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Abstract. This paper proposes an efficient implementation of the generalized sym-
metric eigenvalue problem on multicore architecture. Based on a four-stage ap-
proach and tile algorithms, the original problem is first transformed into a stan-
dard symmetric eigenvalue problem by computing the Cholesky factorization of
the right hand side symmetric definite positive matrix (first stage), and applying the
inverse of the freshly computed triangular Cholesky factors to the original dense
symmetric matrix of the problem (second stage). Calculating the eigenpairs of the
resulting problem is then equivalent to the eigenpairs of the original problem. The
computation proceeds by reducing the updated dense symmetric matrix to symmet-
ric band form (third stage). The band structure is further reduced by applying a
bulge chasing procedure, which annihilates the extra off-diagonal entries using or-
thogonal transformations (fourth stage). More details on the third and fourth stage
can be found in Haidar et al. [Accepted at SC’11, November 2011]. The eigenval-
ues are then calculated from the tridiagonal form using the standard LAPACK QR
algorithm (i.e., DTSEQR routine), while the complex and challenging eigenvector
computations will be addressed in a companion paper. The tasks from the various
stages can concurrently run in an out-of-order fashion. The data dependencies are
cautiously tracked by the dynamic runtime system environment QUARK, which en-
sures the dependencies are not violated for numerical correctness purposes. The ob-
tained tile four-stage generalized symmetric eigenvalue solver significantly outper-
forms the state-of-the-art numerical libraries (up to 21-fold speed up against mul-
tithreaded LAPACK with optimized multithreaded MKL BLAS and up to 4-fold
speed up against the corresponding routine from the commercial numerical soft-
ware Intel MKL) on four sockets twelve cores AMD system with a 24000×24000
matrix size.
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Introduction

In this paper, the authors propose to leverage and extend the contributions of the tile
two-stage symmetric tridiagonal reduction (TRD) for the standard eigenvalue problem
(SSEVP), first introduced in Luszczek et al. [1] and later revisited and improved by
Haidar et al. [2], to tackle the challenging generalized symmetric eigenvalue problem on
shared-memory multicore architecture. The generalized symmetric eigenvalue problem
(GSEVP) [3] is important in a variety of scientific fields that require calculation of en-
ergy eigenstates [4,5,6]. It is noteworthy to mention that the GSEVP parallelization tech-
niques have been also studied extensively in the context of distributed memory parallel
machines [7].

Using tile algorithms, the TRD algorithm for the GSEVP is broken into fine-grained
tasks linked together with data dependencies. This allows to expose the parallelism
through a direct acyclic graph (DAG), where nodes are computational tasks and edges
represent data dependencies between them. The final condensed form (tridiagonal) re-
quires here a four-stage approach, as opposed to the two-stage approach of the TRD used
for the SSEVP. The first stage decomposes the symmetric definite positive right hand
side using the Cholesky factorization. The resulting triangular factors are then inverted
and applied to the symmetric matrix of the problem. The GSEVP is now transformed to
a SSEVP and can further proceed using the two-stage approach described in Haidar et
al. [2]. The modified symmetric dense matrix is reduced to band tridiagonal during the
third stage and finally, the fourth stage annihilates the extra off-diagonal entries of the
band symmetric matrix using a bulge chasing procedure. Last but not least, the eigen-
values are calculated from the condensed tridiagonal form using the LAPACK QR itera-
tion, implemented in the routine DTSEQR. If the eigenvectors are also required, another
computational step is necessary for the back transformations, which consists in accumu-
lating all orthogonal transformations (Householder reflectors). The eigenvector calcula-
tions will be presented in a companion paper, since the proposed algorithm in this paper
(based on the bulge chasing) makes the accumulation of the orthogonal transformations
complex and very challenging and therefore, deserves a research paper on its own.

