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From Serial Loops to Parallel Execution
on Distributed Systems

Abstract
Programmability and performance portability have been, and con-
tinue to be, two major challenges in scientific computing. So far,
auto-parallelization has provided sub-optimal solutions, as auto-
generated code tends to under-perform and is commonly limited to
shared memory environments. In this paper, we build upon an ex-
isting run-time system designed to efficiently schedule and execute
fine-grain task-based applications on heterogeneous, distributed
memory environments. We present an automatic compiler tool for
analyzing the data flow of serial codes with imperfectly nested,
affine loop nests containing if statements. This tool functions as
the front-end, source code compiler of the run-time system by au-
tomatically converting input serial codes into the run-time’s inter-
nal representation of the task system that represents the input code.
We demonstrate how this representation captures the semantics of
the serial code in a symbolic and problem-size independent man-
ner. We describe the data flow analysis, and show how serial loops
and dependence edges can be converted into the symbolic repre-
sentation. We demonstrate the efficiency of the approach, through
examples borrowed from dense linear algebra problems.

Keywords compiler analysis, symbolic data flow, distributed
computing, task scheduling

1. Introduction and Motivation
Achieving scientific discoveries, through computing simulation,
puts such high demands on computing power, that even the largest
supercomputers in the world are not sufficient. Regardless of the
details in the design of future high performance computers, few
would disagree that a) there will be a large number of nodes; b) each
node will have a significant number of processing units; c) pro-
cessing units will have a non-uniform view of the memory. More-
over, computing units in a single machine have already started to
become heterogeneous, with the introduction of accelerators, like
GPUs. While all these changes are expected to happen, accord-
ing to trends and necessities recognized by computer scientists and
hardware vendors, it is not the ideal scenario for application and
library developers. A developer, whether a domain scientist simu-
lating physical phenomena, or a developer of a numerical library
such as ScaLAPACK [6] or PLASMA [13], is forced to compro-
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mise and accept poor performance, or waste time optimizing her
code instead of making progress in her field of science. A better so-
lution would be to rely on a run-time system that can dynamically
adapt the execution to the current hardware and utilize the expertise
of computer scientists when making decisions about the ordering
of computations, their distributions on the computing resources, in
order to increase performance, e.g. through cache reuse and com-
munication/computation overlapping. Unfortunately, such systems
commonly require application developers to use novel languages,
outside their programming experience, or do not scale enough to
satisfactorily utilize modern high performance systems.

Previous work resulted in a dynamic task scheduling, run-time
system that is designed to address these limitations. In the remain-
der of this paper we will refer to this system as xyz for the purpose
of the double-blind review process. The full name, as well as cita-
tions to the appropriate articles will be added in the final version.
In this paper, we describe the compiler front end of xyz that auto-
matically translates annotated C code, containing serial loops, into
a task based representation of the problem, enabling the xyz run-
time engine to schedule and execute the tasks on large scale, dis-
tributed memory, parallel systems. We explain the process and the
tools used to perform this translation and we demonstrate through
experimental results that high performance can be achieved with
minimal user involvement.

2. Toolchain
In contrast with parallelizing compilers, we are not trying to convert
a serial program into a parallel program by statically addressing all
the issues involved with parallel execution. Instead, we combine
a compiler component, which is the subject of this paper, and a
run-time component to achieve parallel execution. We rely on the
compiler component to statically analyze the data flow of the in-
put program and produce a symbolic representation of the program
and delegate all other decisions to the run-time. The input program
representation generated by the compiler, contains a collection of
parameterized tasks, and symbolic information describing the data
flow between them. In the rest of this article, we will refer to this
representation as the Job Data Flow (JDF). Effectively, the compiler
performs static data flow analysis to convert an input serial program
into a Direct Acyclic Graph (DAG) with program functions (ker-
nels) as its nodes and data dependency edges between kernels as
its edges. Then, the run-time is responsible for addressing all DAG
scheduling challenges.

Figure 1 shows a schematic outline of the overall system archi-
tecture. The compiler component is shown as a shaded box in the
figure. We first briefly describe the other components in order to
provide some context for the reader, and motivate and justify the
existence of the compiler.
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Figure 1: Toolchain schematic

2.1 Run-time
The JDF, generated by the compiler, is a human-readable repre-
sentation of the Direct Acyclic Graph of tasks, one example being
given in Figure 4 below. As illustrated in Figure 1, the applica-
tion developer may edit this representation to tune some parame-
ters (like the association between a task and the data distribution,
or to introduce priority hints to the scheduler). Then, the JDF is
processed by the JDF translator to build a set of libraries holding
the parallel job stubs. These stubs enable the application developer
to instantiate, at run-time, DAG generators with fixed parameters.
A DAG generator is an opaque object used by the run-time engine
to A) compute, given a specific task, its successors and predeces-
sors; B) generate tasks on demand when they become ready to be
scheduled; C) call the corresponding kernels.

The stubs and the DAG generator instantiated from them for
given parameters, are problem-size independent: they use symbolic
algebraic representations to evaluate the expressions that appear in
the JDF, when needed.

The run-time schedules the work on the computing resources,
using different components: 1) the DAG generator, to compute the
successors and predecessors of each task when they are completed;
2) hardware information (like memory affinity, levels and sizes of
caches) that is collected at run-time using the hwloc library [12]; 3)
progress status and data requests received by other processes of the
run-time, running on remote nodes.

The system uses MPI as its underlying communication system.
All processes are launched by the MPI run-time. User programs
can be entirely processed and executed by our toolchain, or they
can be written as normal MPI applications that make calls into code
that has been been processed by our system. When an application

needs to execute some operations that have been processed by
our toolchain, all MPI processes of a communicator will call the
generated stub to instantiate a local DAG generator with the desired
parameters. Then, our run-time will orchestrate the scheduling of
all tasks on all available computing units of all nodes belonging to
the MPI communicator. Processing units include all cores of the
machine running the MPI process, and GPUs if some are available.
Providing the kernels to compute the operation of the task on a
particular hardware is the responsibility of the user. When the DAG
is completed (the last task that runs locally on this MPI process is
done, and this MPI process does not need to pass along more data),
the main function of the run-time engine returns, and the user can
resume the classical MPI behavior.

