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Abstract

With increasing numbers of processors on todays ma-
chines, the probability for node or link failures is also in-
creasing. Therefore, application level fault-tolerance is be-
comin more of an important issue for both end-users and the
institutions running the machines. This paper presents the
semantics of a fault tolerant version of the Message Passing
Interface, the de-facto standard for communication in sci-
entific applications, which gives applications the possibility
to recover from a node or link error and continue execution
in a well defined way. The architecture of FT-MPI, an im-
plementation of MPI using the semantics presented above
as well as benchmark results with various applications are
presented. An example of a fault-tolerant parallel equation
solver, performance results as well as the time for recover-
ing from a process failure are furthermore detailed.

1 Introduction

Application developers and end-users of high perfor-
mance computing systems have today access to larger ma-
chines and more processors than ever before. Systems like
the Earth Simulator [1], the ASCI-Q machines [2] or even
more extremely the IBM Blue Gene machine [3] consist of
thousands of processors. Additionally, not only the indi-
vidual machines are getting bigger, but with the recently
increased network capacities, users have access to higher
number of machines and computing resources. Concur-
rently using several computing resources, often referred to
as Grid- or Metacomputing, further increases the number
of processors used in each single job as well as the overall
number of jobs, which a user can launch.

With increasing number of processors however, the prob-
ability, that an application is facing a node or link failure is
also increasing. While on earlier massively parallel process-

ing systems (MPPs), a crashing node often was identical to a
system crash, current systems are more robust. Usually, the
application running on this node has to abort, however, the
system in general is not effected by a processor failure. In
Grid environments, a system may additionally become un-
available for a certain time due to network problems, lead-
ing to a similar problem from the application point of view
like a crashing node on a single system.

The Message Passing Interface (MPI) [16, 17] is the de-
facto standard for the communication in scientific applica-
tions. However, MPI in its current specification gives the
user no possibility to handle the situation mentioned above,
where one or more processors are becoming unavailable
during runtime. Currently, MPI gives the user the choice
between two possibilities of how to handle a failure. The
first possibility is the default mode, which is to immedi-
ately abort the application. The second possibility is to
hand the control back to the user application (if possible)
without guaranteeing, that any further communication can
occur. The latter mode mainly has the purpose of giving the
application the possibility to close all files properly, write
maybe a per-process based checkpoint etc., before exiting
the application.

This situation is however unsatisfactory. Not only are
large numbers of CPU hours wasted and lost, but also in the
case of very long running or security relevant applications
this might not be an option at all. The importance of this
problem can also be seen by the numerous efforts in this
area, e.g. FT-MPI [9], MPI/FT [5], MPI-FT [15], MPICH-
V [7], LA-MPI [13].

In this paper we would like to present the concept and
the current status of FT-MPI, a fault-tolerant version of MPI
developed at the University of Tennessee, Knoxville. Fur-
thermore, we would like to give a detailed presentation of
how to write a fault tolerant applications, using a master-
slave approach as well as a parallel equation solver as ex-
amples. The structure of the paper is as follows. In sec-



tion 2 we present the semantics, concept and architecture
of FT-MPI. Section 3 focuses on the performance compari-
son of FT-MPI with other MPI libraries for point-to-point
benchmarks, while section 4 does a similar performance
comparison using the Parallel Spectral Transform Shallow
Water Model (PSTSWM) benchmarks. In section 5 we de-
scribe various techniques for developing fault tolerant appli-
cations. Furthermore, the concept of a fault tolerant equa-
tion solver as well as execution and recovery times for vari-
ous problem sizes are shown. Section 6 finally presents the
current status of FT-MPI as well as the ongoing work in this
area.

1.1 Related Work

The methods supported by various project can be split
into two classes: those supporting check-point/roll- back
technologies, and those using replication techniques. The
first method attempted to make MPI applications fault tol-
erant was through the use of check-pointing and roll back.
Co-Check MPI [18] from the Technical University of Mu-
nich being the first MP1 implementation built that used the
Condor library for check-pointing an entire MPI applica-
tion. Another system that also uses check-pointing but at
a much lower level is StarFish MPI [4]. Unlike Co-Check
MPI, Starfish MPI uses its own distributed system to pro-
vide built in check-pointing.

