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Abstract

One of the main obstacles to the efficient solution of scientific problems is the problem of
tuning software, both to the available architecture and to the user problem at hand. We de-
scribe approaches for obtaining tuned high-performance kernels, and for automatically choos-
ing suitable algorithms. Specifically, we describe the generation of dense and sparse blas ker-
nels, and the selection of linear solver algorithms. However, the ideas presented here extend
beyond these areas, which can be considered proof of concept.

1 Introduction

Speed and portability are conflicting objectives in the design of numerical software li-
braries. While the basic notion of confining most of the hardware dependencies in a small
number of heavily-used computational kernels stands, optimized implementation of these
these kernels is rapidly growing infeasible. As processors, and in general machine architec-
tures, grow ever more complicated a library consisting of reference implementations will
lag far behind achievable performance; however, optimization for any given architecture is
a considerable investment in time and effort, to be repeated for any next processor to be
ported to.

For any given architecture, customizing a numerical kernel’s source code to optimize per-
formance requires a comprehensive understanding of the exploitable hardware resources of
that architecture. This primarily includes the memory hierarchy and how it can be utilized
to maximize data-reuse, as well as the functional units and registers and how these hard-
ware components can be programmed to generate the correct operands at the correct time.
Clearly, the size of the various cache levels, the latency of floating point instructions, the
number of floating point units and other hardware constants are essential parameters that
must be taken into consideration as well. Since this time-consuming customization process
must be repeated whenever a slightly different target architecture is available, or even when
a new version of the compiler is released, the relentless pace of hardware innovation makes
the tuning of numerical libraries a constant burden.
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In this paper we will present two software systems – ATLAS for dense and PHiPAC for
sparse linear algebra kernels respectively – that use heuristic search strategies for exploring
the architecture parameter space. The resulting optimized kernels achieve a considerable
speedup over the reference algorithms on all architectures tested.

In addition to the problem of optimizing kernels across architectures, there is the fact that
often there are several formulations of the same operation that can be chosen. The variations
can be the choice of data structure, as in PHiPAC, or the even a choice of basic algorithm,
as in Salsa, the subject of the third section of this paper. These variations are limited by
their semantic specification, that is, they need to solve the problem given, but depending
on the operation considerable freedom can exist. The choice of algorithm taken can then
depend on the efficiency of the available kernels on the architecture under consideration,
but – especially in the Salsa software – can also be made strongly influenced by the nature
of the input data.

In section 2 we will go further into concerns of the design of automatically tuned high
performance libraries. Sections 3 and 4 then discuss an innovative approach [1, 2] to au-
tomating the process of producing optimized kernels for RISC processor architectures that
feature deep memory hierarchies and pipelined functional units. These research efforts have
so far demonstrated very encouraging results, and have generated great interest among the
scientific computing community. In section 5, finally, we discuss a recently developed tech-
nique for choosing and tuning numerical algorithms, where a statistical modelling approach
is used to base algorithm decisions on the nature of the user data.

We leave a further aspect of self-adapting numerical software undiscussed in this paper.
Many scientists and researchers increasingly tend nowadays to use simultaneously a variety
of distributed computing resources such as massively parallel processors, networks and
clusters of workstations and “piles” of PCs. In order to use efficiently such a diverse and
lively computational environment, many challenging research aspects of network-based
computing such as fault-tolerance, load balancing, user-interface design, computational
servers or virtual libraries, must be addressed. User-friendly, network-enabled, application-
specific toolkits have been specifically designed and conceived to tackle the problems posed
by such a complex and innovative approach to scientific problem solving [3]. However, we
consider this out of the scope of the present paper.

2 Design of Tuned Numerical Libraries

2.1 Well-Designed Numerical Software Libraries

In this section we identify three important considerations for well-designed numerical soft-
ware libraries, portability, performance, and scalability. While portability of functionality
and performance are of paramount interest to the projects discussed in later sections of this
paper, scalability falls slightly outside the scope of what has currently been researched.
However, for the purposes of a general discussion of tuned software libraries we cannot
omit this topic.

2.1.1 Portability

Portability of programs has always been an important consideration. Portability was easy to
achieve when there was a single architectural paradigm (the serial von Neumann machine)
and a single programming language for scientific programming (Fortran) embodying that
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common model of computation. Architectural and linguistic diversity have made portability
much more difficult, but no less important, to attain. Users simply do not wish to invest
significant amounts of time to create large-scale application codes for each new machine.
Our answer is to develop portable software libraries that hide machine-specific details.

In order to be truly portable, parallel software libraries must bestandardized. In a paral-
lel computing environment in which the higher-level routines and/or abstractions are built
upon lower-level computation and message-passing routines, the benefits of standardiza-
tion are particularly apparent. Furthermore, the definition of computational and message-
passing standards provides vendors with a clearly defined base set of routines that they can
implement efficiently.

From the user’s point of view, portability means that, as new machines are developed, they
are simply added to the network, supplying cycles where they are most appropriate.

From the mathematical software developer’s point of view, portability may require signifi-
cant effort. Economy in development and maintenance of mathematical software demands
that such development effort be leveraged over as many different computer systems as pos-
sible. Given the great diversity of parallel architectures, this type of portability is attainable
to only a limited degree, but machine dependences can at least be isolated.

Ease-of-use is concerned with factors such as portability and the user interface to the li-
brary. Portability, in its most inclusive sense, means that the code is written in a standard
language, such as Fortran, and that the source code can be compiled on an arbitrary ma-
chine to produce a program that will run correctly. We call this the “mail-order software”
model of portability, since it reflects the model used by software servers such asnetlib [4].
This notion of portability is quite demanding. It requires that all relevant properties of the
computer’s arithmetic and architecture be discovered at runtime within the confines of a
Fortran code. For example, if it is important to know the overflow threshold for scaling
purposes, it must be determined at runtimewithout overflowing, since overflow is gen-
erally fatal. Such demands have resulted in quite large and sophisticated programs [5, 6]
which must be modified frequently to deal with new architectures and software releases.
This “mail-order” notion of software portability also means that codes generally must be
written for the worst possible machine expected to be used, thereby often degrading per-
formance on all others. Ease-of-use is also enhanced if implementation details are largely
hidden from the user, for example, through the use of an object-based interface to the li-
brary [7]. In addition, software for distributed-memory computers should work correctly
for a large class of data decompositions.

2.1.2 Performance

In a naive sense, ‘performance’ is a cut-and-dried issue: we aim to minimize time-to-
solution of a certain algorithm. However, the very term ‘algorithm’ here is open to in-
terpretation. In all three of the application areas discussed in this paper, the algorithm is
determined to a semantic level, but on a lower level decisions are open to the implementer.

• In a dense LU solve, is it allowed to replace the solution of a diagonal block with a
multiply by its inverse?

• In a sparse ILU, does a tiled ILU(0) have to reproduce the scalar algorithm?
• In linear system solving, is the choice between a direct and an iterative method free

or are there restrictions?

Thus, optimizing performance means both choosing an algorithm variant, and then opti-
mizing the resulting implementation.
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When we fix the algorithm variant (which can be a static design decision, as in the case
of kernel tuning, or the very topic of research in the work in section 5), issues of perfor-
mance become simpler, being mostly limited to compiler-like code transformations. We
now have to worry, however, aboutportability of performance: algorithms cannot merely
be optimized for a single processor, but need to perform optimally on any available archi-
tecture. This concern is of course the very matter that we are addressing with our research
in automatic tuning.

Our kernel tuning software, both in the sparse and dense case, is written with knowledge
of various processor issues in mind. Thus, it aims to optimize performance by taking into
account numbers of registers, cache sizes on different levels, independent memory loads, et
cetera. It is important to note that optimizing for these factors independently is not feasible,
since there are complicated, nonlinear, interactions between them. Thus, to an extent, the
tuning software has to engage in exhaustive search of the search space. Search strategies
and heuristics can prune this search, but a more constructive, predictive, strategy cannot be
made robust without a priori knowledge of the target architectures.

2.1.3 Scalability

Like portability, scalability demands that a program be reasonably effective over a wide
range of number of processors. The scalability of parallel algorithms, and software libraries
based on them, over a wide range of architectural designs and numbers of processors will
likely require that the fundamental granularity of computation be adjustable to suit the
particular circumstances in which the software may happen to execute. The ScaLAPACK
approach to this problem is block algorithms with adjustable block size.

Scalable parallel architectures of the present and the future are likely to be based on a
distributed-memory architectural paradigm. In the longer term, progress in hardware de-
velopment, operating systems, languages, compilers, and networks may make it possible
for users to view such distributed architectures (without significant loss of efficiency) as
having a shared-memory with a global address space. Today, however, the distributed na-
ture of the underlying hardware continues to be visible at the programming level; therefore,
efficient procedures for explicit communication will continue to be necessary. Given this
fact, standards for basic message passing (send/receive), as well as higher-level communi-
cation constructs (global summation, broadcast, etc.), have become essential to the devel-
opment of scalable libraries that have any degree of portability. In addition to standardizing
general communication primitives, it may also be advantageous to establish standards for
problem-specific constructs in commonly occurring areas such as linear algebra.

