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Abstract 

The use of tuned collective’s module of Open MPI to improve a parallelization efficiency of parallel batch pattern back 
propagation training algorithm of a multilayer perceptron is considered in this paper. The multilayer perceptron model and the 
usual sequential batch pattern training algorithm are theoretically described. An algorithmic description of a parallel version of 
the batch pattern training method is introduced. The obtained parallelization efficiency results using Open MPI tuned collective’s 
module and MPICH2 are compared. Our results show that (i) Open MPI tuned collective’s module outperforms MPICH2 
implementation both on SMP computer and computational cluster and (ii) different internal algorithms of MPI_Allreduce() 
collective operation give better results on different scenarios and different parallel systems. Therefore the properties of the
communication network and user application should be taken into account when a specific collective algorithm is used. 
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1. Introduction 

Artificial neural networks (NNs) have excellent abilities to model difficult nonlinear systems. They represent a 
very good alternative to traditional methods for solving complex problems in many fields, including image 
processing, predictions, pattern recognition, robotics, optimization, etc [1]. However, most NN models require high 
computational load, especially in the training phase (on a range from several hours to several days). This is, indeed, 
the main obstacle to face for an efficient use of NNs in real-world applications. The use of general-purpose high 
performance computers, clusters and computational grids to speed up the training phase of NNs is one of the ways to 
outperform this obstacle. Therefore the research of a parallelization efficiency of NNs parallel training algorithms on 
such kind of parallel systems is still remaining an urgent research problem.  

Taking into account the parallel nature of NNs, many researchers have already focused their attention on NNs 
parallelization on specialized computing hardware and transputers [2-5], but these solutions are not applicable on 
general-purpose high performance systems. Several grid-based frameworks have been developed for NNs 
parallelization [6-7], however they do not deal with parallelization efficiency issues. The authors of [8] investigate 
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parallel training of multi-layer perceptron (MLP) on SMP computer, cluster and computational grid using MPI 
parallelization. But their implementation of the small MLP architecture 16-10-10-1 (16 neurons in the input layer, 
two hidden layers with 10 neurons in each layer and one output neuron) with 270 internal connections (number of 
weights and thresholds) does not provide positive parallelization speedup on a cluster due to large communication 
overhead, i.e. the speedup is less than 1. However, small NNs models with the number of connections less than 270 
are widely used for solving practical tasks due to better generalization abilities on the same input training data set 
[1]. Therefore the parallelization of small NNs models is very important. The authors of [9-10] have developed 
parallel algorithms of recurrent neural network training based on Extended Kalman Filter and a linear reward 
penalty correction scheme on multicore computer, computational cluster and GPUs. Their results show the speedup 
on GPU only, the implementations on multicore computer and computational cluster were with very limited 
speedup. Therefore the authors of [10] have recommended considering batch and off-line training algorithms to 
receive more promising results. 

Our previous implementation of the parallel batch pattern back propagation (BP) training algorithm of MLP 
showed positive parallelization speedup on SMP computer using MPI 1.2 [11-12]. For example, we have reached 
parallelization efficiency of 74.3%, 43.5% and 22.1% for MLP 5-5-1 (36 connections), 87.8%, 64.4% and 38.2% for 
MLP 10-10-1 (121 connections) and 91.1%, 71.7% and 46.7% for MLP 15-15-1 (256 connections) respectively on 
2, 4 and 8 processors of general-purpose parallel computer for the scenario of 200 training patterns. As it is seen, the 
efficiency is decreasing with increasing the number of parallel processors. Therefore this algorithm will show lower 
efficiency figures when running on computational clusters and grids due to larger communication overhead in 
comparison with an SMP computer. In general it is possible to decrease a communication overhead on algorithmic 
and implementation levels. On the algorithmic level it could be provided by the increase of a granularity of 
parallelization as well as by the decrease of the number of communication messages. For example, the authors of [8] 
use three communication messages in their parallel algorithm, at the same time we have used one communication 
message only [11-12]. On the implementation level, (i) the decrease of a real number of calls of MPI communication 
functions while implementing the communication section of the algorithm, (ii) the use of single precision operations 
[9] instead of double precision (where appropriate) which leads to decreasing the size of communication message 
and (iii) the latest research results in optimization of communication overhead provided by the implementers of MPI 
packets bring the important impact to the decrease of the communication overhead of a parallel algorithm. In order 
to minimize the collective communication overhead of our algorithm we propose the use of an advanced tuning 
mechanism implemented in Open MPI [13-14], which allow the selection, at the user level, of a more suitable 
collective communication algorithm based on network properties as well as the parallel application characteristics.  