MPICH-V [7] from Universitee de Paris Sud, France is
a mix of uncoordinated check-pointing and distributed mes-
sage logging. The message logging is pessimistic thus they
guarantee that a consistent state can be reached from any lo-
cal set of process checkpoints at the cost of increased mes-
sage logging. MPICH- V uses multiple message storage
(observers) known as Channel Memories (CM) to provide
message logging. Process level check-pointing is handled
by multiple servers known as Checkpoint Servers (CS). The
distributed nature of the check pointing and message log-
ging allows the system to scale, depending on the number
of spare nodes available to act as CM and CS servers.

LA-MPI [13] is a fault-tolerant version of MPI from the
Los Alamos National Laboratory. Its main target is not to
handle process failures, but to provide reliable message de-
livery between processes in presence of bus, networking
cards and wire-transmission errors. To achieve this goal,
the communication layer is split into two parts, a Memory
and Message Management Layer, and a Send and Receive
Layer. The first one is responsible for resubmitting lost
packets or choosing a different route, in case the Send and
Receive Layer reports an error.

MPI/FT [5] provides fault-tolerance by introducing a
central co-ordinator and/or replicating MPI processes. Us-
ing these techniques, the library can detect erroneous mes-
sages by introducing a voting algorithm among the replicas

and can survive process-failures. The drawback however is
increased resource requirements and partially performance
degradation.

The project closest to FT-MPI known to the author is
the Implicit Fault Tolerance MPI project MPI-FT [15] by
Paraskevas Evripidou of Cyprus University. This project
supports several master-slave models where all communi-
cators are built from grids that contain ’spare’ processes.
These spare processes are utilized when there is a failure. To
avoid loss of message data between the master and slaves,
all messages are copied to an observer process, which can
reproduce lost messages in the event of any failures. This
system appears only to support SPMD style computation
and has a high overhead for every message and considerable
memory needs for the observer process for long running ap-
plications.

FT-MPI has much lower overheads compared to the
above check-pointing and message replication systems, and
thus much higher potential performance. These benefits do
however have consequences. An application using FT-MPI
has to be designed to take advantage of its fault tolerant fea-
tures as shown in the next section, although this extra work
can be trivial depending on the structure of the application.
If an application needs a high level of fault tolerance where
node loss would equal data loss then the application has to
be designed to perform some level of user directed check-
pointing. FT-MPI does allow for atomic communications
much like Starfish, but unlike Starfish, the level of correct-
ness can be varied on for individual communicators. This
provides users the ability to fine tune for coherency or per-
formance as system and application conditions dictate. An
additional advantage of FT-MPI over many systems is that
check-pointing can be performed at the user level and the
entire application does not need to be stopped and resched-
uled as with process level check-pointing.

2 Harness and FT-MPI

This section presents the extended semantics used by FT-
MPI, the architecture of the library as well as some details
about the implementation. Furthermore, we present tools
which are supporting the application developer when using
FT-MPI are presented.

2.1 FT-MPI Semantics

Current semantics of MPI indicate that a failure of a MPI
process or communication causes all communicators asso-
ciated with them to become invalid. As the standard pro-
vides no method to reinstate them, we are left with the prob-
lem that this causes MPI_COMM_WORLD itself to become
invalid and thus the entire MPI application will grid to a
halt.



FT-MPI extends the MPI communicator states from
valid, invalid to a range FT_OK, FT_DETECTED,
FT_RECOVER, FT_RECOVERED, FT_FAILED. In
essence this becomes OK, PROBLEM, FAILED, with the
other states mainly of interest to the internal fault recovery
algorithm of FT_MPI. Processes also have typical states
of OK, FAILED which FT-MPI replaces with OK, Un-
available, Joining, Failed. The Unavailable state includes
unknown, unreachable or ”we have not voted to remove it
yet” states. A communicator changes its state when either
an MPI process changes its state, or a communication
within that communicator fails for some reason.