Traditionally, large, general-purpose mathematical software libraries have required users to
write their own programs that call library routines to solve specific subproblems that arise
during a computation. Adapted to a shared-memory parallel environment, this conventional
interface still offers some potential for hiding underlying complexity. For example, the
LAPACK project incorporates parallelism in the Level 3 BLAS, where it is not directly
visible to the user.

When going from shared-memory systems to the more readily scalable distributed-memory
systems, the complexity of the distributed data structures required is more difficult to hide
from the user. One of the major design goal ofHigh Performance Fortran (HPF) [8] was to
achieve (almost) a transparent program portability to the user, from shared-memory multi-
processors up to distributed-memory parallel computers and networks of workstations. But
writing efficient numerical kernels with HPF is not an easy task. First of all, there is the
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need to recast linear algebra kernels in terms of block operations (otherwise, as already
mentioned, the performance will be limited by that of Level 1 BLAS routines). Second,
the user is required to explicitly state how the data is partitioned amongst the processors.
Third, not only must the problem decomposition and data layout be specified, but differ-
ent phases of the user’s problem may require transformations between different distributed
data structures. Hence, the HPF programmer may well choose to call ScaLAPACK routines
just as he called LAPACK routines on sequential processors with a memory hierarchy. To
facilitate this task, an interface has been developed [9]. The design of this interface has
been made possible because ScaLAPACK is using the same block-cyclic distribution prim-
itives as those specified in the HPF standards. Of course, HPF can still prove a useful tool
at a higher level, that of parallelizing a whole scientific operation, because the user will be
relieved from the low level details of generating the code for communications.

2.2 Motivation for Automatic Tuning

Straightforward implementation in Fortan or C of computations based on simple loops
rarely achieve the peak execution rates of today’s microprocessors. To realize such high
performance for even the simplest of operations often requires tedious, hand-coded, pro-
gramming efforts. It would be ideal if compilers where capable of performing the opti-
mization needed automatically. However, compiler technology is far from mature enough
to perform these optimizations automatically. This is true even for numerical kernels such
as the BLAS on widely marketed machines which can justify the great expense of compiler
development. Adequate compilers for less widely marketed machines are almost certain not
to be developed.

Producing hand-optimized implementations of even a reduced set of well-designed soft-
ware components for a wide range of architectures is an expensive proposition. For any
given architecture, customizing a numerical kernel’s source code to optimize performance
requires a comprehensive understanding of the exploitable hardware resources of that archi-
tecture. This primarily includes the memory hierarchy and how it can be utilized to provide
data in an optimum fashion, as well as the functional units and registers and how these hard-
ware components can be programmed to generate the correct operands at the correct time.
Using the compiler optimization at its best, optimizing the operations to account for many
parameters such as blocking factors, loop unrolling depths, software pipelining strategies,
loop ordering, register allocations, and instruction scheduling are crucial machine-specific
factors affecting performance. Clearly, the size of the various cache levels, the latency
of floating point instructions, the number of floating point units and other hardware con-
stants are essential parameters that must be taken into consideration as well. Since this
time-consuming customization process must be repeated whenever a slightly different tar-
get architecture is available, or even when a new version of the compiler is released, the
relentless pace of hardware innovation makes the tuning of numerical libraries a constant
burden.

The difficult search for fast and accurate numerical methods for solving numerical lin-
ear algebra problems is compounded by the complexities of porting and tuning numerical
libraries to run on the best hardware available to different parts of the scientific and engi-
neering community. Given the fact that the performance of common computing platforms
has increased exponentially in the past few years, scientists and engineers have acquired
legitimate expectations about being able to immediately exploit these available resources
at their highest capabilities. Fast, accurate, and robust numerical methods have to be en-
coded in software libraries that are highly portable and optimizable across a wide range of
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systems in order to be exploited to their fullest potential.

3 Automatically Tuned Numerical Kernels: the Dense Case

This section describes an approach for the automatic generation and optimization of nu-
merical software for processors with deep memory hierarchies and pipelined functional
units. The production of such software for machines ranging from desktop workstations
to embedded processors can be a tedious and time consuming customization process. The
research efforts presented below aim at automating much of this process. Very encouraging
results generating great interest among the scientific computing community have already
been demonstrated. In this section, we focus on the ongoing Automatically Tuned Linear
Algebra Software (ATLAS) [2, 10, 11, 12, 13] project, the initial development of which
took place at the University of Tennessee (see the ATLAS homepage [14] for further de-
tails). The ATLAS initiative adequately illustrates current and modern research projects
on automatic generation and optimization of numerical software, and many of the general
ideas are the same for similar efforts such as PHiPAC [1] and FFTW [15, 16].

This discussion is arranged as follows: Section 3.1 describes the fundamental principles
that underlie ATLAS. Section 3.2 provides a general overview of ATLAS as it is today,
with succeeding sections describing ATLAS’s most important kernel, matrix multiply, in a
little more detail.

3.1 AEOS – Fundamentals of Applying Empirical Techniques to Optimization

We’ve been using terms such as “self-tuning libraries”, “adaptive software”, and “empiri-
cal tuning” in preceding sections. All of these are attempts at describing a new paradigm
in high performance programming. These techniques have been developed to address the
problem of keeping performance-critical kernels at high efficiency on hardware evolving
at the incredible rates dictated by Moore’s law.

If a kernel’s performance is to be made at all robust, it must be bothportable, and of even
greater importance these days,persistent. We use these terms to separate two linked, but
slightly different forms of robustness. The platform on which a kernel must run can change
in two different ways: the machine ISA (Instruction Set Architecture), can remain constant
even as the hardware implementing that ISA varies, or the ISA can change. When a kernel
maintains its efficiency on a given ISA as the underlying hardware changes, we say it is
persistent, while a portably optimal code achieves high efficiency even as the ISA and
machine are changed.

Traditionally, library writers have been most concerned with portable efficiency, since ar-
chitects tended to keep as much uniformity as possible in new hardware generations that
extend existing ISA lines (example of ISA lines would be IA32, SPARC, MIPS, ALPHA,
etc.). More recently, however, there has been some consolidation of ISA lines, but the ma-
chines representing a particular ISA have become extremely diverse. As an ISA is retained
for an increasingly wide array of machines, the gap between the instruction set available
to the assembly programmer or compiler writer and the underlying architecture becomes
more and more severe. This adds to the complexity of high performance optimization by
introducing several opaque layers of hardware control into the instruction stream, making
a priori prediction of the best instruction sequence all but impossible.
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Therefore, in the face of a problem that defies even expert appraisal, empirical methods
can be utilized to probe the machine in order to find superior implementations, thus using
timings and code transformations in the exact same way that scientists probe the natural
world using the scientific method. There are many different ways to approach this problem,
but they all have some commonalities:

1. The search must beautomated in some way, so that an expert hand-tuner is not
required.

2. The decision of whether a transformation is useful or not must beempirical, in that
an actual timing measurement on the specific architecture in question is performed,
as opposed to the traditional application of transformations using static heuristics or
profile counts.

3. These methods must have some way to vary the software being tuned.

With these broad outlines in mind, we lump all such empirical tunings under the acronym
AEOS, or Automated Empirical Optimization of Software.

3.1.1 Elements of the AEOS Method.

The basic requirements for tuning performance-critical kernels using AEOS methodologies
are:

1. Isolation of performance-critical routines. Just as in the case of traditional libraries,
someone must find the performance-critical sections of code, separate them into sub-
routines, and choose an appropriate API.

2. A method of adapting software to differing environments: Since AEOS depends on
iteratively trying differing ways of providing the performance-critical operation, the
author must be able to provide routines that instantiate a wide range of optimizations.
ATLAS presently uses three general types of software adaptation:
(a) Parameterized adaptation: This method uses either runtime or compile-time

input parameters to vary code behavior (eg., varying block size(s) for cache
exploitation).

(b) Multiple implementation: The same kernel operation is implemented in many
different ways, and simple timers and testers are used to choose the best.

(c) Source generation: A source generator (i.e., a program that writes programs)
takes as parameters various source code adaptations to be made (e.g., pipeline
length, number and type of functional units, register blocking to be applied,
etc) and outputs the resulting kernel.

3. Robust, context-sensitive timers: Since timings are used to select the best code, it
becomes very important that these timings be uncommonly accurate, even when ran
on heavily loaded machines. Furthermore, the timers need to replicate as closely as
possible the way in which the given operation will be used, in particular flushing or
preloading level(s) of cache as dictated by the operation being optimized.