This paper describes our current research results on the parallelization efficiency of the parallel batch pattern BP 
training algorithm with the use of the tuned collective’s module of Open MPI. This paper is ordered as follows: 
Section 2 details the mathematical description of batch pattern BP training algorithm, Sections 3 describes its 
parallel implementation, Section 4 presents the obtained experimental results, concluding remarks in Section 5 
finishes this paper.  

2. Batch pattern BP training algorithm of multilayer perceptron 

A parallelization of an MLP with the standard sequential BP training algorithm is not scalable (speedup is less 
than 1) due to high synchronization and communication overhead among parallel processors [15]. Therefore it is 
expedient to use the batch pattern training algorithm, which updates neurons’ weights and thresholds at the end of 
each training epoch, i.e. after processing of all training patterns, instead of updating weights and thresholds after 
processing of each pattern in the usual sequential training mode. 

The output value of a three-layer perceptron (Fig. 1) can be formulated as:  
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where N  is the number of neurons in the hidden layer, 3jw
is the weight of the synapse from neuron j  of the hidden 
layer to the output neuron, ijw  are the weights from the input 
neurons to neuron j  in the hidden layer, ix  are the input 
values, jT  are the thresholds of the neurons of the hidden 
layer and T  is the threshold of the output neuron [1, 16]. In 
this study the logistic activation function )1/(1)( xexF
is used for the neurons of the hidden ( 2F ) and output layers 
( 3F ), but in general case these activation functions could be 
different. 

The batch pattern BP training algorithm consists of the 
following steps [16]: 

1. Set the desired error (Sum Squared Error) SSE= minE  and the number of training epochs t ;
2. Initialize the weights and the thresholds of the neurons with values in range (0…0.5) [16]; 
3. For the training pattern pt :

3.1. Calculate the output value )(ty pt  by expression (1); 

3.2. Calculate the error of the output neuron )()()(3 tdtyt ptptpt , where )(ty pt  is the output value of the 

perceptron and )(td pt  is the target output value; 
3.3. Calculate the hidden layer neurons’ error ))(()()()( 333 tSFtwtt pt

j
ptpt

j , where )(tS pt  is the weighted 
sum of the output neuron; 

3.4. Calculate the delta weights and delta thresholds of all neurons and add the result to the value of the 
previous pattern )())(()( 3333 thtSFtwsws pt

j
ptpt

jj , ))(()( 33 tSFtTsTs ptpt ,

)())(()( 2 txtSFtwsws pt
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pt
j

pt
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j
pt
jjj , where )(tS pt

j  and )(th pt
j  are the 

weighted sum and the output value of the j  hidden neuron respectively; 

3.5. Calculate the SSE using 2)()(
2
1)( tdtytE ptptpt ;

4. Repeat the step 3 above for each training pattern pt , where PTpt ,...,1 , PT  is the size of the training set; 
5. Update the weights and thresholds of neurons using 333 )()0()( jjj wstwPTw , TstTPTT )()0()( ,

ijijij wstwPTw )()0()( , jjj TstTPTT )()0()(  where )(t  is the learning rate; 

6. Calculate the total SSE )(tE  on the training epoch t  using 
PT

pt

pt tEtE
1

)()( ;

7. If )(tE  is greater than the desired error minE  or the number of required training epoch is not reached yet then 
increase the number of training epoch to 1t  and go to step 3, otherwise stop the training process. 