On detecting a failure within a communicator, that com-
municator is marked as having a probable error. Immedi-
ately as this occurs the underlying system sends a state up-
date to all other processes involved in that communicator.
If the error was a communication error, not all communica-
tors are forced to be updated, if it was a process exit then all
communicators that include this process are changed. How
the system behaves depends on the communicator failure
mode chosen by the application. The mode has two parts,
one for the communication behavior and one for the how
the communicator reforms if at all..

211 Communicator and communication handling

Once a communicator has an error state it can only
recover by rebuilding it, using a modified version of
MPI_Comm_dup. Using this function the new communi-
cator will follow the following semantics depending on its
failure mode:

e SHRINK: The communicator is reduced so that the
data structure is contiguous. The ranks of the pro-
cesses are changed, forcing the application to recall
MPI_COMM_RANK.

e BLANK: This is the same as SHRINK, except that
the communicator can now contain gaps to be filled in
later. Communicating with a gap will cause an invalid
rank error. Note also that calling MPI_COMM_SIZE
will return the extent of the communicator, not the
number of valid processes within it.

e REBUILD: Most complex mode that forces the cre-
ation of new processes to fill any gaps until the size is
the same as the extent. The new processes can either
be places in to the empty ranks, or the communicator
can be shrank and the remaining processes filled at the
end. This is used for applications that require a certain
size to execute as in power of two FFT solvers.

e ABORT: Is a mode which affects the application im-
mediately an error is detected and forces a graceful
abort. The user is unable to trap this. If the application

need to avoid this they must set all communicators to
one of the above communicator modes.

Communications within the communicator are con-
trolled by a message mode for the communicator which can
be either of:

1. NOP: No operations on error. l.e. no user level mes-
sage operations are allowed and all simply return an
error code. This is used to allow an application to re-
turn from any point in the code to a state where it can
take appropriate action as soon as possible.

2. CONT: All communication that is NOT to the af-
fected/failed node can continue as normal. Attempts
to communicate with a failed node will return errors
until the communicator state is reset.

2.1.2 Point to Point versus Collective correctness

Although collective operations pertain to point to point op-
erations in most cases, extra care has been taken in imple-
menting the collective operations so that if an error occurs
during an operation, the result of the operation will still be
the same as if there had been no error, or else the operation
is aborted.

Broadcast, gather and all gather demonstrate this per-
fectly. In Broadcast even if there is a failure of a receiv-
ing node, the receiving nodes still receive the same data, i.e.
the same end result for the surviving nodes. Gather and all-
gather are different in that the result depends on if the prob-
lematic nodes sent data to the gatherer/root or not. In the
case of gather, the root might or might not have gaps in the
result. For the all2all operation, which typically uses a ring
algorithm it is possible that some nodes may have complete
information and others incomplete. Thus for operations that
require multiple node input as in gather/reduce type opera-
tions any failure causes all nodes to return an error code,
rather than possibly invalid data. Currently an addition flag
controls how strict the above rule is enforced by utilizing an
extra barrier call at the end of the collective call if required.

2.1.3 Application view

The library provides the application a possibility to recover
from an error, restructure itself and continue with the execu-
tion. However, the application has to take some steps itself
to handle an error properly. Two possibilities are offered by
FT-MPI:

e The user discovers any errors from the return code
of any MPI call, with a new fault indicated by
MPI_ERR_OTHER. Details as to the nature and
specifics of an error are available though the cached
attributes interface in MPI.



e The user can register a new error-handler at the be-
ginning of the simulation, which is than called by the
MPI-library in case an error occurs. Using this mech-
anism, the user hardly needs to change any code.

The error-recovery function of the application has to per-
form two phases: first, all non-local information needs to be
reestablished (e.g. all communicators derived from another
communicator, which has an erroneous processes needs to
be re-created). Second, the application needs to resume
from a well defined state in the application.

