
Procedia Computer Science 00 (2012) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2012

A class of communication-avoiding algorithms for solving general
dense linear systems on CPU/GPU parallel machines

Marc Baboulina, Simplice Donfacka, Jack Dongarrab, Laura Grigoria, Adrien Rémya, Stanimire Tomovb

aInria and University Paris-Sud, France
bUniversity of Tennessee, USA

Abstract

We study several solvers for the solution of general linear systems where the main objective is to reduce the
communication overhead due to pivoting. We first describe two existing algorithms for the LU factorization on hybrid
CPU/GPU architectures. The first one is based on partial pivoting and the second uses a random preconditioning of
the original matrix to avoid pivoting. Then we introduce a solver where the panel factorization is performed using a
communication-avoiding pivoting heuristic while the update of the trailing submatrix is performed by the GPU. We
provide performance comparisons and tests on accuracy for these solvers on current hybrid multicore-GPU parallel
machines.

Keywords: hybrid multicore/GPU computing, dense linear algebra libraries, linear system solvers,
communication-avoiding algorithms, LU factorization

1. Introduction

There have been several main changes in the development of dense linear algebra libraries over the years. These
changes have always been triggered by major hardware developments. For example, LINPACK [1] in the 70’s targeted
the vector machines at the time for which cache reuse was not essential, and as a result LINPACK had relied on just
Level 1 BLAS. In the 80’s LINPACK had to be rewritten, leading to LAPACK [2], that would rely on Level 3 BLAS
for cache based machines. In the 90’s it was extended to ScaLAPACK [3] for parallel platforms, relying on the
PBLAS [4] message passing. Now, in the 00’s, with the explosion in parallelism and heterogeneity as well as the ever
increasing data-communication costs, the old libraries had to be redesigned once again. An example is the MAGMA1

library - a collection of this next generation linear algebra libraries [5, 6, 7].
MAGMA, similarly to LAPACK, is being build as a community effort, incorporating the newest developments in

hybrid algorithms and scheduling, and aiming at minimizing synchronizations and communication in these algorithms.
The goal of these efforts is to redesign the dense linear algebra algorithms in LAPACK to fully exploit the power of
current heterogeneous systems of multi/manycore CPUs and accelerators, and deliver the fastest possible time to an

Email addresses: marc.baboulin@inria.fr (Marc Baboulin), simplice.donfack@lri.fr (Simplice Donfack),
dongarra@eecs.utk.edu (Jack Dongarra), laura.grigori@inria.fr (Laura Grigori), adrien.remy@lri.fr (Adrien Rémy),
tomov@eecs.utk.edu (Stanimire Tomov)

1Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/

/ Procedia Computer Science 00 (2012) 1–10 2

accurate solution within given energy constraints. Indeed, the algorithms included so far in MAGMA 1.1 manage to
overcome bottlenecks associated with just multicore or GPUs, to significantly outperform corresponding packages for
any of these components taken separately. MAGMA’s one-sided factorizations for example (and linear solvers) on
a single Fermi GPU (and a basic CPU host) can outperform state-of-the-art CPU libraries on high-end multi-socket,
multicore nodes (e.g., using up to 48 modern cores). In parallel to the success stories in the development of hybrid
algorithms, there have been a number of new developments related to minimizing the communication in one-sided
factorizations (e.g. [8]). Such improvements have become essential due to the increasing gap between communication
and computation costs.

