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Abstract

The number of processors embedded on high perfor-
mance computing platforms is continuously increasing to
accommodate user desire to solve larger and more com-
plex problems. However, as the number of components in-
creases, so does the probability of failure. Thus, both scal-
able and fault-tolerance of software are important issues in
this field.

To ensure reliability of the software especially under the
failure circumstance, the reliability analysis is needed. The
discrete-event simulation technique offers an attractive al-
ternative to traditional Markovian-based analytical models,
which often have an intractably large state space. In this
paper, we analyze reliability of a self-healing network de-
veloped for parallel runtime environments using discrete-
event simulation. The network is designed to support trans-
mission of messages across multiple nodes and at the same
time, to protect against node and process failures. Results
demonstrate the flexibility of a discrete-event simulation ap-
proach for studying the network behavior under failure con-
ditions and various protocol parameters, message types,
and routing algorithms.

1 Introduction

Recently, several high performance computing platforms
have been installed with more than 10,000 CPUs, such
as Blue-Gene/L at LLNL, BGW at IBM and Columbia at
NASA [1]. Unfortunately, as the number of components
increases, so does the probability of failure. To satisfy
the requirement of such a dynamic environment (where the
available number of resources is fluctuating), a scalable and
fault-tolerance communication framework is required. A
self-healing network [2] is developed to facilitate the com-
munication framework requirement. The network is built
on top of a scalable and fault-tolerant communication proto-
col [3]. The network can be used as a basis for constructing

higher level runtime environments for parallel applications
that exhibit the two properties required for large scale appli-
cations: scalability and fault tolerance. The basic ability of
the self-healing network is to efficiently transfer messages
across multiple nodes while protecting against node or pro-
cess failures. The reliability analysis estimates the probabil-
ity that a system will be operational during a particular time
interval. Such analysis is necessary to understand reliability
of a network under the failure conditions.

There are several existing analytical methods for relia-
bility analysis. These methods may be classified into two
classes: non-state, space-based methods (a.k.a. combinato-
rial models) and state, space-based methods. Each of them
has different advantages and limitations. There are 3 popu-
lar techniques [4, 5] using the non-state, space-based meth-
ods: a reliability block diagram, a reliability graph and a
fault tree. These models capture conditions that make a
system fail in terms of relationship between components.
The series-parallel reliability block diagram (RBD) [6] is
probably the oldest technique for reliability analysis. All
components are represented in blocks. All blocks are com-
bined together in series and/or parallel. Unfortunately, only
some systems can be mapped into a RBD. The reliabil-
ity graph [5] (a.k.a non-series-parallel block diagram) is
a directed graph where the edges represent a component.
Such graphs constitute a superset of the RBD. The fault
tree [7, 8] is represented as a tree-like topology where the
root of the tree is a failure event of the whole system and
the branches represent failures of an individual component.
All of the above mentioned non-state, space-based models
assume stochastic independence among failures. However,
this assumption may not hold in practice. Most of the state,
space-based methods, such as Markov reward model and
Petri Nets, are based on Markovian (or semi-Markovian)
models [9, 10]. The Markov reward model [11] is a Markov
model with the reward assigned to all states and transitions.
Each submodel is linked by mathematical expressions. Petri
Nets [12, 13] consist of places, transitions and directed arcs.
Places may contain tokens, which can move from place to



place when each transition becomes enabled. All of the
state, space-based model are subject to an intractably large
state space.

Discrete-event simulation (DES) [14] is a method to
model the behavior of a system in response to designated
events as time progresses. It offers an alternative to tradi-
tional analytical models as it can capture details of the sys-
tem and illustrate the influence of various factors. In this
paper, we analyze reliability of the self-healing network us-
ing the discrete-event simulation technique. We study the
influence of various factors on the network behavior in fail-
ure circumstances.

The rest of the paper is organized as follows. Section 2
introduces the self-healing network and the simulation. The
simulation results and analysis are given in section 3, fol-
lowed by conclusions and future work in section 4.

2 Overview

In this section, we provide a brief overview of the self-
healing network, which was designed to support parallel
runtime environment. A similar protocol is currently used
in FT-MPI [15]. The reliability analysis concepts and de-
tails of the simulation are also mentioned in this section.

