
Available online at www.sciencedirect.com Procedia
Computer
ScienceProcedia Computer Science 00 (2009) 000–000

www.elsevier.com/locate/procedia

International Conference on Computational Science, ICCS 2010

Improvement of parallelization efficiency of batch pattern BP
training algorithm using Open MPI

Volodymyr Turchenkoa*, Lucio Grandinettia, George Bosilcab and Jack J. Dongarrab

aDepartment of Electronics, Informatics and Systems, University of Calabria, via P. Bucci, 41C, 87036, ITALY
bInnovative Computing Laboratory, The University of Tennessee, 1122 Volunteer Blvd. Knoxville, TN 37996, USA

Abstract

The use of tuned collective’s module of Open MPI to improve a parallelization efficiency of parallel batch pattern back
propagation training algorithm of a multilayer perceptron is considered in this paper. The multilayer perceptron model and the
usual sequential batch pattern training algorithm are theoretically described. An algorithmic description of a parallel version of
the batch pattern training method is introduced. The obtained parallelization efficiency results using Open MPI tuned collective’s
module and MPICH2 are compared. Our results show that (i) Open MPI tuned collective’s module outperforms MPICH2
implementation both on SMP computer and computational cluster and (ii) different internal algorithms of MPI_Allreduce()
collective operation give better results on different scenarios and different parallel systems. Therefore the properties of the
communication network and user application should be taken into account when a specific collective algorithm is used.

Keywords: Tuned collective’s module, Open MPI, parallelization efficiency, multilayer perceptron.

1. Introduction

Artificial neural networks (NNs) have excellent abilities to model difficult nonlinear systems. They represent a
very good alternative to traditional methods for solving complex problems in many fields, including image
processing, predictions, pattern recognition, robotics, optimization, etc [1]. However, most NN models require high
computational load, especially in the training phase (on a range from several hours to several days). This is, indeed,
the main obstacle to face for an efficient use of NNs in real-world applications. The use of general-purpose high
performance computers, clusters and computational grids to speed up the training phase of NNs is one of the ways to
outperform this obstacle. Therefore the research of a parallelization efficiency of NNs parallel training algorithms on
such kind of parallel systems is still remaining an urgent research problem.

Taking into account the parallel nature of NNs, many researchers have already focused their attention on NNs
parallelization on specialized computing hardware and transputers [2-5], but these solutions are not applicable on
general-purpose high performance systems. Several grid-based frameworks have been developed for NNs
parallelization [6-7], however they do not deal with parallelization efficiency issues. The authors of [8] investigate

* Corresponding author. Tel./Fax: +39-0984-494847
E-mail address: vtu@si.deis.unical.it.

c© 2010 Published by Elsevier Ltd.

Procedia Computer Science 1 (2010) 525–533

www.elsevier.com/locate/procedia

1877-0509 c© 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.056

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.056

 Author name / Procedia Computer Science 00 (2010) 000–000

parallel training of multi-layer perceptron (MLP) on SMP computer, cluster and computational grid using MPI
parallelization. But their implementation of the small MLP architecture 16-10-10-1 (16 neurons in the input layer,
two hidden layers with 10 neurons in each layer and one output neuron) with 270 internal connections (number of
weights and thresholds) does not provide positive parallelization speedup on a cluster due to large communication
overhead, i.e. the speedup is less than 1. However, small NNs models with the number of connections less than 270
are widely used for solving practical tasks due to better generalization abilities on the same input training data set
[1]. Therefore the parallelization of small NNs models is very important. The authors of [9-10] have developed
parallel algorithms of recurrent neural network training based on Extended Kalman Filter and a linear reward
penalty correction scheme on multicore computer, computational cluster and GPUs. Their results show the speedup
on GPU only, the implementations on multicore computer and computational cluster were with very limited
speedup. Therefore the authors of [10] have recommended considering batch and off-line training algorithms to
receive more promising results.