4. Appropriate search heuristic: The final requirement is a search heuristic which au-
tomates the search for the most efficient available implementation. For a simple
method of code adaptation, such as supplying a fixed number of hand-tuned im-
plementations, a simple linear search will suffice. However, for sophisticated code
generators with literally hundreds of thousands of ways of performing an operation,
a similarly sophisticated search heuristic must be employed in order to prune the
search tree as rapidly as possible, so that the highly optimal cases are both found
and found quickly. If the search takes longer than a handful of minutes, it needs to
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be robust enough to not require a complete restart if hardware or software failure
interrupts the original search.

3.2 ATLAS Overview

Dense linear algebra is rich in operations which are highly optimizable, in the sense that
a well-tuned code may run orders of magnitude faster than a naively coded routine (the
previous ATLAS papers present timing comparisons of ATLAS-tuned BLAS vs both ref-
erence and vendor BLAS, and more recent timings can be found at [17]). However, these
optimizations are platform specific, such that a transformation performed for a given com-
puter architecture may actually cause a slow-down on another architecture. As the first step
in addressing this problem, a standard API of performance-critical linear algebra kernels
was created. This API is called the BLAS [18, 19, 20, 21, 22] (Basic Linear Algebra Sub-
programs), and provides such linear algebra kernels as matrix multiply, triangular solve,
etc. Although ATLAS provides a few LAPACK [23] routines, most of the empirical tuning
in ATLAS is concentrated in the BLAS, and so we will concentrate on BLAS optimization
exclusively here.

The BLAS are divided into three levels, depending on the type of array arguments they
operate on. The Level 1 BLAS perform vector-vector operations (1-D arrays), the Level
2 BLAS perform matrix-vector operations (one operand is a 2-D array, while one or more
operands are vectors), and the Level 3 BLAS perform matrix-matrix operations (all operands
are two dimensional arrays). The primary reason this division of routines is of interest is
that the level gives some indication of how optimizable the various routines are. As the
BLAS level is increased, the amount of memory reuse goes up as well, so that each level
can achieve a significantly greater percentage of peak than a similar routine from the level
beneath it, with the greatest increase in performance being between Level 2 and Level 3.
The gap between a highly tuned implementation and a naive one goes up drastically be-
tween each level as well, and so it is in the Level 3 BLAS that tuning is most needed.
Further, the higher level BLAS tend to dominate the performance of most applications, and
so we will concentrate on the more interesting case of tuning the Level 3 BLAS in the
succeeding sections of this paper. ATLAS does, however, support the empirical tuning of
the entire BLAS, and so in this overview we will describe at a very high level how this is
done. A little more detail can be found in [24].

The Level 1 and 2 BLAS are adapted to the architecture using only parameterization and
multiple implementation, while the critical Level 3 routines are tuned using source genera-
tion as well. Therefore, the tuning of the Level 1 and 2 BLAS is relatively straightforward:
some caching-related parameters are discovered empirically, and then each available ker-
nel implementation (called according to these caching parameters) is tried in turn, and the
best-performing is chosen. With code generation, this becomes much more complex, as
discussed in succeeding sections.

One naive approach to performance tuning might be to tune each operation of interest
separately. This must be employed only when absolutely necessary in an AEOS-enabled
library, since the overheads of AEOS tuning are so great (production of the search, timers
and generators is very complicated, and search times are large). Unfortunately, each indi-
vidual Level 1 routine must essentially be tuned separately, though we use the real versions
of some routines to support the analogous complex operation. ATLAS leverages three per-
formance kernels (for each type/precision) in order to optimize the entire Level 2 BLAS
(these kernels are simplified versions of rank-1 update, matrix vector product, and trans-
pose matrix vector product). The Level 3 BLAS require one matrix multiply kernel (with
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three minor variations) to optimize all routines. Indeed, operations with differing storage
formats can efficiently utilize this simple kernel, as described in [10].

Given this overview of ATLAS’s BLAS tuning, we will now concentrate on the Level 3
BLAS. In Section 3.3 we outline how a vastly simplified kernel may be leveraged to sup-
port the entire Level 3 BLAS. Section 3.4 will describe the tuning process for this kernel,
Section 3.5 will describe the source generator which provides the bulk of ATLAS’s portable
optimization. Finally, Section 3.6 will discuss some of the problems in this approach, and
the way we have addressed them using multiple implementation.

3.3 Tuning the Level 3 BLAS Using a Simple Kernel

The Level 3 BLAS specify six (respectively nine) routines for the real (respectively com-
plex) data types. In addition to the general rectangular matrix-matrix multiplication (GEMM),
the Level 3 BLAS API [22] specifies routines performing triangular matrix-matrix multiply
(TRMM), triangular system solve (TRSM), symmetric or Hermitian matrix-matrix multi-
ply (SYMM, HEMM), and symmetric or Hermitian rank-k and rank-2k updates (SYRK,
SYR2K, HERK and HER2K).

From a mathematical point of view, it is clear that all of these operations can be expressed
in terms of general matrix-matrix multiplies (GEMM) and floating-point division. Such a
design is highly attractive due to the obvious potential for code reuse. It turns out that such
formulations of these remaining Level 3 BLAS operations can be made highly efficient,
assuming the implementation of the GEMM routine is. Such Level 3 BLAS designs are
traditionally referred to asGEMM-based[25, 26, 27, 28, 29]. ATLAS uses its own variation
of recursive GEMM-based BLAS to produce a majority of the Level 3 BLAS, with some
operations being written to directly exploit a lower level kernel, as described in [10].

Therefore, the tuning of the Level 3 BLAS has now been reduced to the more targeted
problem of tuning the BLAS routine GEMM. Again, the obvious approach is to attempt
to tune this routine as the performance kernel, and again, it would lead to almost unman-
ageable complexity. Instead, we write this rather complicated GEMM routine in terms of
a much simpler building-block matmul kernel, that can be more easily hand-tuned (in the
case of multiple implementation) or generated automatically (as in source generation).

Our simplified matmul kernel comes in three slightly different forms: (1)C ← AT B, (2)
C ← AT B + C, and (3)C ← AT B + βC. In general, we tune using the case (2), and use
the same parameters for (1) and (3). For all versions of the kernel, all matrix dimensions
are set to a empirically-discovered cache blocking parameter,NB . NB typically blocks for
the first level of cache accessible to FPU. On some architectures, the FPU does not access
the level 1 cache, but for simplicity, we will still refer toNB as the level 1 cache blocking
parameter, and it is understood that level 1 cache in this context means the first level of
cache addressable by the FPU.

The full GEMM is then built by looping over calls to this kernel (with some calls to some
specially-generated cleanup code, called when one or more dimension is not a multiple of
NB). The code that calls the empirically tuned kernel is itself further tuned to block for the
level 2 cache, using another empirically discovered parameter calledCacheEdge . This is
described in further detail in [2].
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Figure 1: ATLAS’s matmul kernel search

3.4 Overview of ATLAS GEMM Kernel Search

ATLAS’s matmul kernel search is outlined in Figure 1. Our master search first calls the
generator search, which uses a heuristic to probe the essentially unbounded optimization
space allowed by the source generator, and returns the parameters (eg., blocking factor,
unrollings, etc) of the best case found. The master search then calls the multiple imple-
mentation search, which simply times each hand-written matmul kernel in turn, returning
the best. The best performing (generated, hand-tuned) kernel is then taken as our system-
specific L1 cache-contained kernel.

Both multiple implementation and generator searches pass the requisite kernel through a
timing step, where the kernel is linked with a AEOS-quality timer, and executed on the
actual hardware. Once the search completes, the chosen kernel is then tested to ensure it is
giving correct results, as a simple sanity test to catch errors in compilation or kernels.

For both searches, our approach takes in some initial (empirically discovered) information
such as L1 cache size, types of instructions available, types of assembly supported, etc, to
allow for an up-front winnowing of the search space. The timers are structured so that op-
erations have a large granularity, leading to fairly repeatable results even on non-dedicated
machines. All results are stored in files, so that subsequent searches will not repeat the
same experiments, allowing searches to build on previously obtained data. This also means
that if a search is interrupted (for instance due to a machine failure), previously run cases
will not need to be re-timed. A typical install takes from 1 to 2 hours for each precision.

The first step of the master search probes for the size of the L1 cache. This is used to limit
the search forNB , which is further restricted to a maximal size of 80 in order to main-
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tain performance for applications such as the LAPACK factorizations, which partially rely
on unblocked computations. Similar small benchmarks are used to determine the maxi-
mal number of registers and the correct floating point operations to use. This process is
described in greater detail in [2].

When both the multiple implementation and generator searches are completed, the mas-
ter search designates the fastest of these two kernels (generated and hand-written) as the
architecture-specific kernel for the target machine, and it is then leveraged to speed up the
entire Level 3 BLAS, as we have previously discussed.

3.5 Source Generator Details

The source generator is the key to ATLAS’s portable efficiency. As can be seen from Fig-
ure 1, the code generator is completely platform independent, as it generates only strict
ANSI/ISO C. It takes in parameters, which together optimize for instruction and data cache
utilization, software pipelining, register blocking, loop unrolling, dependence breaking,
superscalar & fetch scheduling, etc. Note that since the generated source is C, we can al-
ways use the compiler’s version of a particular transformation if it is highly optimized.
For instance, a kernel generated with no inner-loop unrolling may be the best, because the
compiler itself unrolls the inner loop, etc. Thus, the source generator’s optimizations are
essentially the union of the optimizations it and the native compiler possess.