2.1 Self-Healing Network (SHN)

SHN [2] was designed to support transfer of messages
across multiple nodes efficiently, while protecting against
node or process failures. It was built on top of a scalable
and fault-tolerant protocol (SFTP) [3] and is capable of au-
tomatically recovering itself. The SFTP is based on a k-
ary sibling tree topology used to develop a self healing tree
topology. The k-ary sibling tree topology is a k-ary tree,
where k is number of fan-out (k ≥ 2), and the nodes on
the same level (same depth on the tree) are linked together
using a ring topology. The tree is primary designed to al-
low scalability for broadcast and multicast operations that
are typically required during parallel application startup, in-
put redirection, control signals and termination. The ring is
used to provide a well-understood secondary path for trans-
mission when the tree is damaged during failure conditions
(simplest multi-path extension).

Fig. 1(a) illustrates an example of the binary (k=2) sib-
ling tree. Each node needs to know the contact information
of at most k+3 neighbors (i.e. parent, left, right and their k
children). The number of neighbors is kept to a minimum
to reduce the state management load on each node. In both
the tree and the ring topologies neighbor’s address can be
computed locally. When a node attempts to send a broad-
cast message to all of its children and detects that a child
has died, it will reroute the message to all children of that
child. This is done using an encapsulation technique. The

(a)
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Figure 1. (a) Binary sibling tree topology. (b)
Broadcast messages rerouting in failure cir-
cumstances.

node will encapsulate the broadcast message into a multi-
cast message and send to its grandchildren. The grandchil-
dren will decapsulate the multicast packet and continue to
forward the broadcast message as shown in Fig. 1(b). Al-
ternatively, if a node tries to send a multicast (or unicast)
message and detects that the next hop neighbor died, it will
choose the next hop from other valid neighbor nodes which
have the highest priority (the lowest estimated hop count to
the destinations [3]).

2.2 SHN Reliability Simulation

This section presents fundamental concepts of reliability
analysis as well as the description of the simulation.

2.2.1 Reliability Analysis Concepts

The reliability of the SHN is defined as its ability to main-
tain operation over a period of time t, i.e., the reliability,
R(t)= Pr(the network is operational in [0,t]). The SHN is
“operational”, if it can successfully deliver messages from
sources to the alive destination(s) even when some nodes in
the routing path die. The probability density function (pdf)
which associated with lifetime of the network can be con-
figured in the simulation. Currently, the simulation supports
only exponential [16] and Weibull [17] distribution. The cu-
mulative distribution function (cdf), F(t) can be defined as

F (t) =
∫ t

0

f(t)dt

where f (t) is the pdf. Reliability function, hazard function
and mean time between failures are often used in reliability
analysis and can be determined from the pdf and cdf.

The reliability function (or survival function), R(t) is the
probability that the SHN survives to time t. It can be defined
as

R(t) = 1− F (t).

The simulation assumes that there is no failure at the initial
time, i.e., t = 0, R(0) = 1. The hazard function, h(t) is the
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failure rate of the network. The h(t) is defined by

h(t) =
f(t)
R(t)

.

The failure rate in practice has a bathtub shape [18]. The
hazard function of SHN is also assumed to change as the
bathtub curve, which consists of 3 phases: decreasing fail-
ure rate (burn in), constant failure rate and increasing fail-
ure rate (wearing out) as shown in Fig. 2. Both distributions
supported in the simulation are enough to model the bathtub
curve. The constant failure rate can be modeled with the ex-
ponential distribution, while the decreasing and increasing
failure rate can be modeled with the Weibull distribution.
The mean time between failure (MTBF) is defined to be the
average (or expected) lifetime of the network. The MTBF
is defined by

MTBF =
∫ ∞

0

R(t)dt.

If a failure rate is λ, the pdf of exponential distribution (for
t>0) is given by

f(t) = λe−λt.

The pdf of Weibull distribution is given by

f(t) = βα−βtβ−1exp

[
−(

t

α
)β

]
where α is the scale parameter and β is the shape parame-
ter. The exponential distribution is actually a special case
of Weibull distribution where β = 1 and α = 1

λ . The asso-
ciate functions of exponential and Weibull distribution can
be summarized in Table 1. The Γ denotes the gamma func-
tion where Γ(n) 1 is defined as

Γ(n) =
∫ ∞

0

e−xxn−1dx.