The run-time defines where a task should be executed through
an affinity between data and tasks, expressed algebraically. To spec-
ify where a specific task should run, when doing a distributed run,
the user needs to specify how the data is distributed between the
processors. Each of the data referenced in the JDF is specified by a
couple of user-defined functions to compute what processor holds
the data, and where in its memory. Our framework provides such
data localization functions for most of the classical data distribu-
tions (e.g. Block-cyclic).

The distributed run-time engine is able to schedule work in a
fully distributed manner, because all processes have the capacity to
examine any part of the whole DAG at any time during execution,
thanks to the symbolic representation. The successors or predeces-
sor of any task can be discovered in bounded time, and the memory
requirements to do so do not depend on the problem size, for the
same reason. Exploration of the DAG can be done either by follow-
ing the successor relationship of tasks (to compute which task on
which processes need to receive the result of the execution of a lo-
cal task), or the predecessor relationship (to compute which task, on
which process, will generate the awaited data). As a consequence,
the distributed run-time relies on the symmetry of the dependence
relationship as it is expressed in the JDF, and built from the sym-
bolic data flow analysis.

2.2 Source Code Compiler
The compiler accepts, as input, serial programs with imperfectly
nested, affine loops that make calls to side-effect-free functions and
can include if statements with conditions that involve constants and
induction variables of enclosing loops. In the rest of this paper, we
will refer to these functions as kernels. To analyze the input pro-
gram, the compiler needs information about the behavior of the
kernels with respect to their arguments. The arguments of inter-
est are expected to be compound entities, such as tiles or blocks of
a matrix, and can have any shape, as long as they can be described
with an MPI data-type. The current implementation of the compiler
uses a custom C parser that we built on-top of an openly available
ANSI-C grammar implemented in yacc1. Since dense linear algebra
is a natural application domain of a DAG system like ours, we have
specialized our parser to take advantage of library specific syntax
used by the PLASMA project [2] developed at the University of
Tennessee. The codes developed by PLASMA are open source and
include hints that reveal whether a kernel parameter is used, de-
fined, or both used and defined by the kernel (IN, OUT and INOUT
respectively). An example of such syntax will be explained in Sec-
tion 3, and can be seen in Figure 2. As can be seen in Figure 1,
the parser, which is the only annotation specific and language spe-
cific component, is a modular front-end of the compiler and can be
adapted to accept different annotations such as SMPSS-like [25]
pragma directives. In principle, the front-end could perform inter-
procedural analysis and discover this information without the need

1 Jeff Lee, 1985, draft version of the ANSI C standard
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for annotations, but this is much harder technically and outside the
scope of this paper.

The parser generates an Abstract Syntax Tree (AST) represent-
ing the program and creates a simple symbol table. The node struc-
ture of the AST is a simplified version of the one used by the
Open64 compiler [1].

Before starting the data flow analysis, the compiler performs
some preprocessing of the AST. The goal of this step is to detect
early potential failures in the subsequent steps due to the presence
of poorly formatted code and collect information that will be used
in the data flow analysis. Loop canonicalization is an example
transformation performed in this step, and we are planning to add
generalized induction variable recognition and substitution [30]. In
addition, this step collects information about the different “tasks”
that exist in the code. From the perspective of the compiler, a task
is a region of the code, that has been annotated by the user as such.
The parser does not need special annotations for identifying tasks,
as it can extract this information from PLASMA-specific syntax. In
PLASMA, kernels are passed to the scheduler, QUARK [32], for
execution, using a specific API as shown in Figure 2. The custom
parser used by our compiler interprets these API calls and records
which parts of the code constitute tasks. The information that the
compiler collects about every task includes the arguments passed
to the kernels, the task’s execution space, or in other words the
polyhedron defined by the iterations space of its enclosing loops,
and whether the arguments are used or defined by the kernel.

The following and final steps are the symbolic data flow analysis
steps. The symbolic analysis is the most important part of the
compiler and is discussed in greater detail in Section 4 below.

3. Input and Output Formats
The analysis methodology used by our compiler allows any pro-
gram with regular control flow and side-effect free functions to be
used as input. The current implementation focuses on codes written
in C, with affine loops and array accesses.

3.1 Input
PLASMA is a linear algebra library similar in functionality with
LAPACK, but it implements tile-based algorithms instead of panel-
based ones. Tile-based algorithms express a higher degree of par-
allelism, on blocks of data that enable a longer duration for the
kernels, allowing the run-time system to recover more recovery of
the communication time with computation.

for (k = 0; k < A.mt; k++) {
QUARK_Insert_Task(zpotrf,

blocksize, A[k][k], INOUT);
for (m = k+1; m < A.mt; m++) {

QUARK_Insert_Task(ztrsm,
blocksize, A[k][k], INPUT,
blocksize, A[m][k], INOUT);

}
for (m = k+1; m < A.mt; m++) {

QUARK_Insert_Task(zherk,
blocksize, A[m][k], INPUT,
blocksize, A[m][m], INOUT);

for (n = k+1; n < m; n++) {
QUARK_Insert_Task(zgemm,

blocksize, A[m][k], INPUT,
blocksize, A[n][k], INPUT,
blocksize, A[m][n], INOUT);

}
}

}

Figure 2: Cholesky factorization in PLASMA

Figure 2 shows the PLASMA code that implements the Tiled
Cholesky factorization [13] (with minor preprocessing and simpli-
fications performed on the code for improving readability). The
code consists of four imperfectly nested loops with a maximum
nesting depth of three. In the body of each loop there are calls to
the kernels that implement the four mathematical operations that
constitute the Cholesky factorization POTRF, TRSM, HERK, and
GEMM. As the name of the algorithm suggests, the data matrix
“A” is organized in tiles, and notations such as “A[m][k]” refer to
a block of data (a tile), and not a single element of the matrix. As
mentioned earlier, our compiler currently uses a specialized parser
that can process hints in the API of PLASMA. This choice was
influenced by the following two facts:

1. For every parameter passed to a kernel, that corresponds to a
matrix tile, the parameter that follows it specifies whether this
tile is read, modified, or both, using the special values INPUT,
OUTPUT and INOUT.