2.2 Architecture of FT-MPI and HARNESS

FT-MPI was built from the ground up as an independent
MPI implementation as part of the Department of Energy
Heterogeneous Adaptable Reconfigurable Networked SyS-
tems (HARNESS) project [6]. One of the aims of HAR-
NESS was to provide a framework for distributed comput-
ing much like PVM [12] previously. A major difference be-
tween PVM and HARNESS is the formers monolithic struc-
ture verses the latter’s dynamic plug-in modularity. To pro-
vide users of HARNESS instant application support, both
a PVM and an MPI plug-in were envisaged. As the HAR-
NESS system itself was both dynamic and fault tolerant (no
single points of failure), then it became possible to build a
MPI plug-in with added capabilities such as dynamic pro-
cess management and fault tolerance.

Figure 1 illustrates the overall structure of a user level
application running under the FT-MPI plug-in, and HAR-
NESS system. The following subsections briefly outline
the design of FT-MPI and its interaction with various HAR-
NESS system components.

2.3 FT-MPI architecture

As shown in figure 1 the FT-MPI system itself is built
in a layering fashion. The upper most layer deals with
the handling of the MPI-1.2 specification APl and MPI ob-
jects. The next layer deals with data conversion/marshaling
(if needed), attribute and record storage, and various lists.
Details of the highly tuned buffer management and derived
data type handling can be found in [9]. FT-MPI also im-
plements a number of tuned MPI collective routines, which
are further discussed in [19]. The lowest layer consists of
the FT-MPI runtime library (FTRTL), which is responsible
for interacting with the OS via the HARNESS user level li-
braries (HLIB). The FTRTL layer provides the facilities that
allow for dynamic process management, system level nam-
ing of MPI tasks, message handling during the entire fault
to recovery cycle. The HLIB layer interacts with HAR-
NESS system during both startup, fault to recovery cycle,
and shutdown phases of execution. The HLIB also provides

the interfaces to the dynamic process management and redi-
rection of application 10. The SNIPE [10] library provides
the inter-node communication of MPI message headers and
data. To simplify the design of the FTRTL, SNIPE only de-
livers whole messages atomically to the upper layers. Dur-
ing a recovery from failure, SNIPE uses in channel system
flow control messages to indicate the current state of mes-
sage handling (such as accepting connections, flushing mes-
sages or in-recovery).
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Figure 1. Architecture of HARNESS and FT-
MPI

It is important to note that the FTRTL shown in figure
1 gets notification of failures from both the point to point
communications libraries as well as from the HARNESS
layer. In the case of communication errors, the notify is usu-
ally started by the communication library detecting a point
to point message not being delivered to a failed party rather
than the failed parties OS layer detecting the failure. The
FTRTL is responsible for notifying all tasks of errors as they
occur by injecting notify messages into the send message
queues ahead of user level messages.



2.3.1 OS support and the HARNESS G_HCORE

The General HARNESS CORE (G_HCORE) is a dae-
mon that provides a very lightweight infrastructure from
which to build distributed systems. The capabilities of the
G_HCORE are exploited via remote procedure calls (RPCs)
as provided by the user level library (HLIB). The core pro-
vides a number of very simple services that can be dynami-
cally added to [1]. The simplest service is the ability to load
additional code in the form of a dynamic library (shared ob-
ject) known as a plug-in, and make this available to either a
remote process or directly to the core itself. Once the code
is loaded it can be invoked using a number of different tech-
niques such as:

e Direct invocation: the core calls the code as a function,
or a program uses the core as a runtime library to load
the function, which it then calls directly itself.

e Indirect invocation: the core loads the function and
then handles requests to the function on behalf of the
calling program, or, it sets the function up as a separate
service and advertises how to access the function.

An application built for HARNESS might not interact
with the host OS directly, but could instead install plug-ins
that provide the required functionality. The handling of dif-
ferent OS capabilities would then be left to the plug-in de-
velopers, as is the case with FT-MPI.