The most important options to the source generator are:

• Size of L1 cache block,NB

• Support forA and/orB being either standard form, or stored in transposed form
• Register blocking of “outer product” form (the most optimal form of matmul register

blocking). Varying the register blocking parameters provides many different imple-
mentations of matmul. The register blocking parameters are:
– ar : registers used for elements ofA,
– br : registers used for elements ofB
Outer product register blocking then implies thatar × br registers are then used to
block the elements ofC. Thus, ifNr is the maximal number of registers discovered
during the floating point unit probe, the search will try essentially allar andbr that
satisfyarbr + ar + br ≤ Nr.

• Loop unrollings: There are three loops involved in matmul, one over each of the
provided dimensions (M, N and K), each of which can have its associated unrolling
factor (mu, nu, ku). The M and N unrolling factors are restricted to varying with the
associated register blocking (ar andbr, respectively), but the K-loop may be unrolled
to any depth (i.e., oncear is selected,mu is set as well, butku is an independent
variable).

• Choice of floating point instruction:
– combined multiply/add with associated scalar expansion
– separate multiply and add instructions, with associated software pipelining and

scalar expansion
• User choice of utilizing generation-time constant or run-time variables for all loop

dimensions (M, N, and K; for non-cleanup copy L1 matmul,M = N = K = NB).
For each dimension that is known at generation, the following optimizations are
made:
– If unrolling meets or exceeds the dimension, no actual loop is generated (no

need for loop if fully unrolled).
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– If unrolling is greater than one, correct cleanup can be generated without using
an if (thus avoiding branching within the loop).

Even if a given dimension is a run-time variable, the generator can be told to assume
particular, no, or general-case cleanup for arbitrary unrolling.

• For each operand array, the leading dimension can be a run-time variable or a generation-
time constant (for example, it is known to beNB for copied L1 matmul), with asso-
ciated savings in indexing computations

• For each operand array, the leading dimension can have a stride (stride of 1 is most
common, but stride of 2 can be used to support complex arithmetic).

• The generator can eliminate unnecessary arithmetic by generating code with special
α (1, -1, and variable) andβ (0, 1, -1, and variable) cases. In addition, there is a
special case for whenα andβ are both variables, but it is safe to divideβ by α (this
can save multiple applications ofα).

• Various fetch patterns for loading A and B registers

3.6 The Importance of Multiple Implementation

With the generality of the source generator coupled with modern optimizing compilers,
it may seem counter-intuitive that multiple implementation is needed. Because ATLAS is
open source, however, multiple implementation can be very powerful. We have designed
the matmul kernel to be simple, and provided the infrastructure so that a user can test and
time hand-tuned implementations of it easily (see [24] for details). This allows any inter-
ested user to write the kernel as specifically as required for the architecture of interest, even
including writing in assembly (as shown in Figure 1). This then allows for the exploitation
of architectural features which are not well utilized by the compiler or the source generator
which depends upon it.

Our own experience has been that even the most efficient compiled kernel can be improved
by a modest amount (say around 5%) when written by a skilled hand-coder in assembly, due
merely to a more efficient usage of system resources than general-purpose compilers can
achieve on complicated code. This problem became critical with the widespread availability
of SIMD instructions such as SSE. At first, no compiler supported these instructions; now
a few compilers, such as Intel’s icc, will do the SIMD vectorization automatically, but they
still cannot do so in a way that is competitive with hand-tuned codes for any but the simplest
of operations.

For example, on a Pentium 4, if ATLAS is installed using the Intel’s compilers, the best
multiple implementation kernel is 1.9 (3.1) times faster than the best DGEMM (SGEMM,
respectively) created using source generation. The main differences between the hand-
tuned kernels and the generated kernels is that they fully exploit SSE (including using
prefetch).

Therefore, multiple implementation is very useful as a mechanism to capture optimizations
that the compiler and generator cannot yet fully exploit. Since ATLAS never blindly uses
even a kernel written specifically for a particular architecture, as greater capabilities come
online upstream (for instance, better SIMD vectorization in the compiler, or source gener-
ation of SIMD assembly), the search will continue to get the best of both worlds. Note that
it may seem that these kernels might be good for only one machine, but this is certainly not
true in practice, as even a kernel written in assembly may still be an aid topersistent opti-
mization. For instance, a kernel optimized for the Pentium III might be the best available
implementation for the Pentium IV or Athlon as well.
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4 Automatically Tuned Numerical Kernels: the Sparse Case

This section reviews our recent work on automatic tuning of computational kernels in-
volving sparse matrices (or,sparse kernels) [30, 31, 32, 33, 34]. Like the dense kernel case
described above in Section 2.2, tuning sparse kernels is difficult owing to the complex ways
in which performance depends on the underlying machine architecture. In addition, perfor-
mance in the sparse case depends strongly on the non-zero structure of the user’s sparse
matrix. Since the matrix might not be known until run-time, decisions about how to apply
memory hierarchy optimizations like register- and cache-level blocking (tiling) transfor-
mations must be deferred until run-time. Since tuning in the dense case can be performed
off-line (e.g., as in ATLAS [2]), the need for run-time tuning is a major distinction of the
sparse case.

Below, we show examples of the difficulties that arise in practice (Section 4.1), describe
how our hybrid off-line/run-time empirical approach to tuning addresses these difficulties
(Section 4.2), and summarize the optimization techniques we have considered for sparse
kernels (Section 4.3). This work is being implemented in the SPARSITY Version 2 auto-
matic tuning system [30, 35]. This system builds on a successful prototype (SPARSITY

Version 1 [36]) for generating highly tuned implementations of one important sparse ker-
nel, sparse matrix-vector multiply (SpMV). The work described here expands the list of
optimizations that SPARSITY can consider (Section 4.3.1), and adds new sparse kernels
such as sparse triangular solve (Section 4.3.2).

4.1 Challenges and Surprises in Tuning

Achieving high-performance for sparse kernels requires choosing appropriate data struc-
ture and code transformations that best exploit properties of both the underlying machine
architecture (e.g., caches and pipelines) and the non-zero structure of the matrix. However,
non-obvious choices often yield the most efficient implementations due to the surprisingly
complex behavior of performance on modern machines. We illustrate this phenomenon
below, after a brief review of the basics of sparse matrix storage.

4.1.1 Overheads Due to Sparse Data Structures

Informally, a matrix issparseif it consists of relatively few non-zeros. We eliminate storage
of and computation with the zero entries by a judicious choice of data structure which stores
just the non-zero entries, plus some additional indexing information to indicate which non-
zeros have been stored. For instance, a typical data structure for storing a general sparse
matrix is the so-calledcompressed sparse row(CSR) format, which is the baseline format
in standard libraries such as SPARSKIT [37] and PETSc [38].1 The CSR data structure
packs the non-zero values of the matrix row by row in an array. CSR stores an additional
integer column index for each non-zero in a second parallel array, and maintains a third
array holding pointers to the start of each row within the value and index arrays. Compared
to dense matrix storage, CSR has a per non-zero overhead of 1 integer index (ignoring the
row pointers).

The resulting run-time overheads are significant for sparse kernels like SpMV. Consider
the SpMV operationy ← y + A · x, whereA is a sparse matrix andx, y are dense vectors.
This operation executes only 2 flops per non-zero ofA, (Section 3), and the elements of

1. Sparse matrices in the commercial engineering package, MATLAB, are stored in the analogous compressed
sparse column (CSC) format [39].
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Matrix 02−raefsky3: 8x8 blocked submatrix (1:80, 1:80)

Figure 2:Example of a sparse matrix with simple block structure: (Left) A sparse matrix
arising from a finite element discretization of an object in a fluid flow simulation. This ma-
trix has dimensionn = 21216 and contains approximately 1.5 million non-zeros. (Right)
The matrix consists entirely of8×8 dense non-zero blocks, uniformly aligned as shown in
this80×80 submatrix.

A are not reused. Thus, there is little opportunity to hide the cost of extra loads due to
the column indices. In addition, sparse data structures lead to code with indirect memory
references, which can be difficult for compilers to analyze statically. For example, CSR
storage prevents automatically tiling accesses tox for either registers or caches, as might
be done in the dense case [40, 41, 42, 43]. Depending on the matrix non-zero structure, the
resulting memory access patterns can also be irregular—for CSR, this possibility prevents
hardware or software prefetching of the elements ofx.