2. All PLASMA kernels are side-effect free. This means that they
operate on, and potentially change, only memory pointed to by
their arguments. Also, this memory does not contain overlap-
ping regions, i.e. the arguments are not aliased.

3.2 Tasks and task instances
Our system comprises a DAG based task scheduling engine. This
means that applications need to be represented as collections of
tasks and the data dependencies between the tasks. In order to be
generic and problem size independent, the symbolic representation
generated by our compiler and used by the run-time of our system,
JDF, must store the tasks and the dependencies between them in a
succinct, symbolic way that can be interpreted quickly at run-time.

void simple_example() {
int k, m

for (k = 0; k < N; k++) {
Task( Ta,

A[k][k], INOUT );
for (m = k+1; m < N; m++) {

Task( Tb,
A[k][k], INPUT,
A[m][m], INOUT );

}
}

}

Figure 3: Pseudocode example of input code

As an example of compiler input, let us consider the simpler
code of Figure 3. It contains two kernels: Ta and Tb. In the rest
of this article we will use the terms task and task instance. A task
is a specific kernel in the application that can be executed several
times, potentially with different parameters, during the life-time of
the application. Ta and Tb are examples of tasks in Figure 3. A
task instance is a particular, and unique, instantiation of a kernel
during the execution of the application, with given parameters. In
the example of Figure 3 task Ta will be instantiated as many times
as the outer loop for(k) will be executed, and thus we define the
task’s execution space to be equal to the iteration space of the loop.
We denote this iteration space with the following notation:

{[k] : 0 <= k <= N-1}

Such notation { [T] : C }, where T is a tuple, and C is a
conjunction of constraints, defines the ranges of values for the
elements of T for which C is true. Similarly, we define the execution
space of task Tb to be:
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{[k,m] : 0 <= k < N-1 && k+1 <= m <= N-1}†

Here, the tuple has two elements, since Tb is enclosed by two
loops. By examining the data-flow of the two tasks, we can see
that A[k][k] for example, will be modified (defined, in compiler
parlance) by task Ta and then read (used, in compiler parlance) by
task Tb. The corresponding relation due to A[k][k] flowing from
Ta(k) to Tb(k,m) is:

{[k] -> [k,m] : 0 <= k < N-1 && k+1 <= m <= N-1}

The reason why k is limited to strictly less than N − 1 and not
equal to N − 1 (as the execution space of Ta would suggest) is
because, in the last iteration of the outer loop (when k = N − 1),
task Tb will not execute (because m = k + 1 =⇒ m 6< N ). For
the iterations of the outer loop where k < N − 1, task Tb will use
A[k][k] in all iterations of the inner loop.

3.3 Output
The run-time system targets distributed memory execution, where
task instances have to identify which other task instances they must
communicate with, in a fast and problem size independent way.
Therefore, the information we associate with task Ta must contain
a symbolic representation of this edge, such that every task instance
Ta(k) is able to determine the instances Tb(k,m) that need to use
the data defined by Ta(k). The JDF uses the following notation to
represent this flow edge in task Ta:

A[k][k] -> (k<N-1) ? A[k][k] Tb(k, (k+1)..(N-1))

Conversely, the instances of task Tb must be able to determine
which task instances they will depend on for input. However, in this
case the same edge has the following much simpler form in JDF:

A[k][k] <- A[k][k] Ta(k)

The full JDF that the compiler produces to represent the exam-
ple code of Figure 3 is shown in Figure 4. As can be seen in the
figure, in addition to the execution space and the data flow edges,
there are two more elements in a JDF file. First, there is an affinity
definition of the form “:A[k][k]” which signifies that the corre-
sponding task should be run in the MPI process that owns the cor-
responding data element. Second, there is a BODY that consists of
C-language code that the run-time will invoke in order to execute
the actual kernel that constitutes a task.

4. Symbolic Data Flow Analysis
The ultimate goal of the compiler presented in this paper is to
provide the run-time of the system with information about the data-
flow of the input program. In particular, the compiler analyzes the
data flow between the kernels (tasks) of the input program to extract
information that can be used to create a Direct Acyclic Graph
where the nodes are task instances and the edges represent data
exchanges between the nodes. This information is then used by the
run-time to enable parallel execution of the tasks, while preserving
the semantics of the serial execution. It is important to note that no
part of the run-time ever creates, or traverses the DAG. That would
cause inefficiencies, since the DAG size is problem size dependent.
Rather, the information generated by the compiler is in the form
of parameterized symbolic expressions with parameters that take
distinct values for each task instance. Thus the run-time is able to
evaluate the expressions of each task instance independently of the
task’s place in the DAG and do so in constant time. In essense,

†Viewed as a polyhedron, this execution space includes all the points with
integer coordinates, in the X, Y plane, that are enclosed by the triangle
defined by the Y axis, the y = N − 1 line and the y = x + 1 line.

Ta(k)
k = 0..N-1
: A[k][k]

A[k][k] <- (k>=1) ? A[m][m] Tb(k-1, k)
<- (0==k) ? A[k][k]
-> (k<N-1) ? A[k][k] Tb(k, (k+1)..(N-1))
-> A[k][k]

BODY
Ta(A[k][k]);

END

Tb(k,m)
k = 0..N-1
m = k+1..N-1
: A[m][m]

A[k][k] <- A[k][k] Ta(k)
A[m][m] <- (k>0) ? A[m][m] Tb(k-1, m)

<- (k==0) ? A[k][k]
-> (m==k+1) ? A[k][k] Ta(m)
-> (m>k+1) ? A[m][m] Tb(k+1, m)

BODY
Tb(A[k][k], A[m][m]);

END

Figure 4: Example Job Description Format

every task instance T (...) can discover all the task instances T p(...)
that produce data that are used by T (...) and all task instances
T c(...) that consume data generated by T (...) in O(1) time per
task instance. In graph terms, each node of the DAG can discover
its immediate neighborhood in constant time per neighboor.