Our previous implementation of the parallel batch pattern back propagation (BP) training algorithm of MLP
showed positive parallelization speedup on SMP computer using MPI 1.2 [11-12]. For example, we have reached
parallelization efficiency of 74.3%, 43.5% and 22.1% for MLP 5-5-1 (36 connections), 87.8%, 64.4% and 38.2% for
MLP 10-10-1 (121 connections) and 91.1%, 71.7% and 46.7% for MLP 15-15-1 (256 connections) respectively on
2, 4 and 8 processors of general-purpose parallel computer for the scenario of 200 training patterns. As it is seen, the
efficiency is decreasing with increasing the number of parallel processors. Therefore this algorithm will show lower
efficiency figures when running on computational clusters and grids due to larger communication overhead in
comparison with an SMP computer. In general it is possible to decrease a communication overhead on algorithmic
and implementation levels. On the algorithmic level it could be provided by the increase of a granularity of
parallelization as well as by the decrease of the number of communication messages. For example, the authors of [8]
use three communication messages in their parallel algorithm, at the same time we have used one communication
message only [11-12]. On the implementation level, (i) the decrease of a real number of calls of MPI communication
functions while implementing the communication section of the algorithm, (ii) the use of single precision operations
[9] instead of double precision (where appropriate) which leads to decreasing the size of communication message
and (iii) the latest research results in optimization of communication overhead provided by the implementers of MPI
packets bring the important impact to the decrease of the communication overhead of a parallel algorithm. In order
to minimize the collective communication overhead of our algorithm we propose the use of an advanced tuning
mechanism implemented in Open MPI [13-14], which allow the selection, at the user level, of a more suitable
collective communication algorithm based on network properties as well as the parallel application characteristics.

This paper describes our current research results on the parallelization efficiency of the parallel batch pattern BP
training algorithm with the use of the tuned collective’s module of Open MPI. This paper is ordered as follows:
Section 2 details the mathematical description of batch pattern BP training algorithm, Sections 3 describes its
parallel implementation, Section 4 presents the obtained experimental results, concluding remarks in Section 5
finishes this paper.

2. Batch pattern BP training algorithm of multilayer perceptron

A parallelization of an MLP with the standard sequential BP training algorithm is not scalable (speedup is less
than 1) due to high synchronization and communication overhead among parallel processors [15]. Therefore it is
expedient to use the batch pattern training algorithm, which updates neurons’ weights and thresholds at the end of
each training epoch, i.e. after processing of all training patterns, instead of updating weights and thresholds after
processing of each pattern in the usual sequential training mode.

The output value of a three-layer perceptron (Fig. 1) can be formulated as:

TTxwFwFy
N

j
j

M

i
iijj

1 1
233 , (1)

526 V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533

 Author name / Procedia Computer Science 00 (2010) 000–000

where N is the number of neurons in the hidden layer, 3jw
is the weight of the synapse from neuron j of the hidden
layer to the output neuron, ijw are the weights from the input
neurons to neuron j in the hidden layer, ix are the input
values, jT are the thresholds of the neurons of the hidden
layer and T is the threshold of the output neuron [1, 16]. In
this study the logistic activation function)1/(1)(xexF
is used for the neurons of the hidden (2F) and output layers
(3F), but in general case these activation functions could be
different.

The batch pattern BP training algorithm consists of the
following steps [16]:

1. Set the desired error (Sum Squared Error) SSE= minE and the number of training epochs t ;
2. Initialize the weights and the thresholds of the neurons with values in range (0…0.5) [16];
3. For the training pattern pt :

3.1. Calculate the output value)(ty pt by expression (1);

3.2. Calculate the error of the output neuron)()()(3 tdtyt ptptpt , where)(ty pt is the output value of the

perceptron and)(td pt is the target output value;
3.3. Calculate the hidden layer neurons’ error))(()()()(333 tSFtwtt pt

j
ptpt

j , where)(tS pt is the weighted
sum of the output neuron;