For the linear system solvers on current multicore or GPU architectures, a bottleneck in terms of communica-
tion cost and parallelism comes from the pivoting, a technique used to prevent divisions by too-small numbers in
the Gaussian Elimination (GE) process. The commonly used method of Gaussian Elimination with partial pivoting
(GEPP) is implemented in current linear algebra libraries for solving square linear systems Ax = b resulting in very
stable algorithms. These systems are in general solved using the well-known LU factorization that decomposes the
input matrix A into the product L × U, where L is a lower triangular matrix and U is an upper triangular matrix.
Current libraries like LAPACK implement GE using a block algorithm, which factors the input matrix by iterating
over its blocks of columns (panels). At each iteration, the LU factorization of the current panel is computed, and then
the trailing submatrix is updated. In the LAPACK implementation, pivoting is used during the factorization of each
column of a panel, and leads to swapping rows. Pivoting not only requires communication (or synchronization in a
shared memory environment), but it also limits the exploitation of asynchronicity between block operations. This is
because the update of the trailing submatrix can be performed only when the panel factorization is completed. We can
find in [9] an evaluation of the communication overhead due to partial pivoting using MAGMA on a given CPU/GPU
architecture. This cost can represent on some hybrid architectures up to 40% of the global factorization time, de-
pending on the matrix size. The communication cost of GEPP is asymptotically larger than the lower bounds on
communication [10]. Other classical pivoting strategies can be used, as rook pivoting or complete pivoting (see [11]
for a comprehensive review), but they always require between O(n2) and O(n3) comparisons to search for the pivot.
In this paper we consider two alternative strategies to these pivoting techniques, that have the property of reducing the
communication in the LU factorization while providing a satisfying accuracy.

The first alternative is tournament pivoting, introduced in the last years in the context of CALU, a communication-
avoiding LU factorization algorithm [12]. It is shown in [10] that tournament pivoting is as stable as partial pivoting
in practice and that CALU minimizes communication. With this strategy, the panel factorization, referred to as TSLU
(Tall Skinny LU), can be efficiently parallelized as follows. The panel is partitioned into Pr blocks. From each block,
a set of local pivots is selected in parallel using GEPP. A tournament is used on the Pr local sets to select a set of global
pivots. These global pivots are moved to the diagonal positions, and then the LU factorization with no pivoting of the
entire panel is performed. The tournament is implemented as a reduction operation, with GEPP being the operator
used at each step of the reduction.

The second alternative is proposed in [9] where the communication overhead due to pivoting is completely re-
moved by considering a randomization technique referred to as Partial Random Butterfly Transformation (PRBT).
This method revisits the approach initially proposed in [13] where the original matrix A is transformed into a matrix
that would be sufficiently “random” so that, with a probability close to 1, pivoting is not needed. It consists of a
multiplicative preconditioning UT AV where the matrices U and V are chosen among a particular class of random
matrices called recursive butterfly matrices. Then Gaussian Elimination with No Pivoting (GENP) is performed on
the matrix UT AV . It has been shown in [9] that a small number of recursions (2 in practice) is sufficient to obtain a
satisfying backward error. Moreover, by exploiting the particular structure of the recursive butterflies, this technique
of randomization is attractive in terms of Gflop/s (O(n2) operations) and data storage. Note that since in this approach
we know in advance that we are not going to pivot, GENP that follows randomization is implemented as a very effi-
cient fully BLAS 3 algorithm. Note also that when the initial matrix is randomized, we systematically add iterative
refinement in the working precision for better stability, as indicated in [11, p. 232].

We show in this paper that the usage of these techniques in the context of hybrid CPU/GPU architectures allows
us to take advantage of each computational unit.

The paper is organized as follows. First we describe in Section 2 two existing algorithms for LU factorization
on hybrid CPU/GPU machines. The first one is implemented in the parallel library MAGMA and is based on the
partial pivoting technique. The second algorithm uses randomization to avoid pivoting and performs GENP on the

/ Procedia Computer Science 00 (2012) 1–10 3

1 2 3

b

Figure 1: Block splitting in hybrid LU factorization

randomized matrix. Then in Section 3 we introduce tournament pivoting, a strategy based on CALU that we adapt
specifically for CPU/GPU architectures. In this new implementation, the panel is factored on the CPU using a modified
CALU factorization while the update of the trailing submatrix is performed on the GPU. The resulting solver is called
H-CALU solver. Finally we propose in Section 4 performance and accuracy results where we compare H-CALU with
LU solvers using partial pivoting (MAGMA) and PRBT. Concluding remarks are given in Section 5.