4.1 Omega Relations
After the compiler preprocesses the AST built by the front-end, it
collects information about the tasks that exist in the program as
well as all the uses and definitions of all relevant variables. Conse-
quently, it considers that each pair of occurrences of a variable, such
that at least one is a definition, is a potential data dependence edge.
For example, when analyzing the code of Figure 3, the compiler
will record a potential edge from A[k][k] in task Ta to A[m][m]
in task Tb. To test if a potential edge is indeed a data dependence,
the compiler takes into account the execution spaces of the tasks
that are involved and formulates an Omega [26] Relation. There-
fore, the aforementioned edge, will be formulated as the following
Omega Relation:
{[k] -> [k’,m] : 0 <= k < N && k’+1 <= m < N &&

k <= k’ && k == m }
An Omega Relation is a mapping between two tuples, defin-

ing the execution space of the source and sink tasks, as well as
the conjunction of constraints for both execution spaces. In the ex-
ample above, the term “[k]” represents the execution space of the
source task, Ta, and the term “[k’,m]” represents the execution
space of the sink task, Tb. In Omega parlance, this Relation has
an input variable count of one and output variable count of two.
Although both tasks share a common enclosing loop, we use dif-
ferent variables in the execution spaces (k and k’) because the de-
pendency could be a loop carried dependency, so we have to al-
low the two iteration spaces to be independent. The first two con-
straints: “0 <= k < N” and “k’+1 <= m < N” are imposed by the
loop bounds. The constraints “k <= k’” is imposed by the fact
that the source and destination are both enclosed by the for(k)
loop and the destination is after the source in the body of the loop.
This means that the results of the source are visible by the des-
tination in the iteration that generated them, or any other future
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iteration. Finally, the constraint “k == m” is a result of the de-
mand that “A[k][k] == A[m][m]”. After the compiler has for-
mulated this Relation, it calls into the Omega library to simplify it.
In this particular example, Omega will simplify it into the Relation:
{[k] -> [k’,m] : FALSE } since, clearly, m cannot be greater
than k and equal to k at the same time and therefore there does not
exist a true data flow edge from A[k][k] in task Ta to A[m][m] in
task Tb at any point in the execution of this example code.

4.2 Loops & Data Dependence
More formally, there is a data dependence from task Ts to task Td

if and only if both following conditions hold:

1. Both tasks access (for definition or use) the same memory
location, and at least one access is a definition.

2. In the serial code, task Ts executes before Td.

To refer to specific iterations, when dealing with loop nests,
we use iteration vectors2. The iteration vector, I, of a specific
iteration of a loop nest of depth n, is a vector of n integers,
I = {i1, i2, ..., in}, such that the loop at depth k (1 ≤ k ≤ n) is at
iteration ik. We say that iteration I executes not later than iteration
J (which we hereafter denote as: I ≤ J) if and only if:

∀k : ik > jk ∃m : m < k ∧ im < jm

Also, we say that iteration I executes before iteration J (which we
hereafter denote as: I < J) if and only if:

I ≤ J ∧ ∃k : 1 ≤ k ≤ n ∧ ik < jk

Using iteration vectors, we can refine the second condition, men-
tioned above, for the existence of a data dependence between tasks
that share n enclosing loops. Specifically, There is a dependence
edge between task Ts in loop Is and task Td in loop Id if and only
if either of the following conditions is true:

• Is ≤ Id and there is a path from Ts to Td in the body of the
inner most common loop.

• Is < Id

4.3 Potential Data Dependence Edges
Parallelizing compilers analyze serial programs trying to identify,
for any two statements of interest, whether, or not, a data depen-
dence exists. This information is important, because statements
with data dependencies cannot be executed in parallel. However,
our compiler is not an automatic parallelizer. Instead, it identifies
the exact, symbolic, parameterized relation between tasks. This in-
formation is then used by the run-time to schedule individual in-
stances of tasks based on the data flow restrictions of the individ-
ual task instances, and not based on the restrictions of the tasks as
they appear in the serial code. The compiler forms Omega Rela-
tions about all potential data dependence edges. That is, flow edges
(use following definition), output edges (definition following defi-
nition) and anti-dependencies (definition following use). It does so
by traversing the uses and definitions of the input program accord-
ing to the following steps:

1. Create a fake ENTRY task, that defines all variables that are used
in the program, before any use.

2. Create a fake EXIT task, that uses all variables that are defined
in the program, after all definitions.

2 More details on data dependence analysis and iteration vectors can be
found in popular compiler textbooks [20].

3. For every variable of interest that is accessed in tasks Ts and Td

(with at least one access being a definition), create an Omega
Relation in the following way:

(a) Set the Relation’s input variable count to the number of
loops that enclose Ts.

(b) Name the input variables using the induction variables of
the loops that enclose Ts.

(c) Set the output variable count to the number of loops that
enclose the task that uses the variable, Td.

(d) Name the output variables using the induction variables of
the loops that enclose Td. For all loops that enclose both Ts

and Td, add an apostrophe to the output variable name.

(e) For each input and each output variable, add constraints
equivalent to the bounds of the corresponding loop.

(f) For every common enclosing loop, add to the Relation a log-
ical conjuntion of constraints to guarantee that Ts executes
no later than Td.

i. If there is a path from Ts to Td in the inner most loop,
then the iteration vectors must be such that Is ≤ Id.
E.g., for loops k, m, n:
(k < k′) ∨
(k = k′ ∧m < m′) ∨
(k = k′ ∧m = m′ ∧ n ≤ n′)

ii. If there is no path from Ts to Td in the inner most loop,
then the iteration vectors must be such that Is < Id.
E.g., for loops k, m, n:
(k < k′) ∨
(k = k′ ∧m < m′) ∨
(k = k′ ∧m = m′ ∧ n < n′)

(g) Create constraints to guarantee that the array indices that
appear in the variable occurance at Ts are equal to the
corresponding indices that appear in the variable occurance
at Td. For example if the potential edge is from A[k][m] of
Ts to A[m’][n] of Td, then the conjunction of constraints
will be:
(k==m’ && m==n).