4.1.2 Surprising Performance Behavior in Practice

We can reduce the sparse indexing overheads by recognizing patterns in the non-zero struc-
ture. For example, in simulations based on the finite element method, the matrix may con-
sist entirely of small fixed size dense rectangularr×c blocks. We can used a blocked vari-
ant of CSR—block CSR, or BCSR, format—which stores one index per block instead of
one per non-zero. Figure 2 shows an example of a sparse matrix which consists entirely
of 8×8 blocks. This format enables improved scheduling and register-level reuse opportu-
nities compared to CSR: multiplication in BCSR format proceeds block-by-block, where
eachr×c block multiply is fully unrolled and the correspondingr elements ofy and c
elements ofx stored in registers. For this example matrix, BCSR reduces the overall index
storage by a factor ofr · c = 64 compared to CSR.

Even if the block structure is simple and known, the best block size is not always obvious.
For example, consider an experiment in which we executed 16r×c BCSR implementations
of SpMV on the matrix shown in Figure 2, wherer, c ∈ {1, 2, 4, 8}. We show the results
on a machine based on the Sun Ultra3 microprocessor in Figure 3 (left), and on the Intel
Itanium 2 in Figure 3 (right). On each platform, each implementation is shaded by its
performance in Mflop/s and labeled by its speedup relative to the CSR (or, unblocked1×1)
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Figure 3:Surprising performance behavior in practice: register blocked sparse matrix-
vector multiply. Each square is anr×c implementation, shaded by its performance in
Mflop/s and labeled by its speedup relative to the unblocked (1×1) CSR implementation,
wherer, c ∈ {1, 2, 4, 8}. (Left) On the Sun Ultra3 platform (1.8 Gflop/s peak), performance
increases smoothly asr, c increase, as expected. (Right) On the Intel Itanium 2 platform
(3.6 Gflop/s peak), 31% of peak (4× speedup) is possible, but at4×2 instead of8×8.

case. Observe that maximum speedups of2.04× on the Ultra3 and4.07× on the Itanium
2 are possible for this matrix. On the Itanium 2, this performance is over 1.1 Gflop/s, or
31% of peak machine speed, and is comparable to the performance of a well-tuned dense
matrix-vector multiply performance (DGEMV) of 1.3 Gflop/s by Goto [44]. However, the
best block size is4×2, and not8×8 on Itanium 2. Although there are a variety of reasons
why users might reasonably expect performance to increase smoothly asr×c increases
toward8×8—as it does on the Ultra3—the irregular variation in performance observed on
the Itanium 2 is typical on a wide range of modern machines [31]. Indeed, this kind of
behavior persists even if we remove all of the irregularity in the memory access pattern by,
for instance, using a dense matrix stored in BCSR format [31].

The problem of data structure selection is further complicated by the fact that we can alter
the non-zero pattern by introducing explicit zeros to enable the use of a fast implementa-
tion. For example, consider the sparse matrix shown in Figure 4 (left), which has a complex
arrangement of non-zeros (each shown as a dot). There is no obvious singler×c block size
that perfectly captures this structure. Suppose we nevertheless store the matrix in3×3 for-
mat, as shown in Figure 4 (right), storing explicit zeros (each shown as an ’x’) to fill each
block. We define thefill ratio at r×c to be the total number of stored zeros (original non-
zeros plus explicit zeros) divided by the number of original non-zeros. In this example,
the fill ratio at3×3 happens to be 1.5, meaning that SpMV in this format will execute 1.5
times as many flops. However, the resulting implementation on a Pentium III takes2

3 as
much time as the unblocked implementation (a1.5× speedup). In general, this speedup is
possible because (a) though the flops increase, index storage (and possibly total storage)
can be reduced, and (b) implementations at particular values ofr andc may be especially
efficient, as we suggested by the Itanium 2 results shown in Figure 3 (right).

There are many additional examples of complex and surprising performance behavior, and
we refer the interested reader to recent work documenting these phenomena [31, 30, 35].
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Figure 4:Altering the non-zero pattern can yield a faster implementation: (Left) A
50×50 submatrix of Matrix ex11 from a fluid flow problem [45]. Non-zeros are shown by
dots. (Right) The same matrix stored in3×3 BCSR format. We impose a logical grid of
3×3 cells, and fill in explicit zeros (shown by x’s) to ensure that all blocks are full. The fill
ratio for the entire matrix is 1.5, but the SpMV implementation is still 1.5 times faster than
the unblocked case on a Pentium III platform. Despite the 50% increase in stored values,
total storage (in bytes) increases only by 7% because of the reduction in index storage.

4.2 A Hybrid Off-line/Run-time Empirical Search-Based Approach to Tuning

Our approach to choosing an efficient data structure and implementation, given a kernel,
sparse matrix, and machine, is based on a combination of heuristic performance modeling
and experiments, carried out partly off-line and partly at run-time. For each kernel, we

1. identify andgenerate a space of reasonable implementations, and
2. search this space for the best implementation using a combination of heuristic mod-

els and experiments (i.e., actually running and timing the code).

For a particular sparse kernel and matrix, the implementation space is a set of data struc-
tures and corresponding implementations (i.e., code). Each data structure is designed to im-
prove locality by exploiting a class of non-zero patterns commonly arising in practice, such
as small fixed-sized rectangular blocks, diagonals and bands, or symmetry, or even combi-
nations of these patterns. Section 4.3 summarizes the kinds of performance improvements
we have observed on a variety of different architectures for several locality-enhancing data
structures and algorithms.

We search by evaluating heuristic models that combine benchmarking data with estimated
properties of the matrix non-zero structure. The benchmarks, which consist primarily of ex-
ecuting each implementation (data structure and code) on synthetic matrices, need to be ex-
ecuted only once per machine. This step characterizes the machine in a matrix-independent
way. When the user’s sparse matrix is known at run-time, we estimate performance-relevant
structural properties of the matrix. The heuristic models combine these benchmarking and
matrix-specific data to predict what data structure will yield the best performance. This
approach uses both modeling and experiments, both off-line and at run-time. Below, we
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describe an example of this methodology applied to the selection of register-level block
(tile) sizes for SpMV and other sparse kernels.

4.2.1 Example: Using Empirical Models and Search to Select a Register Block Size

We can overcome the difficulties in selecting a register block size discussed in Section 4.1
using the following empirical technique. The basic idea is to decouple machine-specific
aspects of performance which can be measured off-line from matrix-specific aspects deter-
mined at run-time.

In the example of Figures 2–3, trying all or even a subset of block sizes is likely to be
infeasible if the matrix is known only at run-time, because of the cost of simply converting
the matrix to blocked format. For instance, the cost of converting a matrix from CSR format
to BCSR format once can be as high as 40 SpMVs in CSR format, depending on the
platform and matrix [31]. Though the cost of a single conversion is acceptable in many
important application contexts (e.g., solving linear systems or computing eigenvalues by
iterative methods) where hundreds or thousands of SpMVs can be required for a given
matrix, exhaustive run-time search—needed particularly in the case when we may allow
for fill of explicit zeros in blocking, for example—is still likely to be impractical.

Our goal then is to develop a procedure for selecting anr×c block size that is reasonably
accurate, requires at most a single conversion, and whose cost is small compared to the
cost of conversion. The irregularity of performance as a function ofr andc means that
developing an accurate but simple analytical performance model will be difficult. Instead,
we use the following three-step empirical procedure:
1. Off-line benchmark: Once per machine, measure the speed (in Mflop/s) ofr×c

register blocked SpMV for a dense matrix stored in sparse format, at all block sizes
from 1×1 to 12×12. Denote theregister profileby {Prc (dense) |1 ≤ r, c ≤ 12}.

2. Run-time “search” : When the matrixA is known at run-time, compute an estimate
f̂rc (A) of the true fill ratio for all1 ≤ r, c,≤ 12. This estimation constitutes a form
of empirical search over possible block sizes.

3. Heuristic performance model: Chooser, c that maximizes the followingestimate
of register blocking performancêPrc (A),

P̂rc (A) =
Prc (dense)

f̂rc (A)
(1)

This model decouples machine-specific aspects of performance (register profile in the nu-
merator) from a matrix-specific aspect (fill ratio in the denominator).

This procedure, implemented in the upcoming release of SPARSITY, frequently selects the
best block size, and yields performance that is nearly always 90% or more of the best
[30, 31]. In addition, the run-time costs of steps 2 and 3 above can be kept to between
1–11 unblocked SpMVs, depending on the platform and matrix, on several current plat-
forms [31]. This cost is the penalty for evaluating the heuristic if it turns out no blocking
is required. If blocking is beneficial, we have found that the overall block size selection
procedureincluding conversion is never more than 421×1 SpMVs on our test machines
and matrices, meaning the cost of evaluating the heuristic is modest compared to the cost
of conversion [31].

Moreover, we can easily generalize this heuristic procedure for other kernels by simply
substituting a kernel-specific register profile (step 1). We have shown that this procedure
selects optimal or near-optimal block sizes for sparse triangular solve [46] and multiplica-
tion byAAT [47].
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4.2.2 Contrast to a Static Compilation Approach

There are several aspects of our approach to tuning sparse kernels which are beyond the
scope of traditional static general-purpose compiler approaches.