2. Two existing hybrid algorithms for LU factorization

2.1. LU factorization based on partial pivoting

Let us illustrate how the hybrid multicore + GPU approach can be applied to the LU factorization by describing
the algorithm as it is implemented in the MAGMA library. The method is based on splitting the computation as shown
in Figure 1 that represents a current matrix factored via a right looking block LU factorization [14, p. 85], where the
dark part has been already factored. The initial matrix has been downloaded to the GPU and we describe here a current
iteration:

1. The current panel (1) containing b columns is downloaded to the CPU.

2. (1) is factored by the CPU and the result is sent back to the GPU.

3. The GPU updates (2) that corresponds to the next panel (first b columns of the trailing submatrix).

4. The updated panel (2) is sent to the CPU and asynchronously factored on the CPU while the GPU updates the
rest of the matrix (3).

The technique consisting of factoring (2) while still updating (3) is often referred to as look-ahead [15]. In the current
implementation of MAGMA, the panel factorization is performed using GEPP but this algorithm is general enough
to be applicable to many forms of LU factorizations, where the distinction can be made based on the form of pivoting
that they employ. In Section 3.2 we will use a different pivoting strategy that turns out to be very efficient for factoring
the panel due to its particular “tall and skinny” structure. Depending on the problem size n and on the hardware
used, MAGMA proposes a default value for the parameter b (width of the panel). Note that the design of the hybrid
LU in MAGMA avoids communicating by having only panels transferred between CPU and GPU (O(n ∗ b) data vs
O(n ∗ n ∗ b) computation in the updates), enabling also the total overlap of the panel computation by the updates for n
large enough.

/ Procedia Computer Science 00 (2012) 1–10 4

2.2. PRBT solver
Using the PRBT solver, we solve the general linear system Ax = b by the following steps:

1. Compute the randomized matrix Ar = UT AV , with U and V recursive butterflies.

2. Factorize Ar with GENP.

3. Solve Ary = UT b.

4. Solution is x = Vy.

In this section, we present an implementation of a PRBT solver for hybrid CPU/GPU architectures. The random-
ization by recursive butterflies uses 2 recursions and the resulting computational cost for randomization is 4n2 flops
(see [9] for more details on the computational kernels that exploit the particular structure of the recursive butterflies).
The PRBT solver for hybrid CPU/GPU architectures performs the following tasks:

• Random generation and packed storage of U and V on the CPU, while sending A to the device memory.

• The packed representation of U and V are sent from the host memory to the device memory.

• Randomization is performed on the GPU, updating A in-place (no additional memory needed) on the device
memory.

• The randomized matrix is factorized with GENP on the GPU, the panel factorization being performed on the
CPU host.

• We compute UT b on the GPU, Ary = UT b is solved on the GPU, followed by the solution x = Vy.

• The solution is sent to the host memory, followed if necessary by iterative refinement on the CPU.

When using the PRBT solver, the bulk of the computation corresponds to the GENP factorization (the randomiza-
tion represents less than 2% of the global computational time). Then we expect that the Gflop/s performance of the
PRBT solver will provide us with an upper bound for other LU solvers on hybrid CPU/GPU architectures.

3. Hybrid communication-avoiding LU factorization

3.1. Communication-avoiding LU
The poor evolution of latency and memory bandwidth that we observed over recent years for parallel architectures

is a major bottleneck for algorithms that require communication like GEPP. New approaches have been recently
proposed to minimize the amount of communication due to pivoting. Among them are the communication-avoiding
algorithms introduced for distributed-memory machines [12] and for multicore architectures [16]. These algorithms
are effective in the sense that they reduce significantly the communication while being stable in practice. CALU is an
algorithm that partitions the input matrix into block of columns (panels), iteratively factors the panel and updates the
trailing submatrix. The factorization of the panel is one of the most important task in the LU fatorization since it is
part of the critical path in the diagram of tasks and its effective execution influences the performance of the algorithm.
In CALU, the panel factorization is performed by the TSLU algorithm which factors a block column of size b with
the following steps:

1. Partition the block column in Pr threads where Pr is the number of threads participating in the panel factoriza-
tion. Let Ai, the block assigned to each thread.