2.3.2 G_HCORE services for FT-MPI

Services required by FT-MPI break down into two main cat-
egories:

e Spawn and Notify service. This service is provided by
a plug-in which allows remote processes to be initiated
and then monitored. The service notifies other inter-
ested processes when a failure or exit of the invoked
process occurs. The notify message is either sent di-
rectly to all other MPI tasks or via the FT-MPI Notifier
daemon which can provide additional diagnostic infor-
mation if required.

e Naming services. These allocate unique identifiers in
the distributed environment for tasks, daemons and
services (which are uniquely addressable). The name
service also provides temporary state storage for use
during MPI application startup and recovery, via a
comprehensive record facility.

Currently FT-MPI can be executed in one of two modes.
As the plug-in mode described above when executing as
part of a HARNESS distributed virtual machine, or in a
slightly lighter weight configuration with the spawn-notify
service as a standalone daemon. This latter configuration

loses the benefits of any other available HARNESS plug-
ins, but is better suited for clusters that only execute MPI
jobs. No matter which configuration is used, one name-
service daemon, plus one either of the GHCORE daemon
or one startup daemon per node is needed for execution.

2.4 FT-MPI system level recovery algorithm and
costs

The recovery method employed by FT-MPI is based on
the construction of a consistent global state at a dynami-
cally allocated leader node. The global state is the bases
for the MPI_COMM_WORLD communicator membership
from which all other communicators are derived. After the
state is constructed at this node it is distributed to all other
nodes (peons) via an atomic broadcast operation based on a
multi-phase commit algorithm.

The recovery is designed to handle multiple recursive er-
rors, including the failure of the leader node responsible for
constructing the global state. Under this condition an elec-
tion state is entered where every node votes for themselves,
and the first voter wins the election via an atomic swap op-
eration on a leader record held by the HARNESS name ser-
vice. Any other faults causes the leader node to restart the
construction of the global state from the beginning. This
process continues until the state is either completely lost
(when all nodes already holding the previous verified state
fail) or when everyone agrees with the atomic broadcast of
the pending global state.

The cost of performing a system level recovery is as fol-
lows:

e synchronizing state and detecting faults. O(2N) mes-
sages.

e respawning failed nodes and rechecking state and
faults. O(2N) messages.

e broadcasting the new pending global state, verifying
reception. O(3N) messages.

e broadcasting the acceptance of global state. O(N) mes-
sages.

The total cost of recovery from detection to acceptance
of a new global state is O(8N) messages. The results de-
tailed later in section 5.2 currently use a linear topology
for these messages leading to O(8N) cost, which is not
acceptable for larger systems. Currently under test is a
mixed fault tolerant tree and ring topology which together
with the combining of several fault detection and broad-
cast stages will reduce the recovery cost to approximately
O(3N)+0(3logzN).



3 Point-to-point benchmark results

In this section we would like to compare the point-to-
point performance of FT-MPI to the performance achieved
with the most widely used, non fault-tolerant MPI imple-
mentations. These are MPICH [14] using version 1.2.5 as
well as the new beta-release of version 2, and LAM [8] ver-
sion 7. All tests were performed on a PC-cluster consisting
of 16 nodes, each having two 2.4 GHz Pentium IV proces-
sors. A Gigabit Ethernet network connects the nodes.

For determining the communication latency and the
achievable bandwidth, we used the latency test suite [11].
The zero-byte latency measured in this test revealed LAM7
to have the best short-message performance, achieving a la-
tency of 41.2 us, followed by MPICH 2 with 43.6 us. FT-
MPI had in this test a latency of 44.5 us, while MPICH 1.2.5
followed with 45.5 ps.