3.4. Calculate the delta weights and delta thresholds of all neurons and add the result to the value of the
previous pattern)())(()(3333 thtSFtwsws pt

j
ptpt

jj ,))(()(33 tSFtTsTs ptpt ,

)())(()(2 txtSFtwsws pt
i

pt
j

pt
jijij ,))(()(2 tSFtTsTs pt

j
pt
jjj , where)(tS pt

j and)(th pt
j are the

weighted sum and the output value of the j hidden neuron respectively;

3.5. Calculate the SSE using 2)()(
2
1)(tdtytE ptptpt ;

4. Repeat the step 3 above for each training pattern pt , where PTpt ,...,1 , PT is the size of the training set;
5. Update the weights and thresholds of neurons using 333)()0()(jjj wstwPTw , TstTPTT)()0()(,

ijijij wstwPTw)()0()(, jjj TstTPTT)()0()(where)(t is the learning rate;

6. Calculate the total SSE)(tE on the training epoch t using
PT

pt

pt tEtE
1

)()(;

7. If)(tE is greater than the desired error minE or the number of required training epoch is not reached yet then
increase the number of training epoch to 1t and go to step 3, otherwise stop the training process.

3. Parallel batch pattern BP training algorithm of multilayer perceptron

It is obvious from the analysis of the algorithm above, that the sequential execution of points 3.1-3.5 for all
training patterns in the training set could be parallelized, because the sum operations 3jws , Ts , ijws and jTs
are independent of each other. For the development of the parallel algorithm it is necessary to divide all the
computational work among the Master (executing assigning functions and calculations) and the Workers (executing
only calculations) processors.

The algorithms for Master and Worker processors are depicted in Fig. 2. The Master starts with definition (i) the
number of patterns PT in the training data set and (ii) the number of processors p used for the parallel executing of
the training algorithm. The Master divides all patterns in equal parts corresponding to the number of the Workers

13w

23w

3Nw T

ijw

jT

y

Nh

2h

1h

2x

Mx

1x

Fig. 1. The structure of a three-layer perceptron

V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533 527

 Author name / Procedia Computer Science 00 (2010) 000–000

and assigns one part of patterns to itself. Then the Master sends to the Workers the numbers of the appropriate
patterns to train.

Each Worker executes the following operations for each pattern pt among the PT/p patterns assigned to it:
calculate the points 3.1-3.5 and 4, only for its assigned number of training patterns. The values of the partial
sums of delta weights 3jws , ijws and delta thresholds Ts , jTs are calculated there;
calculate the partial SSE for its assigned number of training patterns.

After processing all assigned patterns, only one
all-reduce collective communication operation (it
provides the summation too) is executed.
Synchronization with other processors is
automatically provided by internal implementation
of this all-reduce operation [17]. However from the
algorithmic point of view it is showed as an
independent operation in Fig. 2 before the operation
of data reduce. Then the summarized values 3jws ,

Ts , ijws and jTs are sent to all processors
working in parallel. Using only one all-reduce
collective communication which returns the reduced
values back to the Workers allows decreasing a
communication overhead in this point. Then the
summarized values 3jws , Ts , ijws and jTs
are placed into the local memory of each processor.
Each processor use these values for updating the
weights and thresholds according to the point 5 of
the algorithm. These updated weights and
thresholds will be used in the next iteration of the
training algorithm. As the summarized value of

)(tE is also received as a result of the reducing
operation, the Master decides whether to continue
the training or not.

The software code is developed using C
programming language with the standard MPI
functions. The parallel part of the algorithm starts
with the call of MPI_Init() function. An

MPI_Allreduce() function reduces the deltas of weights 3jws , ijws and thresholds Ts , jTs , summarizes them
and sends them back to all processors in the group. Since the weights and thresholds physically located in different
matrixes of the routine we have done pre-encoding of all data into one communication vector/message before
sending and after-decoding the data to appropriate matrixes after receiving in order to provide only one physical call
of the function MPI_Allreduce() in the communication section of the algorithm. Function MPI_Finalize() finishes
the parallel part of the algorithm.