2. Each thread applies GEPP to its block and we have ΠiAi = LiUi. We denote by Ci = (ΠiAi)(1 : b, 1 : b) the
block containing the potential pivots, where Πi is the permutation matrix resulting from the factorization of Ai.

3. For each step of the reduction tree (see [16] for more details on the most adapted reduction tree):
If j is the thread number exchanging data with thread i and C′i = [Ci; C j], then we compute ΠiC′i = LiUi and
Ci = (ΠiC′i)(1 : b, 1 : b) is the new pivot candidate.

4. Apply the latest permutation computed in 3) to the original panel in order to compute the block column of L
and to compute the block row of U.

/ Procedia Computer Science 00 (2012) 1–10 5

Once the panel is factored using TSLU then we update the trailing submatrix. Following the approach presented
in [17, 18], the CALU algorithm can be represented as a Directed Acyclic Graph (DAG) where nodes are elementary
tasks that operate on one or several b × b blocks and where edges represent the dependencies among them. A depen-
dency occurs when a task must access data that is the output of another task, either to further update or just read that
data. In Figure 2 we represent an example of LU factorization with CALU as a sequence of DAGs using 2 threads.
The panel is partioned into 3 column blocks. Red tasks represent the factorization of the panel via TSLU, the green
tasks represent the update of the trailing submatrix, and the blue tasks are those that are not executed so far.

Figure 2: Example of asynchronous LU factorization using multithreaded CALU (2 threads).

3.2. Hybrid version of CALU (H-CALU)
As explained in Section 2.1, the LU algorithm implemented in MAGMA factors each block of columns iteratively.

Each step is essentially decomposed into two distinct phases: the factorization of the panel by the CPU followed by
the update of the trailing submatrix by the GPU. The algorithm’s design minimizes the CPU-GPU communications.
In the following we describe an algorithm that further improves the algorithm in MAGMA by minimizing the com-
munication associated with the panel factorizations.

At each step, a panel of size B is factored on the CPU by applying CALU to a rectangular matrix and the update of
the trailing submatrix is performed by the GPU. CALU factors the panel by splitting the initial block of columns into
smaller blocks containing b columns that are factored iteratively using TSLU. Thus, the factorization of the panel is
considered as a variant of the algorithm at the first level where we factor a rectangular matrix using only the CPU. The
use of this second level of blocking is important for performance on hybrid CPU/GPU architectures because the CPU
and GPU processors have different size of cache. The block size B is chosen in order to optimize the performance
of the matrix-matrix product on the GPU and to ensure a good grain for increasing parallelism. Then the block size
b is tuned in order to optimize the utilization of the multicore cache. This decomposition of the algorithm into small
tasks allows us to operate on block of data that fit into the cache. It results in an asynchronous and dynamic execution
of the panel factorization on the CPU, yielding to good performance on multicore machines [16]. This asynchronous
execution keeps busy most of the CPU threads. When b = B, CALU behaves simply as TSLU. If B is large enough
(which will be the case for our hybrid implementation), the panel is factored using CALU rather than TSLU because
CALU can be executed asynchronously [16]. Our approach also uses the well known technique referred to as look-
ahead [15] but adapted here so that the CPU and the GPU can work together while minimizing the number of memory
transfers. In this approach, we start factoring the next panel as soon as possible.

