 

(Note that a ’ is the complex conjugate transpose of a and I, is a 2 x 2 identity 
matrix.) They do not commute, but commutivity is not required (except by the 
diagonal elements which do commute) to calculate a determinant, perform a 
Cholesky decomposition, or diagonalize a matrix. Thus one can perform any of these 
three operations using the quaternion form. This, then, can be taken as the formal 
basis for the Soven technique. Note that it also leads to a very natural demonstration 
of the double degeneracy (also using the Hermitian properties, of course) since a real 
diagonal matrix of quaternions would contain each scalar eigenvalue twice. 

The inclusion of spin-orbit coupling will generate the quaternion form as well as 
methods utilizing other basis sets. This can be shown by properly accounting for the 
“moment-flip” operator 

Q=JK, (1.5) 

where J is the parity operator and K the time reversal operator. Normally one 
represents 

J=pZ, 
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and 

K=ia,C, (l-7) 

where I is the spatial inversion operator and C is the complex conjugation operator. 
We require that Q commutes with the Hamiltonian. Q is a very unusual operator in 
that Q’ = -1 and (x] Qt 1~) = -(xl Q Iv)*. (It is antiunitary.) Given the basis 
function ( y), the basis function Q 1 y) will be orthogonal to it, 

(ylQIy>=(ylQ+ly>*=-(ylQly>, 
using first the Hermitian property of the scalar product and then the Q+ relation. 
Hence, it is reasonable to pair ] y) and Q ] y). The 2 x 2 matrix between the basis 
pairs Ix), Q ] x) and I y), Q 1 y) will have the quaternion form, 

(xlQ+Qly>=-(xlQ*ly>*=(4y)*~ 
(xl Q+ ly)=-(xl Qly>*, 

so 

(XIY) (xl Qlv> 
) ( 

(x I Y> (4 Qlu) 
(xlQ+l~) (xlQ+Ql~> = -(xlQl~>* 1 (~IY)* ’ 

Clearly the Hamiltonian matrix will have the same properties as the overlap matrix 
displayed, since [Q, H] = 0. In the case of a plane wave representation (APW or 
OPW), Q acts as a spin-flip operator, and the basis function pairs are the two spin 
states. In the case of an angular momentum representation (KKR, LMTO, ASW, or 
LCAO), Q translates (j, ,u) to (j, -,D) on the site related by inversion symmetry. 
These are the magnetic moment-related states that have been the basis for a 
generalization of spin polarized calculations in the presence of spin-orbit coupling 
[ 121. Here, of course, we use them merely to obtain a quaternion format. 

2. COMPUTATIONAL TECHNIQUES 

One can generalize the standard techniques such as described in Wilkinson [ 131 
and Stewart [ 141 in terms of quaternions; i.e., given a quaternion data type one can 
generalize the algorithms to operate on quaternion elements instead of complex or 
real elements. The increased complexity of the quaternion arithmetic can involve 
more computational effort than merely doubling the matrix size and dealing with 
scalars. However, one achieves economy of storage and increased accuracy. In the 
case of determinant calculation, the rewriting of the quaternion arithmetic into scalar 
operations is the Soven technique. In the case of the generalized eigenvalue problem, 
it is only part of the solution. By a careful organization of the calculations, it is 
possible to arrange the majority of operations involving quaternions to 
multiplications involving real scalar multiples of the identity matrix [ 151. This 
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reduces the computational effort for that part of the reduction to the level of the 
spin-orbitless problem. To facilitate writting the necessary programs, one can 
implement a quaternion abstract data type and then construct the algorithms directly 
in the abstract language. Application programs can now be written using a 
quaternion data type and be translated to Fortran automatically [16, 171. We have 
choosen to implement the algorithms described here using conventional Fortran 
directly, this was done mainly to fully minimize the space and time required to solve 
the problem. 

In this section, we will expand the quaternion arithmetic to clarify the 
reorganization actually used in the computer codes realizing the technique. We will 
first examine the standard eigenvalue problem 

Hx = Lx. (2.1) 

In terms of quaternions, the matrix H has the form 

Expanding these elements in terms of complex elements, the matrix has the form 

a11 0 a12 b 12 a13 b 13 aI4 b 14 

0 a11 -4% 45 -45 4 -b T4 aS 

4 -b,, a22 0 a23 b 23 a24 24 b 

G al2 0 a,, -b& af3 -Z4 G4 

a5 -b,, a& -b,, a33 0 a34 34 b 

Vi aI3 bfi u23 0 a33 -b& 4 

45 44 a$ 44 a& 44 a44 0 

Vi al4 b& a24 Vi a34 0 a44 

where the aij and b, are complex and the aii are real. 
We will show that the matrix can be reduced to the form 