4. Experimental results

Our experiments were carried out on SMP supercomputer and computational cluster:
the SMP parallel supercomputer Pelikan (TYAN Transport VX50), located in the Research Institute of Intelligent
Computer Systems, Ternopil, Ukraine, consists of two identical blocks VX50_1 and VX50_2. Each block
consists of four 64-bit dual-core processors AMD Opteron 8220 with a clock rate of 2800 MHz and 16 GB of
local RAM (667 MHz, registered DDR2). Each processor has a primary data and instruction cache of 128 Kb and
the second level cache of 2 Mb. There are 4 RAM access channels in each block. These two blocks VX50_1 and
VX50_2 are connected via high-speed AMD-8131 Hyper Transport PCI-X tunnel interface. Due to some
technical problem we have used only 8 cores located inside one block VX50_1. The speed of data transfer

No

Yes

Start

Read the input data

Update ijw , jT
according to p.5

Reduce and Sum ijws ,

jTs ,)(tE from all
processors and send it

back to them

min)(EtE

End a)

Start

Read the input data

Receive PT/p patterns
from Master

b)

Define PT and p

Send PT/p patterns to
each Worker

Calculate p.3 and p.4 for
own training patterns

Synchronization with
other Workers Reduce and Sum ijws ,

jTs ,)(tE from all
Workers & Master

Calculate p.3 and p.4 for
assigned training patterns

Synchronization with
other Workers & Master

Update ijw , jT
according to p.5

Fig. 2. The algorithms of the Master (a) and the Worker (b) processors

528 V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533

 Author name / Procedia Computer Science 00 (2010) 000–000

between processors inside one block is 2.0 Gbps;
the computational cluster Battlecat, located in the Innovative Computing Laboratory (ICL) at the University of
Tennessee, consists of one head node and 7 working nodes. The head node consists of two Dual Xeon 1.6 GHz
processors with 4 MB cache and 2 GB of local RAM. Each working node has one dual core processor Intel Core
2 Duo 2.13 GHz with 2 MB cache and 2 GB of local RAM. The nodes are connected by 1 Gigabit Ethernet.
For experimental research we have used the new tuned collective’s module of Open MPI developed by the ICL

team from the University of Tennessee [13]. One of the goals of this module is to allow the user to completely
control the collectives algorithms used during runtime. In order to activate this tuned module the user should set the
special trigger value coll_tuned_use_dynamic_rules to 1. It is possible to do directly from the command line during
runtime or to write it in the special configuration file mca-params.conf located in home folder ~/.openmpi of a user.
The range of possible algorithms available for any collective function can be obtained by running the Open MPI
system utility ompi_info with the arguments -- mca coll_tuned_use_dynamic_rules 1 –param coll all. The possible
range for an MPI_Allreduce() is:

MCA coll: information
"coll_tuned_allreduce_algorithm_count"
(value: "5", data source: default
value)

Number of allreduce algorithms
available

MCA coll: parameter
"coll_tuned_allreduce_algorithm"
(current value: "0", data source:
default value)

Which allreduce algorithm is used. Can
be locked down to any of: 0 ignore, 1
basic linear, 2 nonoverlapping (tuned
reduce + tuned bcast), 3 recursive
doubling, 4 ring, 5 segmented ring

The example below illustrates how the user can force the use of a segmented ring internal algorithm from the
command line:
host% mpirun -np 4 --mca coll_tuned_use_dymanic_rules 1 --mca coll_tuned_allreduce_algorithm
5 myroutine.bin

We run several preliminary tests in order to assess the performance of all internal algorithms of MPI_Allreduce()
for our task on both parallel systems working in dedicated mode. We have chosen a testing scenario with MLP 40-
40-1 (1681 connections) and 200 training patterns. The number of training epochs is fixed to 104. The time labels
are provided by function MPI_WTime(), which measure a wall computational time of appropriate parts of a software
code. Usage of the function which measure a wall computational time allows accounting real exploitation conditions
of each parallel system and any delays caused by its hardware or software configuration. The results of this
preliminary research show that three algorithms default (without forcing any specific algorithm,
coll_tuned_use_dynamic_rules=0 in this case), 4-ring and 5-segmented ring provided better parallelization
efficiency. The use of default decision corresponds to the recommendation of [13] specifying that “In many cases
making the underlying decisions accessible either directly to knowledgeable users, or via automated tools is enough
to correct for any [performance] problems with the default decisions implemented by the MPI implementers”. Since
we done this preliminary test only on one parallelization scenario, it is expedient to run the main experiment using
all three better decisions (default, 4-ring and 5-segmented ring) mentioned above.