Figure 3 shows an example of the factorization of a matrix at the top level. We consider that the matrix is initially
stored on the GPU. Red tasks represent the factorization of the panel using multithreaded CALU and the green tasks
represent the update of the trailing submatrix in the GPU. At each step of the factorization, the block corresponding
to the panel is transfered to the CPU and factored using CALU. Once a panel is factored, it is transfered again to the
GPU to update the trailing submatrix. The GPU updates in priority the column block corresponding to the next panel.
Note that, similarly to [6], the data transfer between CPU and GPU is overlapped by computation.

4. Numerical experiments

In this section we present performance results for the H-CALU algorithm described in Section 3.2. These numer-
ical experiments were carried out using a hybrid CPU/GPU system where:

/ Procedia Computer Science 00 (2012) 1–10 6

Figure 3: Hybrid CALU factorization (4 panels).

• The GPU device is an NVIDIA Fermi Tesla S2050 with 448 CUDA cores running at 1.15 GHz and 2687 MB
memory.

• The multicore host is a 48 cores system (4 sockets × 12 cores) AMD Opteron 6172 (2.1 GHz).

For experiments involving only the multicore host (panel factorization), comparisons are made against the MKL [19]
multithreaded library. For experiments involving both CPU and GPU (factorization of the whole matrix), comparisons
are made against version 1.1 of the MAGMA library. All computations are performed on random matrices and in dou-
ble precision arithmetic.

4.1. Panel factorization
As described in Section 3.2, the panel factorization is performed by the CPU while the update of the trailing sub-

matrix is executed on the GPU. Let us evaluate specifically the performance for the panel factorization phase in an
LU factorization. This performance is measured by summing the total number of flops executed in factoring succes-
sively each panel throughout the factorization and dividing it by the time spent during these steps. This performance
(expressed in Gflop/s) is plotted in Figure 4 for the factorization of four square matrices, each associated with a given
panel size (parameter B defined in Section 3.2, corresponding to the number of columns for the panel). For factoring
the panel, we consider different number of threads (one CPU core being used for each thread) varying from 1 to
26. Note that using more than 26 threads does not provide us with better performance, due to the too-large amount
of communication involved in the panel factorization. The panel size B considered in Figure 4 for each matrix size
corresponds to a value empirically tuned in order to provide the best global factorization time for each matrix when
using a hybrid implementation.

In these experiments, we compare the performance of the panel factorization for the following routines:

• CALU factorization routine modified for the H-CALU solver and linked with the sequential version of MKL
for the required BLAS and LAPACK routines.

• MKL implementation of the LAPACK routine dgetrf, used in the MAGMA implementation of LU for factor-
ing the panel.

• A recursive routine for GEPP rgetf2 (linked with MKL multithreaded BLAS) described in [20] and known to
give good performance on “tall and skinny” matrices.

• PRBT where the panel is factored using the GENP routine dgetrf nopiv (no pivoting).

The routines compared in this section have been selected on the fact that they can be used as kernels for our hybrid
CPU/GPU implementation. If we use only multicore machines without GPU, then other solvers can be considered
(see e.g. recursive tile version in [21]). The performance of PRBT, based on a GENP routine can be considered
here as a “peak” performance for the panel factorization. In this respect, we observe that, in percentage of this peak
performance and depending on the matrix size n, CALU achieves between 36 % (n = 5120) and 48 % (n = 21504),
dgetrf achieves between 35 % (n = 5120) and 23 % (n = 21504), and rgetf2 achieves between 31 % (n = 5120) and

/ Procedia Computer Science 00 (2012) 1–10 7

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o

p
/s

Threads

Matrix size = 5120, panel size = 256

dgetrf
rgetf2
CALU
PRBT

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o

p
/s

Threads

Matrix size = 10240, panel size = 320

dgetrf
rgetf2
CALU
PRBT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o

p
/s

Threads

Matrix size = 15360, panel size = 512

dgetrf
rgetf2
CALU
PRBT

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

G
fl
o

p
/s

Threads

Matrix size = 21504, panel size = 768

dgetrf
rgetf2
CALU
PRBT

Figure 4: Comparison of CPU multi-threaded panel factorizations.

