GROUPS, CONTEXTS, AND COMMUNICATORS

5.1 Introduction
I'his chapter introduces MP features that support the development of parallel
libraries. Parallel libraries are needed o encapsulate the distracting compli-
cations inherent in parallel implemenmations of key algorithms, They help to
ensure consistent correctness of such procedures, and provide a “higher level” of
portability than MP1iself can provide, As such, libraries prevent each program-
mer from repeating the work of defining consistent data structures, data layours,
and methods that implement key algorithms {such as marrix operations). Since
the hest libraries come with several variations on parallel systems (different data
lavouts, different stategies depending on the size of the svstem or problem, or
type of floating point), this too necds to be hidden from the user.

We refer the reader wo [26] and [3] for further information on writing
lihraries in MPI, using the features described in this chapter.

5.1.1 FEATURES MEEDED TO SUPPORT LIERARIES

The key features needed to support the creation of robust parallel libraries are
as follows:

¢ Safe commumication space, that guaraniees that libraries can communicate
as they necd o, without conflicing with communication extraneons o the
Iy,

« Croupscope for collective operations, thatallow libraries 1w avoid unneces-
sarily synchronizing uninvolved processes (potentally running unrelated
code),

o Abatract process naming to allow libraries to describe their communication
in terms suitable to their ovn data structures and algorithms,

» The ability 1o "adorm™ a set of communicating processes with additional
wser-defined atirbutes, such as extra collectve operatons, This mecha-
nism should provide a means for the user or library writer effectively to
extend a message-passing notation.

In addition, a unified mechanism or object i= needed for conveniently denot-
ing communication context, the group of communicating processes, 10 house
abstract process naming, and o store adornments,

5.1.2 MFPFI'sS SUPPORT FOR LIBRARIES

The corresponding concepts that MPI provides, specifically to support rolust
libraries, are as follows:

Contexts af communication,
Crroups of processes,

Virtual topologies,

Attribute caching,
Communicalons,

Communicators {2ee [16, 24, 27]) encapsulate all of these ideas in order to pro-
vide the appropriate scope for all communication operations in MPIL Commu-
nicators are divided into two kinds: inta-conmunicaions [or operatons within
a single group of provesses, and inler-communicators, for poin-lo-point com-
municalion berween wo roups of Processes,

Caching. Communicators {see below) provide a “eaching” mechanism that
allows one Lo associate new atiributes with communicators, on a par with MPI
buil-in fearures. This can be used by advanced users to adorn communicators
further, and by MPI o implement some communicator functions. For example,
the virtual tepology functions described in Chapter G are likely to be supported
thiz way.

Groups. Groups define an ordered collection of processes, cach with a rank,
and it is this group that defines the low-level names foar nter-process commieni-
cation {ranks are used for sending and receiving). Thus, groups define a scope
for process names in pointlo-point communication. In addition, groups define
the scope of collective operations. Groups may be manipulated separately from
communicators in MPL but only communicators can be used in communication
operalions,

Intra-communicators. The most commonly used means for message passing
in MPI 35 via intra-communicators. INoa-communicalors Coniain an instance
of a group, contexts of communication for both point-to-point and collective
communicaticn, and the ahility o include virtual wpology and other attributes.
These feamres work as follows:

+ Contexts provide the ability 1o have separate safe "universes™ of message
passing in MPI A context is akin to an additional tag that differentiates
messages. The system manages this differentation process. The use of
separate communication contexts by distinct libraries (or distinct library

invacations) insulates communication internal 1o the library execution
from external communication, This allows the invocation of the library
even if there are pending communications on “other” communicators,
and avoids the need 1o synchrenize entey or exit into ibrary code. Pending
point-lo-point communications are also guaranteed not o interfere with
collective communications within 2 single communicator,

o Groups define the participants in the communication {see above) of a
COMMUNICALON

» Avirmal topology defines a special mapping of the ranks ina group to and
from a wpology. Special constructors for communicatons are defined in
chapter G o provide this featurs, Intra-commundcators as describee in this
chapter do not have topologics.