(2.3) 

where T is a real symmetric it x n tridiagonal matrix. There are n - 2 major steps 
each of which consists of two minor steps. These steps have a great deal in common 
with those for the real symmetric eigenvalue problem. 
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In the first minor step, we use Eq. (1.4) to construct transformations that change a 
column and row of quaternion elements into real elements. These transformations 
have the form 

a 
-3 r (2.4) 

which is a unitary 2 x 2 matrix. As the first stage of reducing a row and column the 
matrix to tridiagonal form, we perform a unitary similarity transformation on the 
matrix represented in Eq. (2.2) with the 2 x 2 block diagonal matrix defined by 

After this has been applied, the transformed matrix is of the form 

all 0 r12 0 r13 0 r14 0 

oa,, 0 r12 0 r13 0 r14 

Yl2 0 a22 0 a23 b 23 a24 24 b 

OrI2 0 a22 -b& aA -bF4 G4 
3 (2.6) 

r13 0 a& -b,, a33 0 a34 34 b 

0 r13 bi+i a23 0 a33 -V4 af4 

114 0 45 -b,, 4 -44 a44 0 

0 r14 G4 ‘24 Vi a34 0 a44 

where aij, b, now denote values after the transformations. These new values are 
derived via relations of the type exemplified by 

( 
a ax - by* bx* + ay 

-b* x* = -b*x-a*y* a*x* -b*y 1 ( 

where 

u = ax - by*, v=bx*+ay, 

581/54/2-6 
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so that the product of matrices of the form 

c 
a b 

-b* a* 1 

is a matrix of the same form. This is the multiplicative property of the quaternion 
elements mentioned in the previous section. Matrices of this type generally do not 
commute, although they do so if all of the elements are real. Fortunately, we do not 
need commutivity except on the diagonal where the elements are real. Notice now 
that the first two rows and columns of the matrix are real. 

We have now completed the first minor step of the first major step. In the second 
minor step, we perform the quaternion analog of the classical Householder 
tridiagonalization. This will eliminate all the quaternion blocks beyond the 
(quaternion) subdiagonal. A very important feature here is that the quaternion 
elements of the transformation are now real multiples of the 2 x 2 unit matrix. Thus 
their arithmetic is no more involved than that for real scalars. This second minor step 
completes the major step. The transformed matrix is of the form 

all 0 y12 0 0 0 0 0 

Oa,, 0 r12 0 0 0 0 

r12 0 a22 0 a23 b 23 ‘24 24 b 

OrI2 0 a,, -b& 4 -G4 af4 
(2.7) 

0 0 UT3 -b,, a33 0 a34 34 b 

0 0 bC-3 a23 0 a33 -bF4 G4 

0 0 45 -b,, 4 -b,, a,, 0 

0 0 b?i a24 G a34 0 a44 

which has the same structure as the original matrix except for the first two rows and 
columns, which have been processed. After the completion of n - 2 major steps and 
the first part of the (n - 1)th step, the matrix has the form 

aI1 0 

0 alI 

r12 0 

0 r12 

0 0 
0 0 

0 0 
0 0 

r12 0 00 00 
0 r12 0 0 0 0 

a22 0 r23 0 0 0 
0 a,, 0 r23 0 0 

. 

W-9 
‘23 0 a33 0 f-34 0 

o r23 ’ a33 o r34 

0 0 r34 0 a44 0 

0 0 0 r34 0 a44 
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At this point the matrix can be separated easily into two identical tridiagonal 
matrices of the form represented in (2.3) by a simple rearrangement of the rows and 
columns. The eigenvalues and eigenvectors of the tridiagonal matrix can be deter- 
mined easily by standard techniques [ 161. The eigenvectors of the original problem 
can be found by applying, in the appropriate way, the transformations used in the 
reduction to the eigenvectors of the tridiagonal matrix. 

3. THE GENERALIZED PROBLEM 

The standard problem as expressed in Eq. (2.1) has been presented first for 
convenience, but in practice the problem commonly arises in the form 

Hz = ASz, (3.1) 

where both H and S have the same structure as H in the previous section and S is 
positive definite. The generalized problem can be reduced to the standard problem if 
we can determine the matrix U such that 

usuH = I. (3.2) 

We have then 

UHUH(U-“z) = XJSU”(U-“z). (3.3) 

Obviously, for economy of computation, it is desirable to determine U in a factorized 
form 

u= u, **’ u,u, (3.4) 

and in such a way that the 

U, HUT u, sq 

U, U, HU:Uf u, u, suyuy 

UHUH I 

have the same structure as H at every stage. 
To do so requires (n - 1) major steps, each step being determined by the current S 

matrix. The first major step is wholly typical. It again consists of two minor steps. 
The first minor step is exactly the same as that applied to H in the previous section. 
This reduces S to the form illustrated in (2.6)-the row and column being worked on 
are reduced to real multiples of the 2 x 2 unit matrix. 

In the second minor step, we will annihilate the off-diagonal blocks in the rows and 
columns reduced during this step. Since S is positive definite, we can carry out this 



286 DONGARRAETAL. 

reduction by performing one phase of a Cholesky factorization at each major step on 
the quaternion form. The structure of S is obviously preserved. If we think in terms of 
the real and the imaginary parts of S, this second minor step obviously affects only 
the real part. 