After this algorithm is completed, all potential data dependence
edges are formulated as Omega Relations. The next step consists of
taking into consideration conflicts between edges, to calculate the
actual data flow of the problem.

4.4 Finalizing Flow Edges
When Ts defines the variable and Td uses it, the generated Rela-
tion will describe a potential flow edge (also known as true depen-
dence). When both tasks define the variable, the generated Relation
will describe a potential output edge. When Ts uses the variable
and Td defines it, the generated Relation will describe a potential
anti-dependence edge. To discover the final Relations of the vari-
ous dependence edges, we need to consider which edges kill other
edges and subtract the corresponding Relations. For example, in the
code of Figure 3, at iteration Is = {k = 0, m = N − 1} task Tb

writes into A[N-1][N-1]. Since at iteration Id = {k = N − 1}
task Ta will read A[N-1][N-1] and Is < Id the aforementioned
algorithm will generate a potential flow edge. However, the data
that was written by Tb in Is will not survive until iteration Id since
it will be overwritten by a different instance of Tb at iteration I

′
s =

{k = 1, m = N−1} and then again at I
′′
s = {k = 2, m = N−1}

all the way to Ins = {k = N − 2, m = N − 1}.
This process is similar to what traditional compilers do to per-

form data flow analysis on scalar variables. For scalar variables
a compiler needs to know, given a definition, which uses can be
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reached from it (DU-chains) and given a use, which definitions can
reach it (UD-chains). However, in the case of our compiler, we are
interested in the exact symbolic Relation that reveals what condi-
tions need to hold at the definition and what conditions need to hold
at the use for a given edge to exist. Not merely the information that
a definition may, or must reach a use. This symbolic relation will be
output directly, to be used by the scheduling engine to compute the
predecessors and successors of a given Task Instance, when needed.
Figure 5 shows a subset of the flow edges and output edges of the
code shown in Figure 3. This subset corresponds to the example
discussed above.

Ta

Tb::A[m][m] => Ta::A[k][k]
{[k,m] -> [k'] : k' = m &&
                        k < m < N &&
                        0 <= k < N }

Potential Flow Edge:

Tb::A[m][m] => Tb::A[m][m]
{[k,m] -> [k',m'] : m' = m &&
                             k < k' < m < N &&
                             0 <= k < N }  

Output Edge:

Tb::A[m][m] => Ta::A[k][k]
{[k,m] -> [k'] : k' = m &&
                        k+1 < m < N &&
                        0 <= k < N-1 } 

Transitive Edge:

Tb::A[m][m] => Ta::A[k][k]
{[k,m] -> [k'] : k' = m &&
                        1+k = m &&
                        1 <= m < N }

Final Flow Edge:

Tb

Figure 5: Example Data-Flow

As explained, part of the potential flow edge is masked (or,
killed) by the output edge. However, the constraints of the output
edge are more restrictive than the constraints of the flow edge.
Thus, part of the flow edge “survives” the output edge and reaches
the use at task Ta. This means that there are iteration vectors I and
J such that values written by task Tb in I are read by task Ta in J.
To calculate the constraints under which the flow edge reaches Ta,
we compute the transitive edge (shown as a dashed, red arrow),
by composing the output edge with the potential flow edge and
then subtract the transitive edge from the potential flow edge. This
results in the final flow edge (shown as a dash-dotted, blue arrow).
In the general case, we calculate the actual constraints of each flow
edge by applying algorithm 1 to all potential flow edges.

4.5 Relations to Data Exchanges
As stated before, the goal of our compiler is to analyze a serial code
and generate symbolic expressions that capture the data flow of the
code. These expressions will be stored in the JDF that describes the
input code and will be used by the run-time to assess what messages
need to be exchanged between the tasks. The expressions should
be such that the run-time will be able to evaluate them for each
task instantiation Ti(...) independently of the task’s place in the
DAG. Also, the evaluation of each expression should cost constant
time (i.e., it should not depend on the size of the DAG). The
result of evaluating each symbolic expression will be another task

return FinalizeF lowEdges(IG)
Input: IG Input graph, where each node corresponds to a

task as it appears in the serial code, and edges are all
flow dependence or output dependence edges of the
serial code.

Result: Modifies IG to remove killed (impossible) flow
dependence edges, or reduce their definition space to
its minimum.

begin
foreach flow edge Ef ∈ IG do

foreach output edge Eo ∈ IG : Eo.src = Ef .src
do

if ∃E′f : E′f .src = Eo.src∧E′f .dst = Ef .dst
then

Et ← E′f ◦ Eo

Ef ← Ef − Et

Algorithm 1: FinalizeF lowEdges(IG)

instantiation Tj(...), to which data must be send, or from which
data must be received. Therefore, the only parameters allowed in
a symbolic expression are the parameters of the execution space
of Ti(...), and globals used in the input code (constants). So, if Ti

is enclosed by loops with induction variables “k” and “m” (i.e.,
Ti(k, m)), only the globals and variables “k” and “m” can appear
in Ti’s data edges symbolic expressions.

In the example shown in Figure 5, there is a flow edge from
A[m][m] in task Tb to A[k][k] in task Ta. The finalized Omega
Relation that describes this edge is:

{[k,m] -> [k’] : k’ = m && 1+k = m && 1 <= m < N}

However, when the run-time is processing an instance Tb(k, m)
of task Tb, the only parameters available will be “k” and “m”, so
the Omega Relation must be expressed in terms of only these two
parameters. Conversely, the information associated with task Ta,
with respect to this edge, is the inverse of the Omega Relation for
Tb, and it must be expressed in terms of the parameter “k” which is
the only parameter in the execution space of task instances Ta(k).