1If n is an integer, then Γ(n) = (n− 1)!.

Table 1. Associate characteristic functions of
distributions

Characteristics Distribution

Exponential Weibull

CDF, F(t) 1− e−λt 1− e−( t
α )β

Reliability Function, R(t) e−λt e−( t
α )β

Hazard Function, h(t) λ βα−βtβ−1

MTBF 1
λ αΓ(1 + 1

β )

A more general, 3-parameter form of the Weibull includes
an additional waiting time parameter µ (sometimes called
a shift or location parameter). The formulas for the 3-
parameter Weibull can be easily obtained from these for-
mulas by substituting occurrences of t by (t− µ).

2.2.2 Simulation Description

The fan-out (k) of a k-ary sibling tree topology can be con-
figured in the simulation. It can be varied from k=2 (binary
sibling tree) to k=N-1 (flat tree), where N is total number of
nodes.

The unicast messages are simulated by sending messages
from all possible sources (S) to all possible destinations (D),
where S 6=D. Thus, there are N × (N − 1) simulation cases
for normal circumstances. During the failure mode, the
failed nodes (F) are obtained from combinations of all pos-
sible nodes (N), i.e.,

(
N
F

)
, where the sources and the desti-

nation nodes 6∈ F . Hence, there are
(
N−2

F

)
simulation cases

for each unicast transmission.
The total number of simulation cases of unicast message

transmission (Tu) for N nodes of the k-ary sibling tree with
F failed nodes is given by

Tu = N × (N − 1)×
(

N − 2
F

)
=

N !
(N − F − 2)!F !

.

The transmission of unicast messages is considered suc-
cessful if the messages can reach the destination. This
means that the network can deliver messages even in the
presence of failures in the routing path. If there are Su suc-
cess cases, the percent of average number of successes (Pu)
is defined by

Pu = (
Su

Tu
)× 100.

Due to the fact that the multicast routing protocol is based
on multi-destination unicast [3], the percent of average
number of successes (Pm) of multicast messages to D des-
tinations in the N nodes of k-ary sibling tree with F failed



Table 2. Percent average number of success
for broadcast

Algorithm Tbn Pbn

Basic Tb1 = 2×(N−1)!
(N−F−2)!F ! Pb1 = (Sb1

Tb1
)× 100

Up-Down Tb2 = (N−1)!
(N−F−2)!F ! Pb2 = (Sb2

Tb2
)× 100

Spanning Tree Tb3 = N !
(N−F−2)!F ! Pb3 = (Sb3

Tb3
)× 100

nodes can be estimated by

Pm ≈ (
Pu

100
)D × 100.

The broadcast messages are simulated by sending messages
from all possible sources (S) to the rest of the tree. Dur-
ing the failure mode, the failed nodes (F) are obtained from
combinations of all possible nodes (N), i.e.,

(
N
F

)
, where the

sources 6∈ F . The broadcast operation is considered suc-
cessful if there are no orphan nodes. An alive node may
become an orphan if it becomes unreachable due to net-
work bisectioning. There are three broadcast routing al-
gorithms [2]. The first algorithm (called basic) is done by
sending messages to a root of the tree and the root will for-
ward the messages to the rest of the tree. The second al-
gorithm (called up-down) is similar to the first algorithm
but it allows a node between a source and a root of the tree
to send messages to their children after they send the mes-
sages to their parent, i.e., the overhead of sending messages
to the root of the tree in the first algorithm is hidden in the
second algorithm. The third algorithm is based on a logical
spanning tree from the source. The spanning tree creation is
based on the breadth first search with a graph coloring tech-
nique. If there are Sb1,Sb2 and Sb3 success cases for the
three broadcast algorithms, the percent of average number
of success for each algorithm is defined in Table 2.

3 Simulation Results and Analysis

The results were obtained by simulating all possi-
ble cases described in the Simulation Description section
(2.2.2). We analyzed the effect the dead nodes have on the
percent success rate of different networks, as well as the ef-
fect the fan-out of the tree and the lifetime distribution have
on the network characteristics.