This paper describes mainly threefold contributions: (1) a new four-stage approach
to solve the GSEVP, (2) decoupling the algorithmic block sizes of the various stages
and (3) out-of-order scheduling thanks to our dynamic runtime system environment
QUARK [8]. And indeed, the problem the authors are trying to solve in this paper is far
from trivial because not only the dynamic scheduler is overwhelmed by tracking data de-
pendencies of a large number of tasks, but it has also to carefully deal with the character-
istics and the heterogeneity of each stage (compute-bound vs memory-bound) in a sys-
tematic manner. For instance, while the Cholesky factorization (first stage) may require
a specific tile size as its performance solely depends on the compute intensive matrix-
matrix multiplication kernel, the bulge chasing (fourth stage) is a memory-bound proce-
dure as it operates on a small chunk of data around the symmetric diagonal structure and
necessitates the aggregation of neighbor tiles to create a super tile in order to improve
data reuse. The new four-stage algorithm has been successfully integrated within the last
release of PLASMA (Parallel Linear Algebra for Scalable Multi-core Architectures) [9].

The remainder of this paper is as follows: Section 1 reviews in some detail the mech-
anisms behind the concepts of block (i.e, LAPACK) and tile algorithms (i.e., PLASMA).
Section 2 recalls the different steps toward solving solving the GSEVP and presents an



efficient implementation based on tile algorithms. Section 3 describes the dynamic DAG
scheduler and runtime environment QUARK. Section 4 shows some performance results.
Section 5 summarizes the paper and presents future work.

1. From Block to Tile Algorithms

Block algorithms in LAPACK [10] surfaced with the emergence of cache-based architec-
tures. They are characterized by a sequence of panel-update computational phases. The
panel phase calculates all transformations using mostly memory-bound operations and
applies them as a block to the trailing submatrix during the update phase. This panel-
update sequence introduces unnecessary synchronization points and lookahead is pre-
vented, while it can be conceptually achieved. Moreover, the parallelism in the block
algorithms implemented in LAPACK resides in the BLAS library, which follows the ex-
pensive fork-join paradigm. Last but not least, the LAPACK library also uses the stan-
dard column-major layout from Fortran, which may not be appropriate in the current and
next generation of multicore architectures.

A solution to the fork-join bottleneck in block algorithms has been presented in
[11,12]. It removes the overhead seen in block algorithms due to the expensive fork-join
paradigm. Based on tile algorithms, this new model is currently used in shared mem-
ory numerical libraries, such as PLASMA (University of Tennessee Knoxville) [9] and
FLAME (University of Texas Austin) [13]. The approach consists of breaking the orig-
inal matrix into smaller tasks that operate on a smaller block. Figure 1 describes how
the column-major matrix is broken into smaller tiles (i.e., a set of b contiguous columns
where b is the block size).

Figure 1. Translation from LAPACK Layout (column-major) to Tile Data Layout

Breaking the matrix into tiles may require a redesign of the standard numerical lin-
ear algebra algorithms. Furthermore, tile algorithms allow to bring the parallelism to the
fore and expose sequential computational fine-grained tasks to benefit from any dynamic
runtime system environments, which will eventually schedule the different tasks across
the processing units. The actual framework boils down to scheduling a directed acyclic
graph (DAG), where tasks represent nodes and edges define the data dependencies be-
tween them. This may produce an out-of-order execution and therefore, permits to re-
move the unnecessary synchronization points between the panel and update phases no-
ticed in the LAPACK algorithms. Lookahead opportunities become also practical and
engender a tremendous amount of concurrent tasks.

The next Section recalls the four-stage approach to solve the GSEVP and presents
an implementation using tile algorithms.



2. A Four-Stage Approach for the GSEVP

The common way of stating the original GSEVP algorithm [3] is Ax = λBx, A and B ∈
IRn×n, x ∈ IRn, λ ∈ IR, with A being a symmetric or Hermitian matrix (A = AT or
A = AH ), B being a symmetric or Hermitian positive definite matrix, λ – an eigen-
value, and x the corresponding eigenvector. The goal is to transform the problem de-
scribed above to a SSEVP by computing two preliminary steps, the Cholesky factor-
ization B = L× LT , followed by the applications by the inverted triangular factors
C = L−1×A×L−T . Getting the eigenpairs of the original problem is then equivalent
to solving the following equation: Cy = λy, C ∈ IRn×n, y ∈ IRn, where y = L−T x.
The matrix C is then reduced to the tridiagonal form T = QT × C × Q by succes-
sively applying orthogonal transformations using a one-stage approach, where the ma-
trix is directly reduced to the condensed form. The eigenvalues of T are then calculated
using the QR iteration (other numerical methods are also available) and if the corre-
sponding matrix of eigenvectors X are also required, the previous transformations (from
the Cholesky factorization, the tridiagonal reduction and the eigenvalue computations)
need to be accumulated accordingly. This is the actual algorithm, as implemented within
the state-of-the-art numerical linear algebra library LAPACK [10]. And there are clearly
two issues with its current implementation, as pointed out in Section 1: (a) the fork-join
paradigm, which prevents asynchronous execution and the parallelism to be explicitly
exposed within each stage and (b) the unnecessary global synchronization points, which
preempt any overlapping computations between stages.