38 % (n = 21504). We also observe that CALU is even faster for larger ratios rows/columns. Moreover, CALU and
PRBT have better scalability properties. This can be explain by the fact that CALU minimizes communication thanks
to its pivoting strategy and PRBT does not pivot at all. The plateau observed for each curve after a certain number
of threads corresponds to cases where the volume of communication becomes too large and cannot be overlapped by
computation. For n = 5120, CALU, dgetrf and rgetf2 give similar performance. However, when the matrix size
increases and then the panel becomes more “tall and skinny”, CALU outperforms the two other solvers and achieves
a reasonable fraction of the PRBT rate. This good behavior of CALU for factoring the panel was already mentioned
in [16]. In particular this better scalability of CALU enables us to use more CPU threads in factoring the panel and
then to improve the overall performance of a hybrid LU solver.

4.2. Performance of hybrid LU implementations
In this section we study the performance of LU factorization routines that utilize resources from multicore (16

threads) and one GPU. We compare in Figure 5a the following routines, applied to square matrices of various sizes:

• The MAGMA routine magma dgetrf, where the panel is factored using the MKL routine dgetrf.

• H-CALU, where the panel is factored using the CALU routine mentioned in Section4.1.

• The PRBT solver (randomization + GENP).

As expected, PRBT outperforms the routines because it does not pivot and the randomization time is negligible.
We can also observe that in the range 1024-5120, H-CALU gives similar performance as MAGMA but it is slightly
faster for matrix sizes larger than 5120. This trend can be explained by the fact that, for matrix sizes smaller than 5120,
the panels are not enough “tall and skinny” to take advantage of the CALU algorithm. We notice that the difference

/ Procedia Computer Science 00 (2012) 1–10 8

 0

 50

 100

 150

 200

 250

 300

1024 3072 5120 7168 9216 11264 13312 15360 17408

G
fl
o
p
/s

Matrix size

magma_dgetrf
H-CALU

PRBT

(a) Performance on square matrices

 50

 60

 70

 80

 90

 100

 110

 120

 130

3072 5120 7168 9216 11264 13312 15360 17408 19456 21504

G
fl
o
p
/s

Number of rows

magma_dgetrf
H-rgetf2
H-CALU

magma_dgetrf_nopiv

(b) Performance on rectangular matrices (2048 columns)

Figure 5: Performance on AMD + Tesla 2050, 16 threads

of performance observed for the panel in Section 4.1 has a moderate impact on the whole factorization since the
update phase performed on the GPU represents the bulk of the computation. In particular we do not mention in
these results the experiments performed with a MAGMA routine modified so that the panel is factored by the routine
rgetf2 mentioned in Section 4.1 because we obtained performance results similar to that of magma dgetrf. Note
that asymptotically, the performance of the three routines should be close because communication becomes negligible
compared to the O(n3) computations for large dimensions.

In Figure 5b we compare the performance of hybrid LU factorization routines for rectangular matrices of size
m × n with m > n, using 16 threads. Such an LU factorization exists when A(1 : k; 1 : k) is nonsingular for
k = 1 : n (see [22, p. 102]). In our experiments n = 2048 and m varies from 3072 to 21504. Comparisons are
made against MAGMA routines magma dgetrf and magma dgetrf nopiv (instead of PRBT since the latter has no
implementation for rectangular matrices). We also compare with the MAGMA routine magma dgetrf modified by
factoring the panel using the recursive GEPP kernel (this routine is named H-rgetf2 in our graph). On this type
of matrices, H-CALU outperforms magma dgetrf and H-rgetf2.Indeed, for rectangular matrices, the proportion of
computation performed during the panel factorization is bigger. Hybrid factorization on rectangular matrices could be
for instance useful in a future hybrid factorization with multiple GPUs where the (rectangular) panel could be factored
using CPU and a GPU.