For the experimental research we have used the following scenarios of increasing MLP sizes: 5-5-1 (36
connections), 10-10-1 (121 connections), 15-15-1 (256 connections), 20-20-1 (441 connections), 30-30-1 (961
connections), 40-40-1 (1681 connections), 50-50-1 (2601 connections) and 60-60-1 (3721 connections). In our
implementation we have used double precision values to store MLP connections. We have fixed the number of
training patterns to 200 because our previous researches on small MLP models showed that this number of training
patterns is minimal to obtain a positive speedup [12] for smaller sizes of MLP. We have fixed the number of training
epochs to 104 in order to decrease the total execution time taking into account that the parallelization efficiency of
this algorithm does not depend on the number of training epochs [18].

In order to provide a comparison of the communication time of tuned collective’s module of Open MPI we have
run an additional experiment using MPICH2 library for the same scenarios. We have used Open MPI 1.4 [14] and
MPICH2-1.2.1 [19] releases. We have run each scenario several times in order to provide statistically corrected
results. The total number of experiments (for 8 scenarios) is 24 on 2, 4 and 8 processors of SMP computer and 32 on

V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533 529

 Author name / Procedia Computer Science 00 (2010) 000–000

2, 4, 8 and 16 processors of computational cluster. We run each experiment for each of Open MPI decision functions
default, 4-ring and 5-segmented ring. The default algorithm provided better results for 11 cases of total 24, the 5-
segmented ring for 10 cases of 24 and 4-ring for 3 cases of 24 on the SMP computer. The 5-segmented ring
algorithm provided better results for 12 cases of total 32, the default for 10 cases of 32 and 4-ring for 10 cases of 32
on the computational cluster. However, we have received a slight difference of parallelization efficiency on the same
scenarios between default and 5-segmented ring implementations, therefore we have depicted only one of them
(default) in the following analysis.

Fig. 3 shows the parallelization efficiencies of parallel batch pattern BP training algorithm of MLP on 2, 4 and 8
processors of SMP computer Pelikan using Open MPI (with default internal algorithm of MPI_Allreduce()) and
MPICH2 implementations. Fig. 4 shows the parallelization efficiencies of parallel batch pattern BP training
algorithm of MLP on 2, 4, 8 and 16 processors of computational cluster Battlecat using Open MPI (with default
internal algorithm of MPI_Allreduce()) and MPICH2 implementations.

2 4 8
30

40

50

60

70

80

90

100

Processors of Pelikan

E
ffi

ci
en

cy
 u

si
ng

 O
pe

nM
P

I,
%

36 connections
121 connections
256 connections
441 connections
961 connections
1681 connections
2601 connections
3721 connections

2 4 8
30

40

50

60

70

80

90

100

Processors of Pelikan

E
ffi

ci
en

cy
 u

si
ng

 M
PI

C
H

2,
 %

36 connections
121 connections
256 connections
441 connections
961 connections
1681 connections
2601 connections
3721 connections

Fig. 3. The parallelization efficiencies of the batch pattern BP training algorithm of MLP using tuned collective’s module of Open MPI (left) and
MPICH2 (right) on SMP computer

2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

Processors of Battlecat

E
ffi

ci
en

cy
 u

si
ng

 O
pe

nM
P

I,
%

36 connections
121 connections
256 connections
441 connections
961 connections
1681 connections
2601 connections
3721 connections

2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

Processors of Battlecat

E
ffi

ci
en

cy
 u

si
ng

 M
PI

C
H

2,
 %

36 connections
121 connections
256 connections
441 connections
961 connections
1681 connections
2601 connections
3721 connections