After (n - 1) steps of this kind, S is reduced to a real positive diagonal matrix. 
This can be reduced to the identity matrix by pre-multiplication and post- 
multiplication by the reciprocal square root of the diagonal matrix. All transfor- 
mations applied to S must also be applied to H. The structure of H is obviously 
preserved, although, of course, it remains a full matrix (i.e., no zeroes are induced). 
More work is involved in the transformations applied to H than of S both for this 
reason and also because all off-diagonal elements of H remain complex throughout. 
Once S has been reduced to the identity matrix the process described in Section 2 can 
be used to reduce H to diagonal form. 

4. IMPLEMENTATION 

For the software implementation, only part of the information represented in 
Eq. (3.1) need actually be stored, and many of the arithmetic operations are not 
performed because of the obvious symmetries in the processes. 

Each of the matrices, H or S, can be represented mathematically by a quaternion 
matrix of order IZ. Each of the elements in the quaternion matrix has the form of 
Equation (1.3), and can be defined by the two quanties a and b. Which require two 
complex numbers or four real elements for their representation. Since the matrices H 
and S are Hermitian, only half the elements are necessary. Thus, for each matrix of 
,* quaternion elements, 2n2 real locations are required. In the implementation, we 
have chosen to segregate the elements so one n x n array holds elements 
corresponding to the a’s and another II x n array holds elements corresponding to 
the b’s. The lower triangular part of each array contains the real part of the elements 
and the upper triangular part the imaginary part. Thus, in order to determine the i, j 
element of the quaternion matrix, references are made to the i,j andj, i elements of 
each array in storage. 

The algorithm used in the implementation is presented here to illustrate the 
structure and give a feeling for the operational complexity of the procedure. We start 
with the reduction of the matrix S in Eq. (3.1) to diagonal form. 

Reduction of S to Diagonal Form 

Forj= 1 ton- 1 
Fori=j+l ton 

Call giveng(& Sa, Sb, Ha, Hb) 
End 
Call cholsky(j, Sa, Sb, Ha, Hb) 

End 
Apply Diagonal Matrix to Ha and Hb 
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Routines giueng and cholsky used above apply their transformations to H. The next 
step is to reduce H to tridiagonal form and determine the eigenvalues and eigen- 
vectors of the reduced system. 

Determine the Eigenvalues of H 

Forj= 1 to n-2 
For i=j+ 1 to n 

Call given(i, j, Ha, Hb) 
End 
Call house(j, Ha, Hb) 

End 
Call given@, n - 1, Ha, Hb) 
Find Eigenvalues and Eigenvectors of Tridiagonal Matrix 

The routines given and giveng apply transformations of the form illustrated in 
Eq. (2.4). The loops on i in the above procedures correspond to application of the 
matrix described in Eq. (2.5). The values of i and j reflect the rows and columns that 
are effected by the transformation. The two routines differ only in that giveng applies 
the transformations to H as well as to S. 

The arithmetic performed by given and giueng will be totally complex. They 
introduce a zero and produce a real element into the matrix. The routines cholsky and 
house, in a sense, remove this real quantity produced by given and by giveng. They 
perform real arithmetic on the complex matrix entries. In terms of operation counts, 
when given is invoked there are n - j + 1 elements involved in the process and each 
element is involved in 4 complex multiplies operations. The same is true for giveng 
plus 4n complex multiplies as a result of applying the transformations to H. 

5. APPLICATION 

No detailed evaluation of the timings of this approach is available. We can, 
however, offer some observations that have been made in the course of applying it in 
a number of applications. Rough timings indicate that the inclusion of spin-orbit 
effects in both the Hamiltonian H and the overlap matrix S requires 5-6 times the 
computational effort rather than the factor of 16 one might have experienced 
otherwise. Because not as much calculation can be avoided in the Cholesky transfor- 
mation, the situation is much better when the overlap matrix need not be considered 
in quaternion format. This occurs when the spin-orbit coupling need not modify the 
basis functions so they can be treated as product functions of spin and coordinate 
space. The overlap matrix is then spin diagonal. This is easily achieved for the lighter 
elements up through the rare earths but is not really an acceptable approximation 
through the 58s and into the actinides. The diagonalization alone is six times faster 
than a straightforward doubling of the matrix size making the efficiency gained 
roughly comparable to that achieved in the evaluation of determinants. 
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Previous techniques for dealing with the problem of the spin orbit coupled matrices 
in the APW formalism have involved solving the problem with the spin-orbit 
coupling excised and using the lower energy subset of eigenvectors to perform a 
second restricted variation including the spin-orbit coupling. In the material CeRh,, 
errors as large as four milliRydberg were found in the results for this approximate 
method with the truncation set that was used. By using the quaternion formulation, 
one achieves roughly the same computational efficiency but with better accuracy. 
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