3.1 Effect of dead nodes

Fig. 3 presents the effect of a few dead nodes to the re-
liability of the network to deliver multicast messages. The
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Figure 3. Dead Node Effect on Multicast
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Figure 4. (a) High probability of orphan nodes
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Figure 5. Effect of Dead Nodes on Broadcast
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Figure 6. Number of Node Effect on Multicast

unicast is a special case of multicast where the number of
destinations is 1. The percent average of success delivery
(Pm) is inversely proportional to the number of nodes for
every different number of dead node and it is also inversely
proportional to the number of destinations of the multicast
messages (i.e., Pm ∝ N−1 ∝ D−1.) If the number of
nodes is 2k, where k ∈ N , the reliability of the network
decreases as the probability of nodes becoming orphans in-
creases. This situation occurs when the number of nodes in
the last level (highest depth) of the tree is less than or equal
to k, where k is fan-out as shown in figure 4(a).

There are two solutions to solve this drawback. The first
solution is to provide the grandparent of the last level with
the contact information of the last level in order to be able
to recover the tree. The second solution is to re-arrange the
nodes in the tree to reduce the possibility of orphan nodes
as shown in the Fig 4(b).

Fig. 5 presents the effect of dead nodes to the operations
of broadcast message delivery. It shows that the percent
average of success delivery (Pb) is inversely proportional
to the number of nodes for every different number of dead
node (i.e. Pb ∝ N−1) as well as the effect of high possi-
bility orphan nodes. The figure also shows that the different
broadcast routing algorithms also affect the percent average
of success. Not only is the spanning tree from source rout-
ing algorithm the fastest among them [2], but it is also the
most reliable. On the other hand, the basic algorithm is the
worst in terms of both efficiency and reliability.

3.2 Effect of number of nodes

Fig. 6 illustrates that although the percentage of dead
nodes are the same in different numbers of nodes, the re-
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Figure 8. Fanout Effect on Multicast

liability of multicast operations in the self-healing network
is significantly different. On the other hand, the reliabil-
ity of broadcast operations is only marginally different as
shown in Fig. 7. This figure also shows that in the spanning
tree case, even in the presence of 50% of the dead nodes,
up to 60% of broadcast operations survive without any re-
covery. It illustrates that the k-ary sibling tree is not only
suitable in terms of scalability 2 , but also suitable in terms
of reliability for supporting parallel runtime environments.

3.3 Effect of fan-out

Fig. 8 illustrates the effect of the number of fanouts on a
multicast message operation with 16 nodes. The x-axis for
each fanout is percentage of dead nodes (between 6.25%
and 87.5%). The y-axis is the number of destinations (be-
tween 1 and 8), and the color represents the percent average

2The number of nodes does not reflect the scalability of the SHN. It
was limited by simulation time, e.g., the simulation time of 50%dead-32
nodes broadcast (144× 109 cases) is 3 days on an AMD 2.2 GHz



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
Su

cc
es

s

%Dead Nodes

(a) Basic

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
Su

cc
es

s

%Dead Nodes

(b) Up-Down

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
%

Su
cc

es
s

%Dead Nodes

2
3
4
5
6
7
8
9

10
11
12
13
14
15

(c) Spanning Tree

Figure 9. Fanout Effect on Broadcast
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Figure 10. Exponential Dist. on Multicast

of success (Pm). For each number of node configuration,
the best fanout in terms of reliability is different. For ex-
ample, in the 16 node configuration, the 4-ary sibling tree
is the best. There are two different patterns of results of
fanout effected by broadcast message operations as shown
in Fig. 9. There are only marginally different reliabilities
for each number of fanouts of the spanning tree algorithm,
while the reliability of basic and up-down is significant for
different fanout numbers. These different reliability proper-
ties are caused by the simulation assumption that the source
of broadcast and the source and destination of unicast mes-
sages are always alive. Thus the root of the tree (node 1) is
always alive for basic and up-down, but it is not true for the
spanning tree. This implies that if the logical root node can
be run on a stable platform, it could significantly improve
overall reliability.