• Transformations based on run-time data: For a particular sparse matrix, we may
choose a completely different data structure from the initial implementation; this
new data structure may even alter the non-zero structure of the matrix by, for exam-
ple, reordering the rows and columns of the matrix, or perhaps by choosing to store
some zero values explicitly (Section 4.1). These kinds of transformations depend
on the run-time contents of the input matrix data structure, and these values cannot
generally be predicted from the source code implementation alone.

• Aggressive exploitation of domain-specific mathematical properties for performance:
In identifying the implementation spaces, we consider transformations based on
mathematical properties that we would not expect a general purpose compiler to
recognize. For instance, in computing the eigenvalues ofA using a Krylov method
[48], we may elect to changeA to P · A · PT , whereP is a permutation matrix.
This permutation of rows and columns may favorably alter the non-zero structure of
A by improving locality, but mathematically does not change the eigenvalues, and
therefore the application ofP may be ignored.

• Heuristic, empirical models: Our approach to tuning identifies candidate implemen-
tations using heuristic models of both the kernel and run-time data. We would expect
compilers built on current technology neither to identify such candidates automati-
cally, nor posit the right models for choosing among these candidates. We elaborate
on this argument elsewhere [31].

• Tolerating the cost of search: Searching has an associated cost which can be much
longer than traditional compile-times. Knowing when such costs can be tolerated,
particularly since these costs are incurred at run-time, must be justified by actual ap-
plication behavior. This behavior can be difficult to deduce with sufficient precision
based on the source code alone.

4.3 Summary of Optimization Techniques and Speedups

We have considered a variety of performance optimization techniques for sparse kernels in
addition to the register-level blocking scheme described in Section 4.2 [30, 31, 32, 33, 34].
Below, we summarize these techniques, reporting the maximum speedups over CSR and
register blocking that we have observed for each technique. We also note major unresolved
issues, providing pointers both to existing and upcoming reports that discuss these tech-
niques in detail and to related work external to this particular research project. At present,
we are considering all of these techniques for inclusion in the upcoming release of SPAR-
SITY.

We have evaluated these techniques on a set of 44 test matrices that span a variety of appli-
cations domains. For our summary, we categorize these matrices into three broad classes
as follows:

• Single-block FEM Matrices: These matrices, arising in finite element method (FEM)
applications, have non-zero structure that tends to be dominated by a single block
size on a uniformly aligned grid. The matrix shown in Figure 2 exemplifies this class
of matrix structures.

• Multi-block FEM Matrices : These matrices also arise in FEM applications, but
have a non-zero structure that can be characterized as having one or more “natural”
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block sizes aligned irregularly. Figure 4 shows one example of a matrix from this
class, and we mention another below.

• Non-FEM Matrices: We have also considered matrices arising in a variety of Non-
FEM based modeling and simulation, including oil reservoir modeling, chemical
process simulation, finance and macroeconomic modeling, and linear programming
problems, among others. The main distinction of this class is the lack of regular block
structure, though the non-zero structure is generally not uniformly random, either.

This categorization reflects the fact that the register blocking optimization, the technique we
have most thoroughly studied among those listed below, appears to yield the best absolute
performance in practice on cache-based superscalar platforms.

4.3.1 Techniques for Sparse Matrix-Vector Multiply

The following list summarizes the performance-enhancing techniques we have considered
specifically for SpMV. Full results and discussion can be found in [31].

• Register blocking, based on BCSR storage: up to4× speedups over CSR.

A number of recent reports [30, 31, 35, 36] validate and analyze this optimization
in great depth. The largest pay-offs occur on Single-block FEM matrices, where we
have observed speedups over CSR of up to4×. We have also observed speedups
of up to2.8× on Multi-block FEM matrices by judicious creation of explicit zeros
as discussed for the matrix in Figure 4. The accuracy of the block size selection
procedure described in Section 4.2 means we can apply this optimization fully auto-
matically.

• Multiplication by multiple vectors: up to 7× over CSR, up to2.5× over register
blocked SpMV.

Some applications and numerical algorithms require applying the matrixA to many
vectors simultaneously,i.e., the “SpMM” kernelY ← Y + A · X, whereX and
Y are dense matrices [36, 49]. We can reuseA in this kernel, where the key tuning
parameter is the depth of unrolling across the columns ofX andY .

• Cache blocking: up to2.2× over CSR.

Cache blocking, as described in implemented by Im [36] for SpMV, reorganizes a
large sparse matrix into a collection of smaller, disjoint rectangular blocks to im-
prove temporal access to elements ofx. This technique helps to reduce misses to
the source vector toward the lower bound of only cold start misses. The largest im-
provements occur on large, randomly structured matrices like those arising in linear
programming applications, and in latent semantic indexing applications [50].

• Symmetry: symmetric register blocked SpMV is up to2.8× faster than non-
symmetric CSR SpMV, and up to2.1× faster than non-symmetric register blocked
SpMV; symmetric register blocked SpMM is up to7.3× faster than CSR SpMV,
and up to 2.6× over non-symmetric register blocked SpMM.

Lee,et al., study a register blocking scheme whenA is symmetric (i.e., A = AT )
[32]. Symmetry requires that we only store roughly half of the non-zero entries, and
yields significant performance gains as well.

• Variable block splitting, based on unaligned BCSR storage: up to2.1× over
CSR; up to 1.8× over register blocking.

To handle the Multi-block FEM matrices, which are composed of multiple irregu-
larly aligned rectangular blocks, we have considered a technique in which we split
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the matrixA into a sumA = A1 + A2 + . . . + As, where each term is stored in
anunalignedBCSR (UBCSR) data structure. UBCSR augments BCSR format with
additional indices that allow for arbitrary row alignments [31]. The split-UBCSR
technique reduces the amount of fill compared to register blocking. The main matrix-
and machine-specific tuning parameters in the split UBCSR implementation are the
number of splittingss and the block size for each termAi.
We view the lack of a heuristic for determining whether and how to split to be the
major unresolved issue related to splitting.

• Exploiting diagonal structure, based on row-segmented diagonal storage: up to
2× over CSR.

Diagonal formats (and diagonal-like formats, such as jagged-diagonal storage [37])
have traditionally been applied on vector architectures [51, 52]. We have shown the
potential pay-offs from careful application on superscalar cache-based microproces-
sors by generalizing diagonal format to handle complex compositions of non-zero
diagonal runs [31]. For example, Figure 5 shows a submatrix of a larger matrix with
diagonal run substructure. The rows between each pair of consecutive horizontal
lines consists of a fixed number of diagonal runs. By storing the matrix in blocks
of consecutive rows as shown and unrolling the multiplication along diagonals, we
have shown that implementations based on this format can lead to speedups of2×
or more for SpMV, compared to a CSR implementation. The unrolling depth is the
main matrix- and machine-specific tuning parameter.
Again, effective heuristics for deciding when and how to select the main matrix- and
machine-specific tuning parameter (unrolling depth) remain unresolved. However,
our preliminary data suggests that performance is arelativelysmooth function of the
tuning parameter, compared to the way in which performance varies with block size,
for instance [31]. This finding suggests that a practical heuristic will not be difficult
to develop.

• Reordering to create dense blocks: up to1.5× over CSR.

Pinar and Heath proposed a method to reorder rows and columns of a sparse matrix
to createdense rectangular block structure which might then be exploited by splitting
[53]. Their formulation is based on the Traveling Salesman Problem. In the context
of SPARSITY, Moon,et al., have applied this idea to the SPARSITY benchmark suite,
showing speedups over conventional register blocking of up to1.5× on a few of the
Multi-block FEM and Non-FEM matrices.

4.3.2 Techniques for Other Sparse Kernels

A variety of optimization techniques may be applied to sparse kernels besides SpMV, as
summarized below.

• Sparse triangular solve: up to1.8× speedups over CSR.

We recently showed how to exploit the special structure of sparse triangular matrices
that arise during LU factorization [46]. These matrices typically have a large dense
trailing triangle, such as the one shown in Figure 6: The trailing triangle in the lower
right-hand corner of this lower triangular matrix accounts for more than 90% of the
total non-zeros. We partition the solve into a sparse phase and a dense phase by
appropriate algorithmic and data structure reorganizations. To the sparse phase, we
adapt the register blocking optimization as it is applied to SpMV; to the dense phase,
we can call a tuned BLAS triangular solve routine (e.g., DTRSV). We refer to this
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Figure 5:An example of complex diagonal structure: An 80×80 submatrix of a larger
matrix that arises in an epidemiology study [54]. All of the rows between each pair of
consecutive horizontal lines intersect the same diagonal runs.

latter step as theswitch-to-denseoptimization. Like register blocking for SpMV, the
process of identifying the trailing triangle and selecting a block size can be fully
automated [46]. We have observed performance improvements of up to1.8× over a
basic implementation of sparse triangular solve using CSR storage.

• Multiplication by sparse AAT : 1.5−4.2× relative to applying A and AT in CSR
as separate steps; up to1.8× faster than BCSR.