 1e-15

 1e-14

 1e-13

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384 17408

B
a
c
k
w

a
rd

 e
rr

o
r

Matrix size

magma_dgetrs
H-CALU

PRBT

Figure 6: Comparison of componentwise backward error

/ Procedia Computer Science 00 (2012) 1–10 9

4.3. Tests on accuracy

First we study the backward error obtained for the linear system solution computed with the solvers LU MAGMA
(based on the factorization routine magma dgetrf), H-CALU and PRBT , using the random matrices considered in
the previous experiments. The quantity plotted in Figure 6 corresponds to the componentwise backward error given
in [2, p. 78] and expressed by

ω = max
i

|Ax − b|i
(|A| · |x| + |b|)i

,

where x is the computed solution. The number of threads used in factoring the panel in H-CALU is 16 (we mention
this because, as explained in [10], this might affect the accuracy). We observe that the backward errors are very similar
for the three hybrid solvers.

Now we present additional tests using LAPACK test cases given in [23]. Table 1 describes the 11 matrices used
in our experiments (size 512, all in double precision). In this table, ε denotes the machine precision and κ is the
infinity-norm condition number of the matrix. Table 2 shows the componentwise backward error obtained for the
three hybrid solvers LU MAGMA, H-CALU and PRBT. Iterative refinement (in the working precision) is added if
necessary using the LAPACK routine dgerfs on the multicore host. The iterative refinement is based on the stopping
criterion given [24] (ω > (n + 1)ε), with a maximum of 5 iterations. Matrices 5 to 7 are singular and have at least
one row and column zero. These are used in [23] to test the error return codes. Nevertheless, for these matrices the
random transformation of A allows the LU factorization to continue while the pivoting is not capable of removing the
zero pivots. Matrix 9 is scaled to near underflow and the three solvers give comparable results but less acurate than
with the other matrices. For the ill-conditioned matrix 9, the backward is slightly less accurate than the other solvers.
For the other matrices, the three solvers give the same accuracy. Tests on accuracy for specific matrix collections can
be found in [9] and [10] respectively for PRBT and CALU.

Table 1: Test matrices

1 Diagonal 7 Last n/2 columns zero
2 Upper triangular 8 Random, κ =

√
0.1/ε

3 Lower triangular 9 Random, κ = 0.1/ε
4 Random, κ = 2 10 Scaled near underflow
5 First column zero 11 Scaled near overflow
6 Last column zero

Table 2: Componentwise Backward Error

Matrix MAGMA LU H-CALU PRBT
Type (magma dgetrf)

1 0.0 0.0 2.10145e-16
2 1.31539e-16 1.31539e-16 2.18841e-16
3 184697e-16 184697e-16 2.06543e-16
4 2.1647e-16 2.75832e-16 1.92510e-16
5 - - 2.66472e-16
6 - - 2.14281e-16
7 - - 1.97144e-16
8 2.10408e-16 3.76095e-16 1.55625e-16
9 2.70036e-16 6.36540e-16 1.08967e-13

10 7.59577e-14 7.40225e-14 7.54745e-14
11 2.27295e-16 2.11000e-16 2.42990e-16

/ Procedia Computer Science 00 (2012) 1–10 10

5. Conclusion

In this paper we presented different LU factorization routines using a multicore machine accelerated with one
GPU. The difference beween these approaches comes from the pivoting strategy chosen for factoring the panel. We
proposed a new hybrid communication-avoiding solver H-CALU where the panel is factored on the CPU while the
update is performed by the GPU. In our experiments, this solver turns out to be faster than the classical GEPP im-
plementation in MAGMA for square matrices larger than 5120 and in all cases for rectangular matrices. H-CALU
is scalable, allowing us to use larger panels and thus to limit the amount of transfer between the CPU and the GPU
memory. We point out that further optimizations are possible with e.g. additional tuning and scheduling but our
experiments give a general trend for the performance of algorithms as dictated by the amount of communication that
they perform. However, the solver based on randomization always outperforms other solvers since we do not pivot at
all and the computational cost for randomizing is small.