The process of converting an Omega Relation to the appropriate
form so that it can be stored in the JDF and used by the run-
time to assess outgoing and incoming messages is described in the
following sections.

4.5.1 Outgoing Messages
In the general case, to produce the information regarding the out-
going edges of a task Ti, we need to process all Relations of flow
edges that have as source the task Ti. For every parameter that ap-
pears in the execution space of a Relation’s destination, we solve
the equality constraints in the conjunction of constraints for this pa-
rameter. Solving the equality constraints for a destination parameter
is a recursive process that terminates when the resulting expression
contains nothing other than parameters of the source task, symbolic
constants and numeric constants, or the logical constants “TRUE”,
or “FALSE”. As an example, the Relation:

{[k,m] -> [k’] : k’ = m && 1+k = m && 1 <= m < N}

for the flow edge of Figure 5, would be stored in the JDF of task Tb

as:

A[m][m] -> ((1+k)==m) ? A[k][k] Ta(m)

Therefore, when the run-time is processing task instance Tb(7, 8)
for example, it can compute in O(1) time that it needs to send
tile A[8][8] to task instance Ta(8). Also, when processing task
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Tb(7, 11), the run-time can compute that A[11][11] should not be
sent to any instance of Ta, since the condition (1 + k) == m is
not true (clearly, 1 + 7 6= 11).

If a destination parameter does not appear in any equality con-
straints in the conjunction, we determine the lower bound and upper
bound of this parameter, by solving the inequality constraints, and
create a range of tasks that should be the receiver of this message.
As an example, consider the flow edge from A[k][k] of Ta(k) to
A[k][k] of Tb(k, m) which is described by the Relation:

{[k] -> [k’,m] : k’ = k && 0 <= k < m < N}

In order to store this edge in the JDF expression of Ta, we need to
express k′ and m in terms of k (and constants), since k is the only
parameter in the execution space of Ta. Therefore, this edge will
be translated to the following information in JDF notation:

A[k][k] -> (k < N-1) ? A[k][k] Tb(k, k+1..N-1)

since the output parameter “m” does not appear in any equality
constraints. In JDF syntax, expressions with ranges signify to the
run-time that a broadcast operation must be performed.

4.5.2 Incoming Messages
To produce the information regarding the incoming edges of a task
T , we traverse the final flow edges of all tasks searching for edges
that have task T as the destination. For each such Relation, we
compute the inverse, and then proceed with solving the inversed
Relation for the output parameters, as we do for the outgoing edges.

4.6 Finalizing Anti-dependence Edges
When task Ts uses a variable that task Td defines, and there is an
execution path from Ts to Td, then an anti-dependence edge exists
from Ts to Td. The algorithm outlined in Section 4.3 will detect
and record all the anti-dependence edges as Omega Relations, just
as it will do with the flow and output edges.

While anti-dependence edges have no meaning for a serial code,
they are very important for maintaining the semantics of the serial
code when executing tasks in parallel. Namely, if there is anti-
dependence edge from Ts to Td the run-time must ensure that Td

executes only after Ts has finished (or executes on a node with
different address space than Ts and therefore the two tasks do
not interfere with the memory of one another). Therefore, anti-
dependence edges will not generate data exchanges between tasks,
but they will generate synchronization control messages.

Finalizing an anti-dependence edge, Ea, uses a very differ-
ent approach than the finalization of flow edges. Namely, output
dependencies play no role, but flow dependencies and all anti-
dependencies other than Ea do. Intuitively, we can understand the
finalization methodology by observing the following facts:

1. If there is a potential anti-dependence edge from Ts to Td and
there is also a flow edge between the same tasks, then Td will
have to wait for Ts to complete anyway, since it is waiting for
data, so there is no need for additional synchronization.

2. If there are two potential anti-dependence edges from Ts to Td,
a single synchronization message is necessary.

3. If there is an edge from Ts to Tm and an edge from Tm to Td,
then Td will have to wait for Ts due to transitivity. Therefore,
transitive edges can also render anti-dependences unnecessary.

4. If there is an edge E′ (flow, anti, or transitive) that partially
overlaps with the potential anti-dependence edge Ea we are
trying to finalize, then we subtract the Relation of E′ from the
Relation of Ea. We consider that two edges partially overlap,
if the conjunctions of constraints in the Relations of the edges
define partially overlapping polyhedra.

Function RemoveAntiDependence(IG)
Input: IG, Input graph.
Result: Modifies IG to remove redundant anti-dependence

edges, or minimize their definition space.
begin

foreach anti-dependence edge Ea ∈ IG do
Let G be a copy of IG

/* Unless otherwise specified, all */
/* nodes and edges belong to G, and */
/* all operations are done on G. */

foreach pair of nodes N1, N2 do
R ←

S
{Ri : N1 −−→

Ri

N2}
Replace all edges from N1 to N2 with single
edge N1 −→

R
N2

foreach Node N0 do
Let (p1, . . . , pn) be the parameters of the task
that correspond to N0

/* Initiate Cycle(N0) with an empty

(tautologic) Relation to self. */

Cycle(N0)← {[p1, . . . , pn]→ [p1, . . . , pn]}
foreach Node N0 do

foreach N0 −−→
R0

N1 . . . −−−−→
Rn−1

N0 do

/* N0, N1 . . . N0 is a Cycle formed
following flow, and/or
anti-dependence edges. */

C ← R0 ◦R1 ◦ . . . ◦Rn−1

T ← transitive closure of C
Cycle(N0)← Cycle(N0)

S
T

Remove all edges from any node to itself
A← FindTransitiveEdge(Source(Ea), ∅, ∅)
/* May remove Ea if empty */

Change Ea to (Ea −A) in IG

Algorithm 2: RemoveAntiDependence(IG)

Function FindTransitiveEdge(Nc, T, A)
Input: Nc, the current node in the transitive edge; T the

transitive edge being built; A the union of all
transitive edges found until now.

