
SELF-HEALING NETWORK
FOR SCALABLE FAULT TOLERANT
RUNTIME ENVIRONMENTS ∗

Thara Angskun1, Graham Fagg1, George Bosilca1,
Jelena Pješivac–Grbović1, and Jack Dongarra1,2,3

1University of Tennessee, 2Oak Ridge National Laboratory, 3University of Manchester
{angskun, fagg, bosilca, pjesa, dongarra}@cs.utk.edu

Abstract Scalable and fault tolerant runtime environments are needed to support
and adapt to the underlying libraries and hardware which require a high
degree of scalability in dynamic large-scale environments.

This paper presents a self-healing network (SHN) for supporting scal-
able and fault-tolerant runtime environments. The SHN is designed to
support transmission of messages across multiple nodes while also pro-
tecting against recursive node and process failures. It will automatically
recover itself after a failure occurs. SHN is implemented on top of a scal-
able fault-tolerant protocol (SFTP). The experimental results show that
both the latest multicast and broadcast routing algorithms used in SHN
are faster than the original SFTP routing algorithms.

Keywords: Fault tolerance, Routing, Runtime Environment, Scalability, Self-healing.

1. Introduction
Recently, several of high performance computing platforms have been

installed with more than 10,000 CPUs, such as Blue-Gene/L at LLNL,
BGW at IBM and Columbia at NASA [6]. However, as the number of
components increases, so does the probability of failure. To satisfy the
requirements of such a dynamic environment (where the available num-
ber of resources is fluctuating), a scalable and fault-tolerance framework
is needed. Many large-scale applications are implemented on top of

∗This material is based upon work supported by “Los Alamos Computer Science Institute
(LACSI)”, funded by Rice University Subcontract No. R7B127 under Regents of the Univer-
sity Subcontract No. 12783-001-05 49 and “Open MPI Derived Data Type Engine Enhance
and Optimization”, funded by the Regents of the University of California (LANL) Subcon-
tract No. 13877-001-05 under DoE/NNSA Prime Contract No. W-7405-ENG-36

74 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

message passing systems for which the de-facto standard is the Message
Passing Interface (MPI) [11]. MPI implementations require support of
parallel runtime environments, which are extensions of the operating
system services, and provide necessary functionalities (such as naming
resolution services) for both the message passing libraries and applica-
tions. However, currently available parallel runtime environments are
either not scalable or inefficient in dynamic environments. The lack
of scalable fault-tolerance parallel runtime environments motivates us to
design and implement such a system. A self-healing network (SHN) that
can be used as a basis for constructing a higher level fault-tolerant par-
allel runtime environment is described in this paper. SHN was designed
to support transferring messages across multiple nodes efficiently, while
protecting against recursive node or process failures. It was built on top
of a scalable and fault-tolerant protocol (SFTP) [1] and automatically
recovered itself after a failure occurs.

The structure of this paper is as follows. The next section discusses
previous and related work. Section 3 introduces the self-healing network
and its recovery algorithm, while the section 4 presents the routing al-
gorithm along with some experimental results, followed by conclusions
and future work in the section 5.

2. Previous and Related Work
Although there are several existing parallel runtime environments for

different types of systems, they do not meet some of the major re-
quirements for MPI implementations: scalability, portability and per-
formance. Typically, distributed OS and single system image systems
are not portable while the nature of Grid middle-wares has performance
problems.

The MPICH implementation [9] uses a parallel runtime environment
called Multi-Purposed Daemon (MPD) [4] to providing scalability and
fault-tolerance through a ring topology for some operations and a tree
topology for others. Runtime environments of other MPI implementa-
tions, such as Harness [2] of FT-MPI [7], Open RTE [5] of Open MPI [8]
and LAM of LAM/MPI [3], do not currently provide both scalable and
fault tolerance solutions for their internal communications.

The scalability and fault-tolerance issues have been addressed in sev-
eral networking areas. However, those approaches could not be used
or they are not efficient in the parallel runtime environments. Struc-
tured peer-to-peer networking based on distributed hash tables such as
CAN [12], Chord [15], Pastry [14] and Tapestry [16] was designed for
resource discovery. They are only optimized for unicast messages. Tech-

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 75

niques used in sensor or large scale ad-hoc networking based on gossiping
(or the epidemic algorithm) [10] [13] mainly focus on information aggre-
gation.