3.4 Exponential Lifetime Distribution

The exponential lifetime distribution assumes that the
age of network (uptime) has no effect on how likely the net-
work is to fail, i.e., the network is equally likely to fail at
any moment during its lifetime, regardless of how old it is.
The failure rate (λ) is known to be a constant (the second
phase of the bathtub curve).
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Figure 11. Exponential Dist. on Broadcast

Table 3. Exponential parameters
MTBF 26280 hours 13140 hours

h(t) 3.8× 10−5 7.6× 10−5

R(t) e−3.8×10−5t e−7.6×10−5t

If we assume that MTBF of the networks are three years
(26,280 hours) and 1.5 years (13,140 hours), the hazard and
reliability functions can be calculated as shown in Table 3.
The percent average number of success with exponential
lifetime distribution on multicast and broadcast operations
is shown in Fig. 10 and Fig. 11, respectively.

3.5 Weibull Lifetime Distribution

The Weibull lifetime distribution assumes that the hazard
function is time dependent. The hazard function is depen-
dent on the value of β as shown in Fig. 12(a) .

If β < 1, the hazard function is the decreasing function
(infant mortality or burn in) i.e. the older it is, the less likely
it fails (the first phase of the bathtub curve).

If β = 1, the age has no effect. The lifetime has expo-
nential distribution.
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Figure 12. Effects of shape (β) and scale (α)



Table 4. Weibull (α = 26280) parameters
β h(t) R(t)

0.5 0.5× 26280−0.5t−0.5 e−( t
26280 )0.5

1.0 3.8× 10−5 e−( t
26280 )

1.5 1.5× 26280−1.5t0.5 e−( t
26280 )1.5

2.0 2.0× 26280−2.0t e−( t
26280 )2.0

2.5 2.5× 26280−2.5t1.5 e−( t
26280 )2.5

Table 5. Weibull (β = 1.5) parameters
α h(t) R(t)

13140 1.5× 13140−1.5t0.5 e−( t
13140 )1.5

39420 1.5× 39420−1.5t0.5 e−( t
39420 )1.5

If β > 1, the hazard function is the increasing function
(wearing out) i.e. the older it is, the more likely it is to fail.
It is the third phase of the bathtub curve. If 1 < β < 2,
the hazard function is concave (increasing at a decreasing
rate). On the other hands, the hazard function is convex
(increasing at an increasing rate), if β > 2

Fig. 13 and Fig. 14 illustrate the effect of β parameters
in the Weibull lifetime distribution to the percent average of
success of multicast and broadcast operations. It assumes
α = 26, 280 and various β values as shown in Table 4.

Fig. 12(b) shows the effects of the characteristic life (α)
on the failure rate, which affects the spread (scale) of the
distribution. Fig. 15 and Fig. 16 illustrate the effect of α
parameters in the Weibull lifetime distribution to the percent
average of success of multicast and broadcast operations. It
assumes β = 1.5 and α values as shown in Table 5.
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Figure 13. Weibull on Multicast (α=26280)

 0

 20

 40

 60

 80

 100

 0  50000  100000 150000

%
Su

cc
es

s

Time

β=0.5
β=1.0
β=1.5
β=2.0
β=2.5

Basic

 0

 20

 40

 60

 80

 100

 0  50000  100000 150000

%
Su

cc
es

s

Time

β=0.5
β=1.0
β=1.5
β=2.0
β=2.5

Up-Down

 0

 20

 40

 60

 80

 100

 0  50000  100000 150000

%
Su

cc
es

s

Time

β=0.5
β=1.0
β=1.5
β=2.0
β=2.5

Spanning Tree

Figure 14. Weibull on Broadcast (α=26280)
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Figure 15. Weibull Dist. on Multicast (β=1.5)
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Figure 16. Weibull Dist. on Broadcast (β=1.5)



4 Conclusions and Future Work

This paper presents reliability analysis of a self-healing
network developed for scalable and fault-tolerant, parallel
runtime environments. The network is designed to support
the transmission of messages across multiple nodes while it
also protects against node and process failures. The results
show that the spanning tree broadcast algorithm is the most
reliable among several broadcast algorithms.

There are several improvements that we plan for the near
future. The complexity of simulation need to be reduced.
Expanding the simulation to support other lifetime distribu-
tions, such as Lognormal, can improve the accuracy of the
analysis. Additionally, we plan to run the self-healing net-
work on large-scale platforms and obtain the actual failure
data to compare the empirical and theoretical distributions.
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