Figure 2 shows the achieved bandwidth with all commu-
nication libraries for large messages. FT-MPI achieves in
this test the best bandwidth with a maximum of 66.5 MB/s.
LAM7 and MPICH 2 have comparable results with 65.5
MBY/s and 64.6 MB/s respectively. The bandwidth achieved
with MPICH 1.2.5 is slightly worse, having a maximum of
59.6 MBY/s.
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Figure 2. Achieved bandwidth with FT-MPI,
LAM 7, MPICH 1.2.5 and MPICH 2

4 Performance results with the Shallow Wa-
ter Code benchmark

While FT-MPI extends the syntax of the MPI specifi-
cation, we expect that many of the end-users will use FT-
MPI in the conventional, non fault-tolerant way. There-
fore, it is important, that FT-MPI achieves a comparable

result with all current state-of-the-art MPI libraries for reg-
ular applications. Therefore, we evaluate in this section the
performance of FT-MPI using the Parallel Spectral Trans-
form Shallow Water Model (PSTSWM) [20] benchmark,
and compare the results achieved to the results with MPICH
1.2.5 and MPICH 2. LAM 7 is in contrary to the previ-
ous section not included in this evaluation, since PSTSWM
makes use of some optional Fortran MPI-Datatypes, which
are not supported by LAM 7.

Included in the distribution of PSTSWM version 6.7.2
are several test-cases and test data. Presenting the results
achieved with all of these test-cases would exceed the scope
and the length of this paper, therefore we have picked three
test-cases, which we found representative from the problem
size and performance behavior. All tests were executed with
4 processes using 4 nodes on the same PC-cluster described
in the previous section.

Problem | FT-MPI | MPICH 1.2.5 \ MPICH 2
t42.117.240 | 93.6 sec 104.3 sec 93.9 sec
t85.117.24 | 84.6 sec 96.2 sec 84.5 sec
t170.13.12 | 63.7 sec 70.1 sec 64.0 sec

Table 1. Execution time of various problems
with FT-MPI, MPICH 1.2.5 and MPICH 2

Table 1 presents the results achieved for these three test-
cases. Generally speaking, FT-MPI and MPICH 2 are usu-
ally equally fast, although in most test cases, FT-MPI was
slightly faster then MPICH 2. MPICH 1.2.5 is significantly
slower than the other two MPI libraries for these test-cases.
These results indicate, that FT-MPI is achieving top-end
performance for non fault-tolerant applications and is there-
fore a real alternative to the other libraries.

5 Examples of fault tolerant applications

Hand in hand with the development of FT-MPI, we also
developed some example applications showing the usage
of the fault-tolerant features of the library. In this section,
we would like to present the relevant parts of fault-tolerant
master-slave applications as well as a fault-tolerant version
of a parallel equation solver. In both cases, we assume, that
the communicator mode used is REBUILD, which means
that faulty processes are re-spawned by FT-MPI.

5.1 A framework for a fault-tolerant master-slave
application

For many applications using a master-slave approach,
fault tolerance can be achieved easily, by adding a simple



state model in the master process. The basic idea is, that
when a worker process dies, the master redistributes the
work currently assigned to this process.

The first major question developing a fault tolerant ap-
plication is, how can a process determine, whether it is a
replacement for another, recently died process, or whether
it belongs to the initial set of processes. FT-MPI offers
two ways to determine this information. The first possi-
bility involves the checking of the return value of MPI_Init,
which is returning MPI_INIT_RESTARTED in case a pro-
cesses is a replacement for another processes. This method
is easy, it involves however an additional constant, which
is not part of the MPI-1.2 specification. The second pos-
sibility is, that the application introduces a static variable.
By comparing the value of this variable to the value on the
other processes, the application can detect, whether every-
body has been newly started (in which case all processes
will have the pre-initialized value), or whether a subset of
processes have a different value, since each processes mod-
ifies the value of this variable after the initial check. This
second approach is somewhat more complex, however, it is
completely portable and can also be used with any other non
fault-tolerant MPI library.