The scalable and fault-tolerant protocol (SFTP) [1] was introduced
to support parallel runtime environments. The protocol is based on a
k-ary sibling tree. The k-ary sibling tree topology is a k-ary tree, where
k is number of fan-out (k ≥ 2), and the nodes on the same level (same
depth on the tree) are linked together using a ring topology. The tree is
primarily designed to allow scalability for broadcast and multicast op-
erations, while the ring is used to provide a well understood secondary
path for transmission when the tree is damaged during failure conditions.
The protocol could be used to build a self-healing network which auto-
matically recovers itself to overcome the orphan situation, the situation
where nodes are unreachable because the tree becomes a bisection.

3. Self-Healing Network (SHN)

3.1 Overview
Although the self-healing network (SHN) is designed to support generic

runtime environments of MPI implementations, the current work is in a
progress to integrate it in a fault-tolerance implementation of message
passing interface called FT-MPI as well as in the modular MPI imple-
mentation called Open MPI. The network is designed to support various
operations needed by scalable and fault-tolerant MPI runtime environ-
ments. The example of those operations and the details of how SHN
could be used for the operations are as follows.

Distributed Directory Service Directory service is a storage which
maintains information used during running an MPI job such as contact
information of each process, coordinator of recovery algorithm in FT-
MPI etc. The SHN provides a possibility to use the network as a dis-
tributed directory service by mapping those information into the logical
node ID. Scalable and fault-tolerant information management (update,
query) could be done with unicast messages of SFTP routing (similar to
resource discovery in the structured peer-to-peer networking).

Standard I/O Redirection Although MPI standard did not de-
fine how an input and an output could be treated, most of the MPI
implementation redirect the standard output and the standard error to
the user terminal (if not run under the batch scheduling). This opera-
tion could be done using the k-ary tree as a main route to forward the
standard output/error and using the ring in case of failures.

Monitoring Framework A monitoring framework provides infor-
mation such as processes, nodes, messages for tool and application de-

76 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

1

2 3

5 6 7

8 9 10

4

(a)

1

2 3

6 7

8 9 10

4 5

(b)

1

2 3

4 5 6 7

8 9
High possibility of orphan

(c)

Figure 1. (a) SHN after recovery [4 dies] (B) SHN after recovery [4,5 die]
(c) high possibility of orphan

velopment. Examples of those tools are parallel debuggers, runtime fault
detectors, runtime verification and load balancers etc. To build a scal-
able and fault-tolerant monitoring framework, all of the communication
underneath the framework can use multiple types of message transmis-
sions (unicast, multicast and broadcast) provided by the SHN.

In general, the SHN provides a capability to send unicast, multicast
and broadcast messages from any nodes while additionally protecting
against node and process failures, from effecting message delivery.

3.2 SHN Recovery
There are some situations where nodes do not die but become un-

reachable due to network bisectioning. This situation can be prevented
by self-recovery, when a node detects that its neighbor dies, it will send
a unicast message to establish the connection with the next neighbor in
the same direction of the dead node. If the next neighbor also dies, it
will continue trying to establish the connection with the next node and
so on until success or the next node in that direction is the node itself. If
two nodes try to establish a connection at the same time, the connection
which is initiated by higher ID will be dropped. Figure 1(a) illustrates
an example where logical node 4 dies. All neighbors of node 4 will begin
to recover the logical topology by reestablishing their connections in the
appropriate direction. If node 5 also dies, the same recovery procedure
will occur as shown in figure 1(b). However, there is an exception where
the number of node in the last level (highest depth) of the tree is less
than or equal to k, where k is fanout as shown in figure 1(c). In this case,
the grandparent of the last level needs to know the contact information
of the last level, because if the parent of the last level dies, those nodes
in the last level will become orphans before the self-recover procedure
can occur.