The new tile four-stage GSEVP introduced in this paper permits to efficiently over-
come those limitations. It computes the tile Cholesky factorization (first stage) of B [11],
applies the inverted tile factors to the left and right of the general tile matrix A using
a parallel triangular solve (second stage), reduces the resulting matrix symmetric C to
symmetric band form (third stage) and finally, proceeds by further reducing the symmet-
ric band structure to the final tridiagonal form T (fourth stage). While the first and sec-
ond stage do not present any major difficulties, the following two stages, which reduce
the symmetric matrix to tridiagonal form using tile algorithms, are the most challeng-
ing and have been recently revisited by Haidar et al. [2]. During the third stage, most
of the computations are cast into Level 3 BLAS operations using compute-intensive nu-
merical kernels. In the fourth stage, an efficient bulge chasing procedure annihilates the
extra off-diagonal elements using optimized memory-bound kernels based on Level 2
BLAS operations. Furthermore, a grouping technique has been implemented for this lat-
ter stage, which consists of aggregating fine-grained and memory-aware computational
tasks to improve cache reuse. Therefore, this grouping technique permits to efficiently
accommodate the overall heterogeneity of the tridiagonal reduction by significantly opti-
mizing the fourth stage (memory-bound), without impeding the performance of the third
stage (compute-bound). The obtained tile tridiagonal reduction is able to achieve un-
precedented performance. By extending the concepts behind the grouping technique to
the first two stages (i.e., Cholesky factorization and parallel triangular solve) in the same
way it has been done for the reduction to symmetric band form in [2], the algorithmic
block sizes of the various stages can be decoupled. Indeed, the Cholesky factorization
may require a specific tile size as its performance solely depends on the compute in-
tensive matrix-matrix multiplication kernel. And since the bulge chasing is a memory-
bound procedure as it operates on a small chunk of data around the symmetric diagonal



structure, it necessitates the aggregation of neighbor tiles to build a super tile in order to
improve data reuse and thus, avoiding expensive TLB misses. A layer of abstraction has
been implemented, similar to the data dependency layer introduced in Luszczek et al. [1],
in order to correctly describe to the runtime environment the new dependencies on the
super tiles. As a result, the grouping technique permits to sustain the applications overall
high performance, as seen in the Section 4. Once the condensed form is obtained, the
eigenvalues are then computed using the LAPACK DTSEQR routine, which represents
only θ(n2) flops. The bulge chasing procedure generates many orthogonal transforma-
tions, which turns out the eigenvector matrix X computation to be very challenging. The
authors believe this is beyond the scope of the paper and prefer to dedicate a companion
paper to address this critical computational step. Last but not least, although the third and
fourth stage have been already addressed in Haidar et al. [2], the comprehensive integra-
tion into a single framework containing four heterogeneous stages engenders non trivial
challenges. For instance, the dynamic asynchronous execution generates an out-of-order
scheduling of computational tasks, which may potentially engender overlapping between
computational task from the different stages. It becomes then crucial to ensure the data
dependencies are not violated.

The next Section describes the runtime environment system QUARK, which simul-
taneously tracks task data dependencies from various stages.