3. Parallel batch pattern BP training algorithm of multilayer perceptron 

It is obvious from the analysis of the algorithm above, that the sequential execution of points 3.1-3.5 for all 
training patterns in the training set could be parallelized, because the sum operations 3jws , Ts , ijws  and jTs
are independent of each other. For the development of the parallel algorithm it is necessary to divide all the 
computational work among the Master (executing assigning functions and calculations) and the Workers (executing 
only calculations) processors.  

The algorithms for Master and Worker processors are depicted in Fig. 2. The Master starts with definition (i) the 
number of patterns PT in the training data set and (ii) the number of processors p used for the parallel executing of 
the training algorithm. The Master divides all patterns in equal parts corresponding to the number of the Workers
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Fig. 1. The structure of a three-layer perceptron 
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and assigns one part of patterns to itself. Then the Master sends to the Workers the numbers of the appropriate 
patterns to train.  

Each Worker executes the following operations for each pattern pt among the PT/p patterns assigned to it: 
calculate the points 3.1-3.5 and 4, only for its assigned number of training patterns. The values of the partial 
sums of delta weights 3jws , ijws  and delta thresholds Ts , jTs  are calculated there; 
calculate the partial SSE for its assigned number of training patterns. 

After processing all assigned patterns, only one 
all-reduce collective communication operation (it 
provides the summation too) is executed. 
Synchronization with other processors is 
automatically provided by internal implementation 
of this all-reduce operation [17]. However from the 
algorithmic point of view it is showed as an 
independent operation in Fig. 2 before the operation 
of data reduce. Then the summarized values 3jws ,

Ts , ijws  and jTs  are sent to all processors 
working in parallel. Using only one all-reduce 
collective communication which returns the reduced 
values back to the Workers allows decreasing a 
communication overhead in this point. Then the 
summarized values 3jws , Ts , ijws  and jTs
are placed into the local memory of each processor. 
Each processor use these values for updating the 
weights and thresholds according to the point 5 of 
the algorithm. These updated weights and 
thresholds will be used in the next iteration of the 
training algorithm. As the summarized value of 

)(tE  is also received as a result of the reducing 
operation, the Master decides whether to continue 
the training or not. 

The software code is developed using C 
programming language with the standard MPI 
functions. The parallel part of the algorithm starts 
with the call of MPI_Init() function. An 

MPI_Allreduce() function reduces the deltas of weights 3jws , ijws  and thresholds Ts , jTs , summarizes them 
and sends them back to all processors in the group. Since the weights and thresholds physically located in different 
matrixes of the routine we have done pre-encoding of all data into one communication vector/message before 
sending and after-decoding the data to appropriate matrixes after receiving in order to provide only one physical call 
of the function MPI_Allreduce() in the communication section of the algorithm. Function MPI_Finalize() finishes 
the parallel part of the algorithm. 

4. Experimental results 

Our experiments were carried out on SMP supercomputer and computational cluster: 
the SMP parallel supercomputer Pelikan (TYAN Transport VX50), located in the Research Institute of Intelligent 
Computer Systems, Ternopil, Ukraine, consists of two identical blocks VX50_1 and VX50_2. Each block 
consists of four 64-bit dual-core processors AMD Opteron 8220 with a clock rate of 2800 MHz and 16 GB of 
local RAM (667 MHz, registered DDR2). Each processor has a primary data and instruction cache of 128 Kb and 
the second level cache of 2 Mb. There are 4 RAM access channels in each block. These two blocks VX50_1 and 
VX50_2 are connected via high-speed AMD-8131 Hyper Transport PCI-X tunnel interface. Due to some 
technical problem we have used only 8 cores located inside one block VX50_1. The speed of data transfer 
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Fig. 2. The algorithms of the Master (a) and the Worker (b) processors
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between processors inside one block is 2.0 Gbps; 
the computational cluster Battlecat, located in the Innovative Computing Laboratory (ICL) at the University of 
Tennessee, consists of one head node and 7 working nodes. The head node consists of two Dual Xeon 1.6 GHz 
processors with 4 MB cache and 2 GB of local RAM. Each working node has one dual core processor Intel Core 
2 Duo 2.13 GHz with 2 MB cache and 2 GB of local RAM. The nodes are connected by 1 Gigabit Ethernet.  
For experimental research we have used the new tuned collective’s module of Open MPI developed by the ICL 