References

[1] J. J. Dongarra, C. B. Moler, J. R. Bunch, G. W. Stewart, LINPACK Users’ Guide, SIAM, 1979.
[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,

D. Sorensen, LAPACK Users’ Guide, SIAM, 1999, third edition.
[3] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,

D. Walker, R. Whaley, ScaLAPACK Users’ Guide, SIAM, 1997.
[4] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, R. Whaley, A proposal for a set of parallel basic linear algebra subprograms, Tech.

rep., lAPACK Working Note 100 (1995).
[5] R. Nath, S. Tomov, J. Dongarra, An improved MAGMA GEMM for Fermi GPUs, International Journal of High Performance Computing

Applications 24 (4) (2010) 511–515.
[6] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid GPU accelerated manycore systems, Parallel Computing

36 (5&6) (2010) 232–240.
[7] S. Tomov, R. Nath, J. Dongarra, Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based

computing, Parallel Computing 36 (12) (2010) 645–654.
[8] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-Avoiding QR decomposition for GPUsLAPACK Working Note 240,

proceedings of IPDPS’11.
[9] M. Baboulin, J. Dongarra, J. Herrmann, S. Tomov, Accelerating linear system solutions using randomization techniquesLAPACK Working

Note 246.
[10] L. Grigori, J. Demmel, H. Xiang, CALU: a communication optimal LU factorization algorithm, SIAM J. Matrix Anal. and Appl. 32 (2011)

1317–1350.
[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002, second edition.
[12] L. Grigori, J. Demmel, H. Xiang, Communication avoiding Gaussian elimination, in: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, IEEE Press, 2008, p. 29.
[13] D. S. Parker, Random butterfly transformations with applications in computational linear algebra, Technical Report CSD-950023, Computer

Science Department, UCLA (1995).
[14] J. Dongarra, I. Duff, D. Sorensen, H. van der Vorst, Numerical Linear Algebra for High-Performance Computers, SIAM, 1998.
[15] J. Kurzak, J. Dongarra, Implementing linear algebra routines on multi-core processors with pipelining and a look aheadLAPACK Working

Note 178.
[16] S. Donfack, L. Grigori, A. K. Gupta, Adapting communication-avoiding LU and QR factorizations to multicore architectures, in: Parallel &

Distributed Processing (IPDPS), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1–10.
[17] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov, The impact of multicore on math softwareIn Proceedings of PARA

2006, Workshop on state-of-the art in scientific computing.
[18] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, Parallel tiled QR factorization for multicore architectures, Concurr. Comput. : Pract. Exper. 20

(2007) 1573–1590.
[19] Intel, Math Kernel Library (MKL), http://www.intel.com/software/products/mkl/.
[20] F. G. Gustavson, Recursion leads to automatic variable blocking for dense linear-algebra algorithms, IBM Journal of Research and Develop-

ment 41 (6) (1997) 737–755.
[21] J. Dongarra, M. Faverge, H. Ltaief, P. Luszcsek, Achieving numerical accuracy and high performance using recursive tile LU factorization-

LAPACK Working Note 259.
[22] G. H. Golub, C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, 1996, third edition.
[23] S. Blackford, J. Dongarra, Installation Guide for LAPACKLAPACK Working Note 41, revised version 3.0.
[24] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math. Comput. 35 (1980) 817–832.

 http://www.intel.com/software/products/mkl/

	Introduction
	Two existing hybrid algorithms for LU factorization
	LU factorization based on partial pivoting
	PRBT solver

	Hybrid communication-avoiding LU factorization
	Communication-avoiding LU
	Hybrid version of CALU (H-CALU)

	Numerical experiments
	Panel factorization
	Performance of hybrid LU implementations
	Tests on accuracy

	Conclusion