3. The Runtime Environment System QUARK

Restructuring linear algebra algorithms as a sequence of tasks that operate on tiles of data
can remove the fork-join bottlenecks seen in block algorithms. This is accomplished by
enabling out-of-order execution of tasks, which can hide the work done by the sequential
tasks. Dynamic task scheduling environment called QUARK (QUeuing And Runtime
for Kernels) [8], is included with the PLASMA library. A similar framework, called Su-
perMatrix [14], is also available inside FLAME. In order for a scheduler to be able to
determine dependencies between the tasks, it needs to know how each task is using its
arguments. Kernel arguments can be declared as VALUE, whose copies are forwarded to
the task, or they may be declared as INPUT, OUTPUT, or INOUT. The last three designa-
tion define the dependencies between the tasks to form an implicit DAG, which is never
explicitly formed in its entirety. The tasks are inserted into the scheduler’s queue, which
stores them to be executed when all their dependencies are satisfied. The execution of
ready tasks is handled by worker threads that simply wait for tasks to become ready and
execute them using a combination of default tasks assignments and work stealing. The
number of tasks in the reduction is θ(n3) and it grows very rapidly with the number of
TILES of data. To avoid forming the entire DAG of tasks QUARK maintains a config-
urable window of tasks that holds the current portion of the DAG. The usage of a win-
dow of tasks has implications in how the loops of an application are unfolded and how
much look ahead is available to the scheduler. Since we are working with tiles of data
that should fit in the local caches on each core, QUARK provides the algorithm designer
the ability to hint the cache locality behavior – a parameter in a task call can be declared
with the LOCALITY flag. After a core executes such a task, the scheduler will assign any
future tasks with the same input data to the same core. Work stealing may disrupt such
cache-friendly assignment of tasks to cores.



4. Experimental Results

All experiments have been performed in real double precision and conducted on an 4
sockets, 12 core AMD Opteron(tm) Processor 6180 SE (48 cores total @ 2.5GHz) with
256 Gb of main memory. Each core has a theoretical peak of 10 Gflop/s and the whole
machine 480 Gflop/s. The cache size consists of 512 kB per core. The machine is a
NUMA architecture and it provides Intel Compilers 11.1 and the Intel MKL 10.2 math
libraries. Figures 3-6 represent successively the DAGs of each reduction stage in the sit-
uation where synchronous execution is performed. Figure 2 highlights the asynchronous
out-of-order task execution, made possible thanks to the dynamic scheduler QUARK.
The synchronous and asynchronous behaviors can also be clearly identified, when look-
ing at traces from Figures 7 and 8, respectively. Figure 9 shows timing results comparing
our tile four-stage GSEVP algorithm against the equivalent functions from the state-of-
the-art open-source and commercial numerical libraries i.e., LAPACK 3.2 linked with
optimized MKL BLAS and Intel MKL ver. 10.2, respectively. The usual LAPACK func-
tion name given to the routine solving the GSEVP is DSYGV. DSYGV can then be
decomposed into DPOTRF (first stage), DSYGST (second stage), DSYTRD (third and
fourth stage) and DTSEQR (eigenvalue computations). We compare our four-stage im-
plementation followed by DTSEQR against four different combinations: (1) LAPACK
DSYGV, (2) MKL DSYGV using the Netlib implementation of the successive band re-
duction (SBR) toolbox [15] for the tridiagonal reduction, (3) MKL DSYGV using the
one-stage DSYTRD for the tridiagonal reduction and (4) MKL DSYGV using the MKL
SBR implementation for the tridiagonal reduction. Our implementation achieves up to
21-fold speed up against the open-source LAPACK software and up to 4-fold speed up
against the commercial Intel MKL library.

5. Summary

This paper describes an efficient implementation of the generalized symmetric eigen-
value problem on multicore architecture using tile algorithms. The tile four-stage ap-
proach significantly outperforms the state-of-the-art numerical libraries (up to 21-fold
speed up against multithreaded LAPACK with optimized multithreaded MKL BLAS and
up to 4-fold speed up against the corresponding routine from the commercial numerical
software Intel MKL) on four sockets twelve cores AMD system with a 24000× 24000
matrix size. The authors are currently looking at exploiting hardware accelerators (e.g.,
GPUs) to further improve the overall performance of the tile GSEVP.
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Figure 2. Merged DAG with a 4×4 tile matrix
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Figure 3. First Stage: Cholesky factorization.
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Figure 4. Second stage: Triangular solve.
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