Fig. 4. The parallelization efficiencies of the batch pattern BP training algorithm of MLP using tuned collective’s module of Open MPI (left) and
MPICH2 (right) on computational cluster

The comparison of the parallelization efficiencies using Open MPI and MPICH2 is presented in Table 1. We
have simply calculated the differences of parallelization efficiencies corresponding to the same scenarios of the
parallelization problem. As it is seen, the parallelization efficiencies using tuned collective’s module of Open MPI
are greater on 1.4% in average than the appropriate parallelization efficiencies using MPICH2 on the SMP parallel

530 V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533

 Author name / Procedia Computer Science 00 (2010) 000–000

computer Pelikan. The parallelization efficiencies using Open MPI and MPICH2 slightly differ on 2 and 4
processors of the computational cluster Battlecat since a communication is fulfilling among cores inside the head
node in this case. The parallelization efficiencies using tuned collective’s module of Open MPI are greater on 13.1%
in average than the appropriate parallelization efficiencies using MPICH2 on 8 and 16 processors of the
computational cluster Battlecat. The analysis of the absolute durations of communication overhead (Fig. 5) clearly
shows that Open MPI tuned collective’s module outperforms MPICH2 implementation both on SMP computer
(minor degree) and computational cluster (strong degree). It is necessary to note, that the time values in seconds on
ordinate axes of Fig. 5 are specified for 104 messages because the training process of MLP is fulfilled by 104

training epochs and each epoch is finished by communication of one message. The analysis of the differences of
parallelization efficiencies for the computational cluster shows that these differences are bigger for 8 processors than
for 16. It means that the default internal algorithm which we used provides not the same performance in both cases.
Therefore the characteristics of the communication network (one of them is a latency in our case) on the concrete
number of communication nodes strongly influence on the decrease of the communication overhead. Therefore
choosing other internal algorithm of MPI_Allreduce() may lead to better parallelization efficiency for this concrete
case.

Table 1. The comparison of obtained parallelization efficiencies using Open MPI and MPICH2 collective implementations

Scenario
(connections)

Differences of efficiencies between
Open MPI and MPICH2
implementations on processors of
SMP computer

Differences of efficiencies between Open MPI and
MPICH2 implementations on processors of computational
cluster

2 4 8 2 4 8 16

36 (5-5-1) 0.5 11.3 4.2 2.8 -0.2 4.1 6.4

121 (10-10-1) -1.3 0.5 -1.6 0.1 -2.6 14.2 11.3

256 (15-15-1) -0.9 11.4 3.8 -0.4 -0.1 7.7 7.7

441 (20-20-1) -0.9 -1.2 -3.1 -0.1 -0.6 12.2 10.7

961 (30-30-1) -3.6 -2.2 0.2 0.0 -2.3 17.7 10.3

1681 (40-40-1) 0.2 0.2 3.3 -0.4 -1.4 12.3 8.9

2601 (50-50-1) 0.0 -1.7 4.6 -0.1 -1.6 27.3 12.6

3721 (60-60-1) 3.6 2.7 3.0 -0.1 -0.5 26.8 19.1

Average: 33/24=1.4% 209.3/16=13.1%

0 625(5K) 1250(10K) 1875(15K) 2500(20K) 3125(25K) 3750(30K)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of MLP connections (Message size, bytes)

A
bs

ol
ut

e
du

ra
tio

n
on

 8
 C

P
U

s
of

 S
M

P
 m

ac
hi

ne
, s

ec Using OpenMPI
Using MPICH2

0 625(5K) 1250(10K) 1875(15K) 2500(20K) 3125(25K) 3750(30K)
0

10

20

30

40

A
bs

ol
ut

e
du

ra
tio

n
on

 8
C

PU
s

of
 c

lu
st

er
, s

ec Using OpenMPI
Using MPICH2

0 625(5K) 1250(10K) 1875(15K) 2500(20K) 3125(25K) 3750(30K)
0

20

40

60

Number of MLP connections (Message size, bytes)