As mentioned in section 2.1.3, there are two methods,
how the application can detect an error: either the return
code of every MPI function is checked, or the application
registers right after MPI1_Init an error-handler to his working
communicator. The method how the recovery algorithm is
invoked, also has influence on the state model required on
both master and slave processes. In case the return code
is checked after each MPI function, the slave process does
not need any state model, since it can *insist’ on finishing a
communication step properly, e.g.:

while (1) {
rc = MPl_Recv ( .... );
if ( rc == MPI_ERR OTHER )
recover();
el se
br eak;
}

The master process has to maintain for each process its
current state and which part of the work has been assigned
to it. Each process can have one of the following states:

e AVAILABLE: this process is alive and no work is cur-
rently assigned to it

¢ WORKING: this process is alive and has some work
assigned to it

e FINISHED: all work has been distributed, and the
message indicating that everybody should exit has al-
ready been sent to this process

e FAULT: this process has died, its work will need to be
redistributed.

Under normal conditions, the state of each process is
changing from AVAILABLE to WORKING and back. In
case an error occurs, the status of the process is changed to
FAULT, until the process is re-spawned. In the case where
the user would use the communicator mode BLANK in-
stead of REBUILD, the state of the process would simply
not be reset by the master.

The recovery algorithm routine contains first the re-
instantiation of MPI_COMM_WORLD, which is done by
calling MPI_Comm_dup. Next, all processes are calling
the same sequence of collective operations for determining
how many processes have died and who has died. Since
the re-spawned processes are calling the same sequence af-
ter MPIL_Init, correct MPI semantics are conserved by hav-
ing all processes of MPI_COMM _WORLD participating in
these collective operations. Finally, the status of the recov-
ered process is set to AVAILABLE, while its previously as-
signed work is re-scheduled.

In case the user wants to avoid introducing an if-
statement after every MPI routine, the application can reg-
ister an error handler with its working communicator. The
error handler has to call the same sequence of routines as
mentioned in the previous paragraph. However, it has ad-
ditional effects on the code as well. As an example, the
master still has to know, whether the MPI1_Recv operation
from a certain process has succeeded or not (e.g. when col-
lecting results from each process), before calculating some
global results. Therefore, we introduced an additional state
on the master node indicating, whether the receive operation
has succeeded called RECEIVED. Thus, a worker processes
has now to change its state from AVAILABLE to WORK-
ING to RECEIVED before reaching AVAILABLE again.
Furthermore, the master has to ensure, that certain states
can just be reached from certain other changes. As an ex-
ample, a process can reach the state AVAILABLE from the
states RECEIVED and FAULT, while the state RECEIVED
can never be reached directly from the state AVAILABLE.
In our example, the mar k_* routines guarantee, that just
valid state transitions are executed. The pseudo-code for
the master using error handlers appear as shown below.



/* Register error handler */

if ( master ) {
MPI _Errhandl er _create(recover, &errh);
MPI _Errhandl er _set ( comm errh);

}

/* major naster work | oop */
do {
/* Distribute work */
for ( proc=1l; proc<maxproc; proc++)
if ( state[proc] == AVAILABLE ){
MPI _Send(wor ki d[ proc],....);
mar k_wor ki ng( proc);

}

/* Collect results */
for ( proc=1; proc<maxproc; proc++)
if ( state[proc] == WORKING ){
MPI _Recv(wor ki d[ proc], ....);
mar k_recei ved(proc);

}

/* Perform global calculation */
for ( proc=1l; proc<maxproc; proc++)
if ( state[proc] == RECEIVED ) {
wor kper f ormed += wor ki d[ proc];
mar k_avai | abl e(proc);

}

} while (all work is done);
5.2 A parallel, fault-tolerant CG-solver

In this section we would like to give an example, of how
fault tolerance can be achieved for a tightly coupled appli-
cation, which is not using the master-slave paradigm. As
an example, we implemented a parallel conjugate gradient
equation solver (PCG) in a fault tolerant manner. The par-
allel application has be extended by two major points:

e A process has been dedicated in the application to
serve as an in-memory checkpoint server. Every
200 iterations, all processes calculate using several
MPI_Reduce operations a checkpoint of each relevant
vector, which is than stored on the dedicated check-
point processes.

e In case one of the processes dies, the data of the re-
spawned process is recalculated using the local data on
all other processes and the checkpointed vector. The
matrix is not checkpointed in this application, since
it is constant and not changing. Therefore, the re-
spawned processes rereads the matrix from the original

input file.