The kernely ← y+AAT ·x, whereA is a given sparse matrix andx, y are dense vec-
tors, is a key operation in the inner-loop of interior point methods for mathematical
programming problems [55], algorithms for computing the singular value decom-
position [48], and Kleinberg’s HITS algorithm for finding hubs and authorities in
graphs [56], among others. A typical implementation first computest← AT · x fol-
lowed byy ← y + A · t. SinceA will generally be much larger than the size of the
cache, the elements ofA will be read from main memory twice. However, we can
reorganize the computation to reuseA.

• Multiplication by sparse Ak using serial sparse tiling: whenk = 4, up to 2×
faster than separately applyingA k times in BCSR format.

Like AAT · x, the kernely ← Ak · x, which appears in simple iterative algorithms
like the power method for computing eigenvalues [48], also has opportunities to
reuse elements ofA. A typical reference implementation storesA in CSR or BCSR
format, and separately appliesA k times.

4.4 Remaining Challenges and Related Work

Although pay-offs from individual techniques can be significant, the common challenge
is deciding when to apply particular optimizations and how to choose the tuning param-
eters. While register blocking and automatic block size selection is well understood for
SpMV, sparse triangular solve, and multiplication by sparseAAT , heuristics for the other
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Figure 6:The non-zero structure of a sparse triangular matrix arising from LU factor-
ization: This matrix, from the LU factorization of a circuit simulation matrix, has dimen-
sion 17758 and 2 million non-zeros. The trailing triangle, of dimension 1978, is completely
dense and accounts for over 90% of all the non-zeros in the matrix.

optimization techniques still need to be developed.

The Non-FEM matrices largely remain difficult, with exceptions noted above (also refer
to a recent summary for more details [31]). Careful analysis using performance bounds
models indicates that better low-level tuning of the CSR (i.e., 1 × 1 register blocking)
SpMV implementation may be possible [31]. Recent work on low-level tuning of SpMV
by unroll-and-jam (Mellor-Crummey,et al. [57]), software pipelining (Geus and Röllin
[58]), and prefetching (Toledo [59]) are promising starting points.

Moreover, expressing and automatically applying these low-level optimizations is a prob-
lem shared with dense matrix kernels. Thus, low-level tuning of, say, eachr×c implemen-
tation in the style of ATLAS and PHiPAC may yield further performance improvements
for sparse kernels. It is possible that by performing an ATLAS style search over possi-
ble instruction schedules may smooth out the performance irregularities shown in Figure
3 (right). It may be possible to modify existing specialized restructuring compiler frame-
works for sparse code generation to include an ATLAS-style search over possible instruc-
tion schedules [60, 61, 62].

In the space of higher-level sparse kernels beyond SpMV and triangular solve, the sparse
triple product, orRART whereA andR are sparse matrices, is a bottleneck in the multigrid
solvers [63, 64, 65, 66]. There has been some work on the general problem of multiplying
sparse matrices [67, 68, 69, 70], including recent work in a large-scale quantum chem-
istry application that calls matrix-multiply kernels automatically generated and tuned by
PHiPAC for particular block sizes [71, 1]. This latter example suggests that a potential
opportunity to apply tuning ideas to the sparse triple product kernel.
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5 Statistical determination of numerical algorithms

In the previous sections we looked at tuning numerical kernels. One characteristic of the
approach taken is that the analysis can be performed largely statically, that is, with most
of the analysis taking place at installation time. The tuned dense kernels then are almost
independent of the nature of the user data, with at most cases like very ‘skinny’ matrices
handled separately; tuned sparse kernels have a dynamic component where the tiling and
structuring of the matrices is at run-time handled, but even there the numerical values of the
user data are irrelevant. Algorithm choice, the topic of this section, is an inherently more
dynamic activity where the numerical content of the user data is of prime importance.

Abstractly we could say that the need for dynamic strategies here arises from the fact
that any description of the input space is of a very high dimension. In the case of dense
and sparse kernels, the algorithm search space is considerable, but the input data is easy
to describe. For dense kernels at most we allow for decisions based on matrix size (for
instance, small or ‘skinny’ matrices); for sparse matrices we need some description of the
nonzero density of the matrix to gauge the fill-in caused by blocking strategies. The input in
such applications as linear system solving is much harder to describe: we would typically
need to state the nonzero structure of the system, various norm-like properties, and even
spectral characteristics of the system. As a corollary, we can not hope to exhaustively search
this input space, and we have to resort to some form of modeling of the parameter space.

We will give a general discussion of the issues in dynamic algorithm selection and tun-
ing, present our approach which uses statistical data modeling, and give some preliminary
results obtained with this approach.

5.1 Dynamic Algorithm Determination

In finding the appropriate numerical algorithm for a problem we are faced with two issues:

1. There are often several algorithms that, potentially, solve the problem, and
2. Algorithms often have one or more parameters of some sort.

Thus, given user data, we have to choose an algorithm, and choose a proper parameter
setting for it.

Numerical literature is rife with qualitative statements about the relative merits of methods.
For instance, augmenting GMRES with approximated eigenvectors speeds convergence in
cases where the departure from normality of the system is not too large [72]. It is only sel-
dom that quantitative statements are made, such as the necessary restart length of GMRES
to attain a certain error reduction in the presence of an indefinite system [73]. Even in this
latter case, the estimate derived is probably far from sharp.

Thus we find ourselves in the situation that the choice between candidate methods and the
choice of parameter settings can not, or only very approximately, be made by implement-
ing explicitly known numerical knowledge. However, while making the exact determina-
tion may not be feasible, identifying the relevant characteristics of an application problem
may be possible. Instead of implementing numerical decisions explicitly, we can then em-
ploy statistical techniques to identify correlations between characteristics of the input, and
choices and parametrizations of the numerical methods.

Our strategy in determining numerical algorithms by statistical techniques is globally as
follows.

• We solve a large collection of test problems by every available method, that is, every
choice of algorithm, and a suitable ‘binning’ of algorithm parameters.
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• Each problem is assigned to a class corresponding to the method that gave the fastest
solution.

• We also draw up a list of characteristics of each problem.
• We then compute a probability density function for each class.

As a result of this process we find a functionpi(x̄) wherei ranges over all classes, that is,
all methods, and̄x is in the space of the vectors of features of the input problems. Given a
new problem and its feature vectorx̄, we then decide to solve the problem with the methodi
for whichpi(x̄) is maximised.

We will now discuss the details of this statistical analysis, and we will present some proof-
of-concept numerical results evincing the potential usefulness of this approach.

5.2 Statistical analysis

In this section we give a short overview of the way a multi-variate Bayesian decision rule
can be used in numerical decision making. We stress that statistical techniques are merely
one of the possible ways of using non-numerical techniques for algorithm selection and
parameterization, and in fact, the technique we describe here is only one among many
possible statistical techniques. We will describe here the use of parametric models, a tech-
nique with obvious implicit assumptions that very likely will not hold overall, but, as we
shall show in the next section, they have surprising applicability.

5.2.1 Feature extraction

The basis of the statistical decision process is the extraction of features2 from the appli-
cation problem, and the characterization of algorithms in terms of these features. In [74]
we have given examples of relevant features of application problems. In the context of lin-
ear/nonlinear system solving we can identify at least the following categories of features:

• Structural characteristics. These pertain purely to the nonzero structure of the sparse
problem. While at this level the numerical properties of the problem are invisible,
in practice the structure of a matrix will influence the behaviour of such algorithms
as incomplete factorisations, since graph properties are inextricably entwined with
approximation properties.

• Simple numerical characteristics. By these we mean quantities such as norms (1-
norm, infinity norm, norm of symmetric part, et cetera) that are exactly calculable in
a time roughly proportional to the number of nonzeros of the matrix.

• Spectral properties. This category includes such characteristics as the enclosing el-
lipse of the field of values, or estimates of the departure from normality. While such
quantities are highly informative, they are also difficult, if not impossible, to calcu-
late in a reasonable amount of time. Therefore, we have to resort to approximations
to them, for instance estimating the spectrum from investigating the Hessenberg re-
duction after a limited-length Krylov run [75, 76].

A large number of such characteristics can be drawn up, but not all will be relevant for each
numerical decision. After the testing phase (described below), those features that actually
correlate with our decisions will have to be found. Also, many features need to be normal-
ized somehow, for instance relating structural properties to the matrix size, or numerical
properties to some norm of the matrix or even the(1, 1) element of the matrix.

2. We use the terms ‘characteristics’ and ‘features’ interchangably, ‘features’ being the term used in the statistical
literature.
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5.2.2 Training stage

Based on the feature set described above, we now engage in an – expensive and time-
consuming – training phase, where a large number of problems is solved with every avail-
able method. For linear system solving, methods can be described as an orthogonal combi-
nation of several choices:

• Iterative method. The choice of iterative method entails both the choice between such
different methods as BiCGstab [77] and GMRES [73], and the choice of parameters
such as the restart length of GMRES. In order to make the latter choice manageable,
we ‘bin’ the possible values, in effect limiting it to a few values that we predict to be
practically qualitatively different. For instance, for the GMRES parameter we only
investigate the choices 5, 20, 50.