A
bs

ol
ut

e
du

ra
tio

n
on

 1
6

C
PU

s
of

 c
lu

st
er

, s
ec

Using OpenMPI
Using MPICH2

Fig. 5. Absolute durations of communication overhead for SMP computer (left) and computational cluster (right)

V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533 531

 Author name / Procedia Computer Science 00 (2010) 000–000

It is necessary to note that all achieved results of parallelization efficiency (70-80% for number of connections
more than 256 and 60-70% for number of connections more than 36 and less than 256 on 8 processors of SMP
computer; 20-30% for number of connections more than 441 and 10-20% for number of connections less than 441
on 16 processors of computational cluster) are received for 200 training patterns. This is a minimal number of the
training patterns which it is expedient to parallelize [12], because the models with lesser training patterns are not
executed for long periods of time and can be parallelized on 2 or 4 processors getting better speedup and efficiency
of parallelization. In this paper we have showed how much efficiency it is possible to get using an advanced tuning
collective module of Open MPI. In real-world applications of this parallel algorithm normally with bigger number of
training patterns we should obtain much better values of parallelization efficiency for the same number of
connections because the computational part of the algorithm will gain a tremendous increase, and the
communication overhead remains the same as it is depicted in Fig. 5. Also this statement is valid for the MLP
models with more than one hidden layer of neurons. In this case the computational part of the parallel algorithm will
gain an increase due to additional computations related to the back propagation stage of the error from the output
layer sequentially to all previous hidden layers of neurons and the communication overhead remains the same for
the same number of the internal connections of MLP. The complete research of all possible scenarios of
parallelization is a goal of a separate research.

5. Conclusions

The use of tuned collective’s component of Open MPI on the example of parallel batch pattern back propagation
training algorithm of multilayer perceptron is presented in this paper. This tuned collective’s module is a part of
standard Open MPI release available on the web [14]. It allows changing the internal algorithms of MPI
communication functions during the runtime. The presented parallelization results of our problem show that the use
of default decision as well as a segmented ring algorithm of MPI_Allreduce() function from the tuned collective’s
module of Open MPI allows improving the parallelization efficiency on 1.4% in average on SMP computer and on
13.1% in average on computational cluster in comparison with the MPICH2 implementation of the same parallel
algorithm.

The experimental results show that different internal algorithms of MPI_Allreduce() give better results for
different scenarios of the parallelization problem on parallel systems with different characteristics of the
communication network such as SMP computer and computational cluster. Moreover, the same internal algorithm of
MPI_Allreduce() has showed different performance on different number of processors of the same parallel system. It
means that even for highly optimized collective communication algorithms, the properties of the communication
network and user application should be taken into account when a specific collective algorithm is chosen.

The obtained results confirm that it is not enough to design an optimal parallel algorithm from the algorithmic
point of view. This is a necessary condition only. For the development of efficient parallel algorithms of neural
networks training on general-purpose parallel computers and computational clusters the sufficient conditions are: (i)
to implement correctly the technical features of the algorithm like minimization of the number of MPI collective’s
functions calls and (ii) to use the advanced properties of the latest releases of appropriate MPI packets related to the
improved performance of collective communications. These advanced properties of the Open MPI packet in our
case show the certain decrease of the communication overhead which leads to the appropriate improvement of the
parallelization efficiency of the algorithm on the computational cluster with distributed architecture.

The obtained results will be used within the development of the library for parallel training of neural networks
PaGaLiNNeT, which could be considered as an intelligent engineering tool for scientists who will use the
parallelized neural networks for solving time-consuming and computationally intensive intelligent tasks.

An investigation of additional parameters of MPI_Allreduce() internal algorithms such as
“coll_tuned_allreduce_algorithm_segmentsize”, "coll_tuned_allreduce_algorithm_tree_fanout" and
"coll_tuned_allreduce_algorithm_chain_fanout” as well as an influence of characteristics of communication
environment on the scalability of the developed batch pattern back propagation training algorithm can be considered
as future direction of research.