The recovery algorithm makes use of the longjmp func-
tion of the C-standard. In case an MPI function returns
MPI_ERR_OTHER indicating that an error has occurred, all
processes jump to the recovery section in the code, perform
the necessary recovery operations and continue the compu-
tation from the last consistent state of the application. The
relevant section with respect to the recovery algorithm is
shown in the source code below.

/* Mark entry point for recovery */
j = setjnp ( env );

/* Execute recovery if necessary */
if ( state == RECOVER) {
MPI _Comm dup ( conm &newcomm ) ;
conm = newconm

/* do other operations */

recover _data ( ny_vector,.., &umiter );

/* reset state-variable */
state = OK;
}

/* major calculation |oop */
do {

rc = MPl_Send ( ...)

if ( rc == MPI_ERR OTHER ) {
state = RECOVER,
longjnmp ( env, state );

} while ( norm< errtol );

The code is written such, that any matrix using the Boe-
ing/Harwell format can be used for simulations. Table 2
gives some results of execution times for solving a system
of linear equations using the fault tolerant version of the
solver. The first column is indicating the problem size by
giving the number of non-zero entries in the matrix, the sec-
ond column the number of processes used for the calcula-
tion (which is one less than the overall number of processes
used in the simulation). The third column contains the exe-
cution time required to achieve a solution with the required
precision. Finally, the fifth column is showing the recovery
time for the used number of processes, in case a processes
dies.



Problem | No. of | Exec. time | Recovery time/ratio
size procs. [sec] [sec]/[%]
4,054 4 5 16/320
428,650 8 189 34/18
2,677,324 16 1162 69/6

Table 2. Execution time of various problem
sizes with FT-MPI, and the recovery time for
the according number of processes

Like table 2 indicates, recovering a from an exit-event of
a processes takes between 16 seconds for 4 processes to 69
seconds for 16 processes. Most of this time is spent in a
multi-phase commit protocol between the processes, since
FT-MPI is capable of recovering from death events during
another recovery procedure. Clearly, the recovery time is
also the setting the limits, when recovering from an error
makes sense, and when it does not. For example, for the
four processes case shown in table 2, the recovery time is
exceeding the overall execution time of the simulation by
a factor of 3, and probably error recovery in this case is
questionable. The next two cases however show, that for
large and long running applications, the recovery time is
less relevant, while the user still receives the result of his
simulation in approximately the same time, even if an node
failure is occurring during the simulation.

6 Conclusion and Outlook

In this paper we presented the semantics of a fault-
tolerant version of the Message Passing Interface. FT-MPI
is an implementation of this specification, supporting the
full MPI-1.2 document as well as supporting the extended
functionality of failure-recovery. FT-MPI is however not
an automatic checkpoint/recovery system, but it gives the
application the possibility to survive node or link failures,
re-organize its communication and/or communicators and
continue from a well defined point in the user application.
Defining and implementing a consistent state in the applica-
tion is however the responsibility of the end-users and ap-
plication developers.

Results with point-to-point benchmarks as well as with
the PSTSWM benchmark show, that the performance
achieved with FT-MPI is comparable to other, non fault-
tolerant implementations of MPI, in some cases even better.
Thus, the overhead due to the fault-tolerant features of the
libraries are small, and make FT-MPI an appealing alterna-
tive.

Writing fault tolerant applications requires usually some
modifications to existing parallel applications. A state

model for the development of master-slave applications has
been presented as well as an example for a tightly cou-
pled application, namely a parallel CG-solver. The usage of
error-handlers from the MPI specification greatly improves
the readability and maintainability of fault tolerant applica-
tions.

Current work focuses on improving the times for recov-
ering from an error. While for long-running applications
even the current number are just a marginal fraction of their
overall execution time, we still think that there is ample
room for further improvements in this area. More work
will also be invested in the development of other templates
to show, how the fault-tolerant features of FT-MPI can be
used by other classes of high performance computing appli-
cations.
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