team from the University of Tennessee [13]. One of the goals of this module is to allow the user to completely 
control the collectives algorithms used during runtime. In order to activate this tuned module the user should set the 
special trigger value coll_tuned_use_dynamic_rules to 1. It is possible to do directly from the command line during 
runtime or to write it in the special configuration file mca-params.conf located in home folder ~/.openmpi of a user. 
The range of possible algorithms available for any collective function can be obtained by running the Open MPI 
system utility ompi_info with the arguments -- mca coll_tuned_use_dynamic_rules 1 –param coll all. The possible 
range for an MPI_Allreduce() is: 

MCA coll: information 
"coll_tuned_allreduce_algorithm_count" 
(value: "5", data source: default 
value) 

Number of allreduce algorithms 
available 

MCA coll: parameter 
"coll_tuned_allreduce_algorithm" 
(current value: "0", data source: 
default value) 

Which allreduce algorithm is used. Can 
be locked down to any of: 0 ignore, 1 
basic linear, 2 nonoverlapping (tuned 
reduce + tuned bcast), 3 recursive 
doubling, 4 ring, 5 segmented ring 

The example below illustrates how the user can force the use of a segmented ring internal algorithm from the 
command line:
host% mpirun -np 4 --mca coll_tuned_use_dymanic_rules 1 --mca coll_tuned_allreduce_algorithm 
5 myroutine.bin 

We run several preliminary tests in order to assess the performance of all internal algorithms of MPI_Allreduce()
for our task on both parallel systems working in dedicated mode. We have chosen a testing scenario with MLP 40-
40-1 (1681 connections) and 200 training patterns. The number of training epochs is fixed to 104. The time labels 
are provided by function MPI_WTime(), which measure a wall computational time of appropriate parts of a software 
code. Usage of the function which measure a wall computational time allows accounting real exploitation conditions 
of each parallel system and any delays caused by its hardware or software configuration. The results of this 
preliminary research show that three algorithms default (without forcing any specific algorithm, 
coll_tuned_use_dynamic_rules=0 in this case), 4-ring and 5-segmented ring provided better parallelization 
efficiency. The use of default decision corresponds to the recommendation of [13] specifying that “In many cases 
making the underlying decisions accessible either directly to knowledgeable users, or via automated tools is enough 
to correct for any [performance] problems with the default decisions implemented by the MPI implementers”. Since 
we done this preliminary test only on one parallelization scenario, it is expedient to run the main experiment using 
all three better decisions (default, 4-ring and 5-segmented ring) mentioned above. 

For the experimental research we have used the following scenarios of increasing MLP sizes: 5-5-1 (36 
connections), 10-10-1 (121 connections), 15-15-1 (256 connections), 20-20-1 (441 connections), 30-30-1 (961 
connections), 40-40-1 (1681 connections), 50-50-1 (2601 connections) and 60-60-1 (3721 connections). In our 
implementation we have used double precision values to store MLP connections. We have fixed the number of 
training patterns to 200 because our previous researches on small MLP models showed that this number of training 
patterns is minimal to obtain a positive speedup [12] for smaller sizes of MLP. We have fixed the number of training 
epochs to 104 in order to decrease the total execution time taking into account that the parallelization efficiency of 
this algorithm does not depend on the number of training epochs [18].  

In order to provide a comparison of the communication time of tuned collective’s module of Open MPI we have 
run an additional experiment using MPICH2 library for the same scenarios. We have used Open MPI 1.4 [14] and 
MPICH2-1.2.1 [19] releases. We have run each scenario several times in order to provide statistically corrected 
results. The total number of experiments (for 8 scenarios) is 24 on 2, 4 and 8 processors of SMP computer and 32 on 
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2, 4, 8 and 16 processors of computational cluster. We run each experiment for each of Open MPI decision functions 
default, 4-ring and 5-segmented ring. The default algorithm provided better results for 11 cases of total 24, the 5-
segmented ring for 10 cases of 24 and 4-ring for 3 cases of 24 on the SMP computer. The 5-segmented ring 
algorithm provided better results for 12 cases of total 32, the default for 10 cases of 32 and 4-ring for 10 cases of 32 
on the computational cluster. However, we have received a slight difference of parallelization efficiency on the same 
scenarios between default and 5-segmented ring implementations, therefore we have depicted only one of them 
(default) in the following analysis. 