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 77

1

2 3

4 5 6 7

8 9 10

7,8,9

78 9

(a)

1

2 3

5 6 7

8 9 10

4

7

78,9

8,9

8

9

(b)

1

2 3

4 5 6 7

8 9 10

S1

S2 S3

S2

S3

S3

S4 S5

S4
S# = Step#

(c)

1

2 3

4 5 6 7

8 9 10

S1

S4 S3

S2

S3

S4

S3

S# = Step#

S2

S5

(d)

Figure 2. (a) mcast (b) mcast-failure (c) bcast-updown (d) bcast-spanning tree

4. Routing Algorithm in SHN
The SHN routing algorithm is based on the SFTP routing algorithm [1].

The initialize system protocol, unicast message protocol and broadcast
from a specific root protocol are the same as the SFTP protocol. The
new multicast and broadcast routing algorithms from any nodes in the
network, which are an extension of the SFTP routing algorithm have
been added. They can be used both before (including some node failures)
and after recovery of the logical topology. The SHN routing algorithms
can be described as follows.

Multicast messages in SHN
The multicast from any nodes in the SHN is a capability to send

messages to several destinations (1 to m, where m < n). Unlike the
IP multicast, multicast group management (group creation and termi-
nation) is not required. The multicast group members are embedded
in the message header. Multicast messages in SFTP are delivered by a
sender to the first destination in the destination lists. Then, the first
destination will forward the message to the next destination and so on.
If an intermediate node is one of the nodes in the destination list, it will
remove itself from the list. The order of nodes in the destination list is
a descending order sorted by number of hop from a sender to those des-
tinations (i.e. the largest number of hop first). This routing algorithm
works fine if the destination nodes are consecutive or they are located
in the same area of the tree. The new multicast routing algorithm in
SHN is an enhancement of the SFTP multicast routing algorithm. The
multicast message can be splitted at an intermediate node, if the short-
est paths to those destination nodes are not in the same direction from
the intermediate node point of view. However, if there are more than
one shortest path to a destination, the intermediate node will choose the
next hop which can go along with other destinations. When a node re-
ceives a multicast message, it will first determine the header and choose
the next hop for each multicast destination according to the shortest
path to them. The node will recreate the header corresponding to the

78 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

direction of each next hop. Messages that contain the largest number
of hops will be forwarded first to increase network throughput by utilize
multiple links simultaneously. Figure 2(a) shows an example of node 2
sending a multicast message to nodes 7, 8 and 9 with the new routing
algorithm. In case of failure, if a node detects that the next hop for
the multicast messages has died, it automatically reroutes the multicast
messages using an alternate next hop as shown in Figure 2(b). Fig-
ure 3(a) depicts that the new multicast routing algorithm is faster than
the original algorithm used in the SFTP. The experiment results were
obtained from an average number of steps for sending multicast mes-
sages to 2 destinations with a dead node (fanout=2). The 2 destination
nodes (D) were obtained from combinations of all possible nodes (N) i.e.(N
D

)
, where a source node 6∈ D and the dead node was randomly selected.

Broadcast messages in SHN
Broadcast from any node routing protocol is an enhancement of broad-

cast routing in SFTP. In SFTP, the broadcast is done by sending mes-
sages to a root of the tree and it will forward the messages to the rest of
the tree. Only the tree portion of SFTP is used to prevent a broadcast
storm and duplicate messages. The ring is used only in the case of fail-
ure. The first obvious improvement of this routing protocol is to allow
a node between source and a root of the tree to send messages to their
children after they send the messages to their parent (called up-down) as
shown in 2(c) with node 4 as the root. The second improvement is using
a logical spanning tree from the source as shown in 2(d). When each
node receives broadcast messages, it will calculate the next hops using
spanning trees from the source node. There are two steps involving the
next hop calculation. The first step is to create a spanning tree using
a source node as the root node of the tree. The spanning tree creation
algorithm is based on a modified version of the breath first search with
a graph coloring algorithm. The second step is to calculate the next
hop. The next hop is chosen from children of each node according to
the spanning tree which has the highest cost among its children. The
cost is computed from the number of steps used to send a message to all
nodes in the children’s subtrees. In case of failure, a broadcast message
is encapsulated into a multicast message, and then the message is sent
from parent of the failure node to its children in the spanning tree. Fig-
ure 3(b) indicates that the up-down algorithm is a marginally faster than
the original SFTP, while the new spanning tree broadcast routing algo-
rithm is significant faster than the SFTP broadcast routing algorithm
due to increased parallelism. The experimental results were obtained
from an average number of steps for sending a broadcast message from
every node (fanout=2).