• Preconditioner. This is probably the most important choice in constructing an it-
erative linear system solver. While there are theoretical statements about relations
between iterative methods, no such knowledge about preconditioners exists. In fact,
for each pair of preconditioners we can find problems where one is suitable and the
other not. As in the case of iterative methods, we may need to bin method parameters,
for instance the number of ILU fill-in levels.

• Scaling, permutation, and other preprocessing steps. While the above choices of de-
ciding the iterative method and preconditioner are the ones that mostly come to mind
when we talk about iterative solvers, there are various preprocessing steps one can
apply to the problem that can have a large influence on convergence speed. In fact,
for our numerical test below we investigate the influence of different permutations
of the linear system on the speed of solution.

In spite of this multi-dimensional characterization of iterative solvers, we will for the pur-
pose of this exposition consider methods as a singly-indexed set.

The essential step in the training process is that each numerical problem is assigned to a
class, where the classes correspond to the solvers, and the problem is assigned to the class
of the method that gave the fastest solution. As a result of this, we find for each method
(class) a number of problems that are best solved by it. From the feature vectors of these
problems we extract a vector of mean valuesµ̄ and a covariance matrixΣ:

Σ =
1
N

N∑
i=1

(x̄i − µ)(x̄i − µ)t

where{x̄i}Ni=1 are the samples in the class for which we are calculating the covariance
matrix.

The mean value vector and covariance matrix give us a multivariate density function for
methodj:

pj(x̄) =
1

2π|Σ|1/2
e−(1/2)(x̄−µ̄)Σ−1(x̄−µ̄)

Having computed these density functions, we can compute thea posterioriprobability of
a class (‘given a samplēx, what is the probability that it belongs in classj’) as

P (wi|x̄) =
p(x̄|wj)P (wj)

p(x̄)
.

We then select the numerical method for which this quantity is maximised.
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5.3 Numerical test

To study the behavior and performance of the statistical techniques described in the pre-
vious section, we perform several tests on a number of matrices from different sets from
the Matrix Market [78]. To collect the data, we generate matrix statistics by running an
exhaustive test of the different coded methods and preconditioners; for each of the matri-
ces we collect statistics for each possible existing combination of: permutation, scaling,
preconditioner and iterative method.

From this data we select those combinations that converged and had the minimum solving
time (those combinations that didn’t converge are discarded). Each possible combination
corresponds to a class, but since the number of these combination is too large, we reduce
the scope of the analysis and concentrate only on the behavior of the possible permutation
choices. Thus, we have three classes corresponding to the partitioning types:

Induced the default Petsc distribution induced by the matrix ordering and the number of
processors,

Parmetis , using the Parmetis [79, 80] package,
Icmk a heuristic [81] that, without permuting the system, tries to find meaningful split

points based on the sparsity structure.

Our test is to see if the predicted class (method) is indeed the one that yields minimum
solving time for each case.

5.4 Technical Approach

Following the approach described in the previous section, we first extract a series of statis-
tics and from these, select a set of features which are suitable for this type of method,
e.g. Bayesian analysis requires that the majority of the values collected for a feature are
at least slightly different from each other. Several combinations of differing numbers of
features have been used in different instances. Some of these features used are structural
and spectral statistics of the matrices:

• Diagonal, number of non-zeros, bandwidth
• Number of non-zeros
• Bandwidth Left and Right
• Number of possible split points found by the ICMK algorithm
• Ellipse enclosing the (estimated) spectrum: X and Y axes, and coordinates of the

center (xa, ya, xc and yc)
• Positive-definiteness, again based on an estimated spectrum.

The next step is to collect the training data, for which we randomly divide the totality
of the data in two portions, 66% is used for training the classifier, and the rest is used for
testing and validation. With this information we can then proceed to apply the classifiers for
training. In these tests we have used two types of classifying methods: parametric and non-
parametric. With a parametric classifier (also called ‘supervised method’) we estimate the
parameters for a presumed probability distribution function such as the normal distribution,
and we use this function as a basis for making decisions. The non-parametric classifier does
not assume the existence of any specific probability distribution, the function is instead built
specially from the collected data.

The last stage is validation. In our case we use the 34% of the data corresponding to the
testing set to evaluate the previously trained classifiers and decide, for each testing sample
to which class it belongs. For both of types of classification methods, the decision is made
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using the Bayes decision rule. To assess the performance of the classifiers, we compare the
predicted class to the class that, from the original data, has the smallest run time, if they
match then we call a hit and if they don’t we have a classification error.

5.5 Results

These results were obtained using the following approach for both training and testing the
classifier: considering that Induced and Icmk are the same except for the Block-Jacobi case,
if a given sample is not using Block-Jacobi it is classified as both Induced and Icmk, and if
it is using Block-Jacobi then the distinction is made and it is classified as Induced or Icmk.
For the testing set, the verification is performed with same criteria, for instance, if a sample
from the class Induced is not using Block-Jacobi and is classified as Icmk by the classifier,
is still counted as a correct classification (same for the inverse case of Icmk classified as
Induced), however, if a sample from the Induced class is classified as Induced and was
using block-jacobi, it is counted as a misclassification.

The results for the different sets of features tested, are as follows:

Features: non-zeros, bandwidth left and right,splits number, ellipse axes
Parametric Non-Parametric

Induced Class: 70% 60%
Parmetis Class: 98% 73%
Icmk Class: 93% 82%

Features: diagonal, non-zeros, bandwidth left and right, splits number,
ellipse axes and center

Parametric Non-Parametric
Induced Class: 70% 80%
Parmetis Class: 95% 76%
Icmk Class: 90% 90%

Features: diagonal, non-zeros, bandwidth left and right, ellipse’s x-axis
and center’s x-coordinate, positive-definiteness

Parametric Non-Parametric
Induced Class: 67% 77%
Parmetis Class: 93% 73%
Icmk Class: 91% 94%

Features: non-zeros, bandwidth left and right, splits number
Parametric Non-Parametric

Induced Class: 81% 53%
Parmetis Class: 95% 95%
Icmk Class: 94% 61%

Features: diagonal, non-zeros, bandwidth left and right, ellipse
axes, positive-definiteness

Parametric Non-Parametric
Induced Class: 40% 60%
Parmetis Class: 86% 73%
Icmk Class: 45% 81%

Features: diagonal, bandwidth left and right, ellipse’s center x-
coordinate, positive-definiteness

Parametric Non-Parametric
Induced Class: 89% 81%
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Parmetis Class: 97% 67%
Icmk Class: 54% 86%

It is important to note that although we have many possible features to choose from, there
might not be enough degrees of freedom (i.e. some of these features might be corelated), so
it is important to continue experimentation with other sets of features. The results of these
tests might give some lead for further experimentation and understanding of the application
of statistical methods on numerical data.

We now evaluate the performance of these methods by analyzing the gain and loss of
respectively predicting right and mispredicting. To estimate the pentalty of a misprediction,
i.e. relative difference between the time that corresponds to the predicted class, and the
real smallest time recorded; the average penalty, taken over the different combinations of
parameters of several random trials is of 0.7 with a standard deviation of 0.6, the maximum
being 2.2 and the minimum of 0.03.

To estimate the gain of predicting correctly, we compute the ratio between the worse time
observed and the time corresponding to the predicted method, the average gain factor is of
4.6, the maximum observed is of 20 and the minimum of 1.6. Furthermore, we estimate
the gain of mispredicting, i.e. even if the wrong class was chosen, the time associated to
it might still be better than the worse time observed, for this case we compute the ratio
between the worse time and the time of the predicted class, the average is 2.1, with a
maximum of 5.4 and a minimum of 1.4 observed.

These tests and results are a first glance at the behavior of the statistical methods presented,
and there is plenty of information that can be extracted and explored in other experiments
and perhaps using other methods.

6 Conclusion

For the efficient solution of scientific problems on today’s advanced platforms, an appli-
cation scientist can no longer rely on text book algorithms and reference implementations
thereof. Both the choice of algorithm and the optimization of its implementation require a
good deal of expertise, traditionally that of a trained computer scientist. It is not enough
to rely on research in programming languages, compilers, software tools. In this paper
we have explored approaches to automating the optimization tasks that traditionally were
entrusted to human experts. For kernel optimization, we have presented the AEOS (Auto-
mated Empirical Optimization of Software) approach, of which ATLAS and PHiPAC are
prime examples, for dense and sparse operations respectively. Through a combination of
automatic code generation and hand-coded optimizations these packages deliver several
factors improvement over what even the best of compilers can achieve on reference imple-
mentations. We have presented the SALSA package which uses statistical data modeling
as a tool for automatic algorithm choice.

Taken individually, the packages discussed here show great usefulness in their respective
target areas. However, their general approaches can be extended to other areas. The results
presented here show great promise for the future of portable adaptive high-performance
libraries.
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