Fig. 3 shows the parallelization efficiencies of parallel batch pattern BP training algorithm of MLP on 2, 4 and 8 
processors of SMP computer Pelikan using Open MPI (with default internal algorithm of MPI_Allreduce()) and 
MPICH2 implementations. Fig. 4 shows the parallelization efficiencies of parallel batch pattern BP training 
algorithm of MLP on 2, 4, 8 and 16 processors of computational cluster Battlecat using Open MPI (with default
internal algorithm of MPI_Allreduce()) and MPICH2 implementations.  
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Fig. 3. The parallelization efficiencies of the batch pattern BP training algorithm of MLP using tuned collective’s module of Open MPI (left) and 
MPICH2 (right) on SMP computer 
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Fig. 4. The parallelization efficiencies of the batch pattern BP training algorithm of MLP using tuned collective’s module of Open MPI (left) and 
MPICH2 (right) on computational cluster 

The comparison of the parallelization efficiencies using Open MPI and MPICH2 is presented in Table 1. We 
have simply calculated the differences of parallelization efficiencies corresponding to the same scenarios of the 
parallelization problem. As it is seen, the parallelization efficiencies using tuned collective’s module of Open MPI 
are greater on 1.4% in average than the appropriate parallelization efficiencies using MPICH2 on the SMP parallel 
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computer Pelikan. The parallelization efficiencies using Open MPI and MPICH2 slightly differ on 2 and 4 
processors of the computational cluster Battlecat since a communication is fulfilling among cores inside the head 
node in this case. The parallelization efficiencies using tuned collective’s module of Open MPI are greater on 13.1%
in average than the appropriate parallelization efficiencies using MPICH2 on 8 and 16 processors of the 
computational cluster Battlecat. The analysis of the absolute durations of communication overhead (Fig. 5) clearly 
shows that Open MPI tuned collective’s module outperforms MPICH2 implementation both on SMP computer 
(minor degree) and computational cluster (strong degree). It is necessary to note, that the time values in seconds on 
ordinate axes of Fig. 5 are specified for 104 messages because the training process of MLP is fulfilled by 104

training epochs and each epoch is finished by communication of one message. The analysis of the differences of 
parallelization efficiencies for the computational cluster shows that these differences are bigger for 8 processors than 
for 16. It means that the default internal algorithm which we used provides not the same performance in both cases. 
Therefore the characteristics of the communication network (one of them is a latency in our case) on the concrete 
number of communication nodes strongly influence on the decrease of the communication overhead. Therefore 
choosing other internal algorithm of MPI_Allreduce()  may lead to better parallelization efficiency for this concrete 
case.

Table 1. The comparison of obtained parallelization efficiencies using Open MPI and MPICH2 collective implementations 

Scenario
(connections) 

Differences of efficiencies between 
Open MPI and MPICH2 
implementations on processors of 
SMP computer 

Differences of efficiencies between Open MPI and 
MPICH2 implementations on processors of computational 
cluster