532 V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533

 Author name / Procedia Computer Science 00 (2010) 000–000

Acknowledgements

The corresponding author, Dr. Volodymyr Turchenko, acknowledges the financial support of
the Marie Curie International Incoming Fellowship grant No. 221524 “PaGaLiNNeT -
Parallel Grid-aware Library for Neural Networks Training" within the 7th European
Community Framework Programme.

References

1. S. Haykin, Neural Networks. New Jersey, Prentice Hall, 1999.
2. S. Mahapatra, R. Mahapatra, B. Chatterji. A Parallel Formulation of Back-propagation Learning on Distributed Memory Multiprocessors.

Paral. Comp. 22 12 (1997) 1661.
3. Z. Hanzálek, A Parallel Algorithm for Gradient Training of Feed-forward Neural Networks. Paral. Comp. 24 5-6 (1998) 823.
4. J.M.J. Murre, Transputers and Neural Networks: An Analysis of Implementation Constraints and Performance. IEEE Trans. on Neur.

Net. 4 2 (1993) 284.
5. B.H.V. Topping, A.I. Khan, A. Bahreininejad, Parallel Training of Neural Networks for Finite Element Mesh Decomposition. Comp. and

Struct. 63 4 (1997) 693.
6. T.K. Vin, P.Z. Seng, M.N.P. Kuan, F. Haron, A Framework for Grid-based Neural Networks. Proc. First Intern. Conf. on Distrib.

Framew. for Multim. Appl. (2005) 246.
7. L. Krammer, E. Schikuta, H. Wanek, A Grid-based Neural Network Execution Service Source. Proc. 24th IASTED Intern. Conf. on

Paral. and Distrib. Comp. and Netw. (2006) 35.
8. R.M. de Llano, J.L. Bosque, Study of Neural Net Training Methods in Parallel and Distributed Architectures. Fut. Gen. Comp. Sys. 26 2

(2010) 183.
9. M. Cernansky, Training Recurrent Neural Network Using Multistream Extended Kalman Filter on Multicore Processor and Cuda

Enabled Graphic Processor Unit. ICANN 2009, LNCS 5768, Springer-Verlag, Berlin, Heidelberg (2009) 381
10. U. Lotric, A. Dobnikar, Parallel Implementations of Recurrent Neural Network Learning. M. Kolehmainen et al. (Eds.): ICANNGA 2009,

LNCS 5495, Springer-Verlag, Berlin, Heidelberg (2009) 99.
11. V. Turchenko, L. Grandinetti, Efficiency Analysis of Parallel Batch Pattern NN Training Algorithm on General-Purpose Supercomputer.

LNCS 5518, Springer-Verlag, Berlin, Heidelberg (2009) 222.
12. V. Turchenko, L. Grandinetti, Minimal Architecture and Training Parameters of Multilayer Perceptron for its Efficient Parallelization.

Proc. 5th Intern. Work. Artif. Neur. Netw. and Intel. Inform. Proces. Milan, Italy (2009) 79.
13. G.E. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, J. Dongarra, E. Jeannot, Flexible collective communication tuning architecture

applied to Open MPI. Euro PVM/MPI (2006).
14. http://www.open-mpi.org/
15. V. Turchenko, L. Grandinetti. Efficiency Research of Batch and Single Pattern MLP Parallel Training Algorithms. Proc. 5th IEEE Int.

Work. on Intellig. Data Acquis. and Adv. Comp. Syst. IDAACS2009. Rende, Italy (2009) 218.
16. V. Golovko, A. Galushkin, Neural Networks: training, models and applications, Moscow, Radiotechnika, 2001 (in Russian).
17. MPI: A Message-Passing Interface Standard, Version 2.2, Message Passing Interface Forum, 2009.
18. V. Turchenko, Scalability of Parallel Batch Pattern Neural Network Training Algorithm. Artificial Intelligence, J. Nation. Acad. Sci.

Ukraine. 2 (2009) 144.
19. http://www.mcs.anl.gov/research/projects/mpich2/

V. Turchenko et al. / Procedia Computer Science 1 (2010) 525–533 533