Result: Union of the transitive edges that start at Nc and end
at Sink(Ea)

begin
/* This algorithm uses the variables of */
/* the RemoveAntiDependence Function */
/* in Algorithm 2. It operates on G. */

Mark Nc as visited
if Nc 6= Source(Ea) then

T ← Cycle(Nc) ◦ T

foreach Edge Nc −−→
Ri

Ni s.t. Ni is not visited do

T ← Ri ◦ T
A← FindTransitiveEdge(Ni, T, L)

if Nc = Sink(Ea) then
return A

S
T

else
return A

Algorithm 3: FindTransitiveEdge(Nc, T, L)
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for(k = 0; k < NT; k++)
  Task( POTRF, A[k][k], INOUT )

  for(m = k+1; m < NT; m++)
    Task( TRSM, A[k][k], IN,
                A[m][k], INOUT )

  for(n = k+1; n < NT; n++)
    Task( SYRK, A[n][k], IN, 
                A[k][k], INOUT )
    for(m = n+1; m < NT; m++)
      Task( GEMM, A[m][k], IN,
                  A[n][k], IN,
                  A[m][n], INOUT )

(a) Cholesky Factorization

for(k = 0; k < NT; k++)
  Task( GETRF, A[k][k], INOUT,
               T[k][k], OUT)
  for(m = k+1; m < NT; m++)
    Task( TSTRF, A[k][k], INOUT,
                 A[m][k], INOUT,
                 T[m][k], INOUT )
  for(n = k+1; n < NT; n++)
    Task( GESSM, A[k][k], IN,
                 T[k][k], IN, 
                 A[k][n], INOUT )
    for(m = n+1; m < NT; m++)
      Task( SSSSM, A[m][k], IN,
                   T[m][k], IN,
                   A[k][n], INOUT,
                   A[m][n], INOUT )

(b) LU Factorization

for(k = 0; k < NT; k++)
  Task( GEQRT, A[k][k], INOUT,
               T[k][k], OUT)
  for(m = k+1; m < NT; m++)
    Task( TSQRT, A[k][k], INOUT,
                 A[m][k], INOUT,
                 T[m][k], INOUT )
  for(n = k+1; n < NT; n++)
    Task( ORMQR, A[k][k], IN,
                 T[k][k], IN, 
                 A[k][n], INOUT )
    for(m = n+1; m < NT; m++)
      Task( SSMQR, A[m][k], IN,
                   T[m][k], IN,
                   A[k][n], INOUT,
                   A[m][n], INOUT )

(c) QR Factorization

Figure 6: Sequential codes used as input to the compiler

In the remaining of this section, we present a formal algo-
rithm that uses the aforementioned observations to systematically
reduce the amount of synchronization messages needed due to anti-
dependence edges.

The algorithm assumes that there is a graph IG where each node
corresponds to a task as it appears in the serial code, and edges are
all flow or anti-dependence edges of the serial code. Note that this
graph exists only during the compilation stage and has no relation
to the DAG that connects the task instances during execution. Each
edge of the input graph IG is tagged with the Omega Relation that
defines under what conditions the edge holds, and the parameter
space of the involved tasks. Algorithm 2 presents the main func-
tion to remove the anti-dependence edges that give redundant in-
formation. It operates mainly on a copy of the input graph, to com-
pute how each of the anti-dependence edges can be reduced. To
do so, it uses the function defined in Algorithm 3 that computes
the transitive Relation that encompasses all dependence cases al-
ready present in the graph, without taking into account the edge
that the first algorithm is trying to reduce. In the following algo-
rithms, the term “Cycle(Ni) ← · · · ” denotes that the information
right of the arrow is stored in node Ni’s tag “Cycle” and the term
“· · · ← Cycle(Ni)” denotes that the information stored in that tag
is used. Also Source(Ei) and Sink(Ei) denote the node that edge
Ei starts from or leads to respectively.

5. Performance
Two metrics of performance are relevant in the context of this
work. First, the performance of the compiler tool itself and second,
the performance of applications running under our system. For the
dense linear algebra operations found in the PLASMA library, the
execution time of the compiler tool is in the order of 100ms, on
hardware commonly found on average personal computers. The
slowest execution of the compiler that we have observer so far was
220ms when analyzing pzgerbb, an operation that invokes eight
different kernels and has a maximum loop nesting level of three.

The performance that applications can achieve by using our sys-
tem has been extensively studied in previous work, that we will cite
in the final version of this paper. The goal of this paper is to present
the compiler front-end of the system, so we present only a sum-
mary of performance results, to demonstrate that our toolchain can
automatically analyze, schedule and execute non-trivial algorithms
and deliver high performance at scale. Application performance re-
sults are relevant, because the scalability achieved by our run-time
is enabled by the problem size independent, algebraic expressions
that we use to describe inter-task dependence edges. The ability of

our compiler to go beyond dependence testing by generating these
algebraic expressions enables the end-result, i.e., high performance
execution on distributed memory platforms.

The experiments we present have been conducted on the Griffon
platform, which is one of the clusters of Grid’5000 [9]. We used 81
dual socket Intel Xeon L5420 quad core processors at 2.5GHz to
gather 648 cores. Each node has 16GB of memory, and is intercon-
nected to the others by a 20Gbs Infiniband network. Linux 2.6.24
(Debian Sid) is deployed on these nodes.

The benchmark consists of three popular dense matrix factor-
ization: Cholesky, LU and QR. The Cholesky factorization solves
the problem Ax = b, where A is symmetric and positive definite.
It computes the real lower triangular matrix with positive diagonal
elements L such that A = LLT . The QR factorization offers a nu-
merically stable way of solving full rank underdetermined, overde-
termined, and regular square linear systems of equation. It com-
putes Q and R such that A = QR, Q is a real orthogonal matrix,
and R is a real upper triangular matrix. The LU factorization with
partial row pivoting of a real matrix A has the form A = PLU
where L is a real unit lower triangular matrix, U is a real upper
triangular matrix, and P is an optional permutation matrix.