Self-Healing Network for Scalable Fault Tolerant Runtime Environments 79

 2

 4

 6

 8

 10

 12

 14

 16

 18

 16 32 64 128 256

A
ve

ra
ge

 N
um

be
rs

 o
f

St
ep

s

Numbers of Nodes

Multicast Messages (to 2 destinations)

Original SFTP routing
New SHN routing

(a)

 5

 10

 15

 20

 25

 30

 35

 40

 16 32 64 128 256 512 1024 2048 4096 8192

A
ve

ra
ge

 N
um

be
rs

 o
f

St
ep

s

Numbers of Nodes

Broadcast Messages

SFTP
Up-Down

Spanning Tree

(b)

Figure 3. A comparison of routing protocols (a) multicast (b) broadcast

5. Conclusions and Future Work
The self-healing network (SHN) for parallel runtime environments was

designed and developed to support runtime environments of MPI imple-
mentations. The SHN is implemented on top of a scalable fault-tolerant
protocol (SFTP). Simulated performance results indicate that the new
routing algorithms of SHN are faster than the original SFTP routing
algorithms.

There are several improvements that we plan for the near future. Mak-
ing the protocol aware of the underlying network topology (in both the
LAN and WAN environments) will greatly improve the overall perfor-
mance for both the broadcast and multicast message distribution. This
is equivalent to adding a function cost on each possible path and inte-
grating this function cost to the computation of the shortest path. In
the longer term, we hope that the SHN will become the basic message
distribution of the runtime environment within the FT-MPI and Open
MPI runtime systems.

References

[1] T. Angskun, G. E. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra.
Scalable fault tolerant protocol for parallel runtime environments. In Proceedings
of the 13th European PVM/MPI User’s Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Bonn, Germany,
September 2006. Springer-Verlag.

[2] M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi,
K. Moore, T. Moore, P. Papadopoulous, S. L. Scott, and V. Sunderam. HAR-
NESS: A next generation distributed virtual machine. Future Generation Com-
puter Systems, 15(5–6):571–582, 1999.

80 Angskun, Fagg, Bosilca, Pješivac–Grbovic̀, Dongarra

[3] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for
MPI. In Proceedings Supercomputing Symposium, pages 379–386, 1994.

[4] R. Butler, W. Gropp, and E. L. Lusk. A scalable process-management environ-
ment for parallel program. In Proceedings of the 7th European PVM/MPI User’s
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 168–175, London, UK, 2000. Springer-Verlag.

[5] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G. E.
Fagg. The open run-time environment (openrte): A transparent multi-cluster
environment for high-performance computing. In Proceedings 12th European
PVM/MPI User’s Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, Sorrento(Naples), Italy, September 2005.
Springer-Verlag.

[6] J. J. Dongarra, H. Meuer, and E. Strohmaier. TOP500 supercomputer sites.
Supercomputer, 13(1):89–120, 1997.

[7] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic,
K. London, and J. Dongarra. Extending the mpi specification for process fault
tolerance on high performance computing systems. In Proceedings of the In-
ternational Supercomputer Conference (ICS) 2004, Heidelberg, Germany, June
2006. Primeur.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a
next generation MPI implementation. In Proceedings 11th European PVM/MPI
User’s Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 97–104, Budapest, Hungary, September 2004.
Springer-Verlag.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high - performance, portable
implementation of MPI message passing interface standard. Parallel Computing,
22(6):789–828, 1996.

[10] I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation
in large process groups. In Proceedings of The International Conference on
Dependable Systems and Networks (DSN), pages 433–442, 2001.

[11] MPI Forum. MPI: A message-passing interface standard. Technical report,
1994.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

[13] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection
service. Technical Report TR98-1687, 28, 1998.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–350, 2001.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, April 2001.