2 4 8 2 4 8 16 

36 (5-5-1) 0.5 11.3 4.2 2.8 -0.2 4.1 6.4 

121 (10-10-1) -1.3 0.5 -1.6 0.1 -2.6 14.2 11.3 

256 (15-15-1) -0.9 11.4 3.8 -0.4 -0.1 7.7 7.7 

441 (20-20-1) -0.9 -1.2 -3.1 -0.1 -0.6 12.2 10.7 

961 (30-30-1) -3.6 -2.2 0.2 0.0 -2.3 17.7 10.3 

1681 (40-40-1) 0.2 0.2 3.3 -0.4 -1.4 12.3 8.9 

2601 (50-50-1) 0.0 -1.7 4.6 -0.1 -1.6 27.3 12.6 

3721 (60-60-1) 3.6 2.7 3.0 -0.1 -0.5 26.8 19.1 

Average: 33/24=1.4%  209.3/16=13.1%
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Fig. 5. Absolute durations of communication overhead for SMP computer (left) and computational cluster (right) 
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It is necessary to note that all achieved results of parallelization efficiency (70-80% for number of connections 
more than 256 and 60-70% for number of connections more than 36 and less than 256 on 8 processors of SMP 
computer; 20-30% for number of connections more than 441 and 10-20% for number of connections less than 441 
on 16 processors of computational cluster) are received for 200 training patterns. This is a minimal number of the 
training patterns which it is expedient to parallelize [12], because the models with lesser training patterns are not 
executed for long periods of time and can be parallelized on 2 or 4 processors getting better speedup and efficiency 
of parallelization. In this paper we have showed how much efficiency it is possible to get using an advanced tuning 
collective module of Open MPI. In real-world applications of this parallel algorithm normally with bigger number of 
training patterns we should obtain much better values of parallelization efficiency for the same number of 
connections because the computational part of the algorithm will gain a tremendous increase, and the 
communication overhead remains the same as it is depicted in Fig. 5. Also this statement is valid for the MLP 
models with more than one hidden layer of neurons. In this case the computational part of the parallel algorithm will 
gain an increase due to additional computations related to the back propagation stage of the error from the output 
layer sequentially to all previous hidden layers of neurons and the communication overhead remains the same for 
the same number of the internal connections of MLP. The complete research of all possible scenarios of 
parallelization is a goal of a separate research.  

5. Conclusions 

The use of tuned collective’s component of Open MPI on the example of parallel batch pattern back propagation 
training algorithm of multilayer perceptron is presented in this paper. This tuned collective’s module is a part of 
standard Open MPI release available on the web [14]. It allows changing the internal algorithms of MPI 
communication functions during the runtime. The presented parallelization results of our problem show that the use 
of default decision as well as a segmented ring algorithm of MPI_Allreduce() function from the tuned collective’s 
module of Open MPI allows improving the parallelization efficiency on 1.4% in average on SMP computer and on 
13.1% in average on computational cluster in comparison with the MPICH2 implementation of the same parallel 
algorithm.  

The experimental results show that different internal algorithms of MPI_Allreduce() give better results for 
different scenarios of the parallelization problem on parallel systems with different characteristics of the 
communication network such as SMP computer and computational cluster. Moreover, the same internal algorithm of 
MPI_Allreduce() has showed different performance on different number of processors of the same parallel system. It 
means that even for highly optimized collective communication algorithms, the properties of the communication 
network and user application should be taken into account when a specific collective algorithm is chosen. 

The obtained results confirm that it is not enough to design an optimal parallel algorithm from the algorithmic 
point of view. This is a necessary condition only. For the development of efficient parallel algorithms of neural 
networks training on general-purpose parallel computers and computational clusters the sufficient conditions are: (i) 
to implement correctly the technical features of the algorithm like minimization of the number of MPI collective’s 
functions calls and (ii) to use the advanced properties of the latest releases of appropriate MPI packets related to the 
improved performance of collective communications. These advanced properties of the Open MPI packet in our 
case show the certain decrease of the communication overhead which leads to the appropriate improvement of the 
parallelization efficiency of the algorithm on the computational cluster with distributed architecture.  

The obtained results will be used within the development of the library for parallel training of neural networks 
PaGaLiNNeT, which could be considered as an intelligent engineering tool for scientists who will use the 
parallelized neural networks for solving time-consuming and computationally intensive intelligent tasks. 

An investigation of additional parameters of MPI_Allreduce() internal algorithms such as 
“coll_tuned_allreduce_algorithm_segmentsize”, "coll_tuned_allreduce_algorithm_tree_fanout" and 
"coll_tuned_allreduce_algorithm_chain_fanout” as well as an influence of characteristics of communication 
environment on the scalability of the developed batch pattern back propagation training algorithm can be considered 
as future direction of research. 
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