All these three operations are implemented in the ScaLAPACK
numerical library [6]. Moreover, the Cholesky factorization has
been implemented in a more optimized way in the DSBP software
[18], using static scheduling of tasks, and a data distribution more
efficient, and the LU factorization with partial pivoting is also
solved by the well known High Performance Linpack benchmark
(HPL, [14]), used to measure the performance of supercomputers.

For our comparison, we implemented these operations within
our system by using the compiler presented in this paper to gener-
ate the JDF symbolic representation from the simple sequential al-
gorithms that are given in Figure 6. The exact form of the kernels is
as they appear in the PLASMA library, but in the figure we present
a simplified form to increase clarity and reduce the space. As men-
tioned in Section 2.1, the data distribution is not generated by au-
tomatic tools, but rather chosen by the human developer. For our
experiments, we have distributed the initial data following the clas-
sical 2D-block cyclic distribution used by ScaLAPACK, and used
our run-time engine to schedule the operations on the distributed
data. The kernels consist of the BLAS operations referenced by the
sequential codes, and their implementation was the most efficient
available on this machine. The same kernels implementations for
ScaLAPACK, HPL, DSBP, and our engine were used on each run.

Figure 7 presents the performance measured using our system
(labeled as xyz) and ScaLAPACK, and when applicable DSBP and
HPL, as function of the problem size. All data is normalized to the
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Figure 7: Performance comparison on the Griffon platform (on 648 cores)

theoretical floating point operation peak of the machine. 648 cores
participated to the distributed run, and the data was distributed ac-
cording to a 9× 9 2D block-cyclic grid. Block/Tile size was tuned
to provide the best performance on each setup. As the figures illus-
trate, on all benchmarks, and for all problem sizes, our framework
outperforms ScaLAPACK, and perform as well as the state of the
art, hand-tuned codes for specific problems. Our system goes from
the sequential code to the parallel run automatically, with very lim-
ited human involvement, but is still able to outperform DSBP, and
competes with the HPL implementation on this machine.

Moreover, we performed experiments on the Kraken system of
the University of Tennesse and National Institute for Computa-
tional Science (NICS). In these experiments we compared against
libSCI, Cray’s specifically tuned numerical library for this ma-
chine. We used up to 3,072 cores and our system performed simi-
larly to libSCI within a 10% interval.

On the different machines, our compiler coupled with our run-
time significantly outperformed standard algorithms, and competed
closely, sometimes favorably, with state-of-the-art optimized ver-
sions of similar algorithms, without any further tuning process in-
volved when porting the code between wildly different platforms.

6. Related Work
Data flow analysis has been the target of numerous studies for sev-
eral decades now and established theory is best covered by com-
piler textbooks [20, 24, 31]. Symbolic dependence analysis in par-
ticular, has also been the subject of several studies [8, 15, 16, 21–
23, 28, 30] mainly for the purpose of achieving powerful depen-
dence testing, array privatization and generalized induction vari-
able substitution, especially in the context of parallelizing compil-
ers such as Polaris [7] and SUIF [19]. However, this body of work
is very different from the work presented in this paper for several
reasons. First, our work does not focus on dependence testing. Our
system is not a parallelizing compiler, and as such it is not trying to
prove statically whether two statements are data dependent or not,
in order to parallelize them. Our compiler derives symbolic expres-
sions that describe the data flow in a parameterized way such that a
given task instance can evaluate which other task instances it must
exchange data, or synchronize with, due to data dependencies. Sec-
ond, we primarily focus on programs that consist of loops and if
statements with calls to kernels that operate on whole array regions
(i.e. matrix tiles), rather than operating on arrays in an element by
element fashion. This abstracts away the access patterns inside the
kernels and simplifies the data flow equations enough that we can
produce exact solutions using the Omega Test [26].

The polyhedral model [3, 5, 17, 27], of which the Omega Test
is part, has drawn a lot of attention in recent years and newer op-

timization and parallelization tools, such as Pluto [10, 11], have
emerged that take advantage of it. While this is very related to our
work, there are some key differences. First, as mentioned above,
we mainly focus on codes that make calls to user specified kernels.
As a result, our compiler does not try to identify the granularity
of parallelism. This is decided by the user who implements the
kernels. Second, unlike the work currently done within the poly-
hedral model, we do not use the dependence abstractions to drive
code transformations, but rather export the symbolic notation that
will enable our run-time to make scheduling and message exchange
decisions. Finaly, Baskaran et. al [4] performed compiler assisted
dynamic scheduling using similar compiler analysis and target ap-
plications as we do in this work. The main difference is that in their
approach the compiler generates code that scans and enumerates
all vertices of the DAG at the beginning of the run-time execution.
This adds overhead that grows with the problem size and impedes
distributed execution, or at least creates a centralized bottleneck.
In our approach, the compiler generates symbolic, algebraic ex-
pressions to describe the dependence and control edges between
tasks. These expressions can be solved at run-time by each task
instance independently, without any regard to the location of the
given instance in the DAG and in O(1) time. This enables dis-
tributed execution that is not impeded by a centralized entity, or
problem dependent serial overheads. This fact also differentiates
our approach from alternative approaches [25, 29, 32] that rely on
pseudo-execution of the serial loops at run-time to dynamically dis-
cover dependencies between kernels.

7. Conclusion
In this paper we presented the compiler front end of the xyz system,
and discussed how it is integrated into the system’s toolchain. We
outlined JDF, the internal problem-size independent representation
of task systems, which is generated by the compiler and used by the
run-time to make all task scheduling and communication decisions.
We analyzed how symbolic data dependence analysis is performed
on input serial codes consisting of imperfectly nested, affine loops
and if statements and how Relations produced using the Omega test
can be processed to produce a minimal set of edges corresponding
to data exchanges and synchronizations.

Finally, we presented experimental results that confirm that an-
notated serial codes processed by our system can achieve scalabil-
ity and reach comparable performance, or outperform highly opti-
mized, state of the art, hand tuned, distributed linear algebra codes,
such as Scalapack, libSCI and HPL. By preserving high perfor-
mance on hardware architectures with distinct network and pro-
cessors characteristics, our system demonstrated that performance
portability is achievable under some constraints.
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