» Attributes define the local information that the user or library has added
o o communicator for later reference,

Advice to wzers, The current practice in many communication libraries is
that there is a unique, predefined communication universe that inchuies
all processes available when the parallel program is initiared; the processes
are assigned consecutive ranks, Participants in a point-to-point commi-
nication are identified by their mnk; a collective communication (such
as broadeast) alwavs involves all processes, This practce can be followed
irn MPI v using the predefined communicaror MPLCOMM WORLD, Lers
whie ave safisfeed with tiis practice can plwgr in MPLCOMM_WORLD wherever a
communicalor argiment 5 wequined, and can consequenitly disrerard e et of thiz
chafder. (Fad of advice o weers,)

Inter-communicators. The discussion haz deall so far with inlra-communica-
ton: communication within a group. MPI also supports inter-communication:
commurnication between two non-overlapping groups, When an application
is built by composing several parallel modules, it 15 convenient 1o allow one
medule o communicate with another vsing loeal ranks for addressing within
the second module. This is especially convenient in a client-server compur-
g paradigm, where cither client or server are parallel, The support of inter-
communication alsa provides a mechanism for the extension of MPI 1o a dynamic
maodel where not all processes are preallocared an initalization tme. In sach
a situation, it becames necessary 1o support communication across “universes.”
Inter-communication is supported by objects called intercommumicators, These
objects bind rwo groups together with communication contexts shared by hoth
groups, For inter-communicators, these feamres work as Follows;

= Contexts provide the ability to have a separate sale "universe™ of message
passing between the two groups, A send in the local group is alwavs a
receive in the remote group, and vice versa. The system manages his
differentiation process. The use of separale communication contexis by
distinet libraries (or distinet library invocations) insulares communication

internal to the library execution from external communication. This allows
the invecation of the library even if there are pending communicalions on
“other” communicators, and avoids the need w synchronize eniry or exit
inta likrary code. There is no general-purpose collective communication
0T iNtEr-Communicaters, so contexts are used just 1o isolate point-to-point
COmMmMunication.

e A local and remote group specify the recipients and destinations for an
iNEr-COTIMITILCALOL

o Virtual topology is undefined for an intercommunicator.

» As before, atrbutes cache defines the local information that the wser or
library has added to a communicator for later reference.

MPI provides mechanisms for creating and manipulating inter-communica-
tors. They are used for peint-to-point communication in 2 related manner to
intra-communicators. Users who do not need inter-communication in their ap-
plications can safely ignore this extension. Users who need collective operations
via inter-communicators must layer it on wop of MPL Users who require inter-
communication between overlapping groups must also layer this capability on
top of MPI,

5.2 Basic Concepts

In this section, we wm 1@ a more formal definition of the concepts introduced
above,

521 GROUPS

A group is an ordered set of process identifiers (henceforth processes); processes
are implementation-dependent objects. Each process in a group is associated
with an integer rank. Ranks are contiguows and siart from sero, Groups are
represented by opague group objects, and hence cannot be directly transferred
from cne process to another. A group is nsed within a communicator 1o describe
the participants in a communication “universe” and o rank such participants
{thus giving them unique names within that “universe” of communication)).

There is a special predefined group: MPLGROUP.EMPTY, which 15 a group
with na members. The predefined constant MPLGROUP_NULL is the value used
for invalid group handles.

Advice fo wsers. MPLGROUP_EMPTY, which iz a valid handle w an empry
group, should not be confused with MPLGROUP_NULL, which in tirn is
an invalid handle. The former may be used as an argument W0 group
operations; the latter, which is retwrned when a group is freed, in not 4
valid argument. (Fnd af adeice lo asers.)

Aduwice to implementars. A group may be represented by a virtual-to-real
process-address-translation wable, Each communicator olject (see below)
would have a pointer to such a whle.

Simple implementations of MPI will enumerate groups, such as in a
table, However, more advanced data structures make sense in order to
improve scalability and memory usage with large numbers of processes.
Such implementations are possilde with MPIL (End of adwice to tmplementors.)

5.2.2 COMNTEXTS

A context is a property of communicators (defined next) that allows partiioning
of the communication space. A message sent in one conlext cannat be received
in another context, Furthermore, where permitted, collective operations are
independent of pending poin-io-pointoperations. Contexts are not explicic MPI
abjects; they appear only as part of the realization of communicators (below).

Adwice o imfilemendovs, Distinet communicators in the same process have
distinet contexts, A context is essentially a system-managed tag (or wgs)
necded o make & communicator safe for point-to-point and MPlelined
collective communication. Safety means that collective and point-to-point
communications within one communicator do notinterfere, and that com-
munications over distinet communicators don’t interfere,

A possible implementaton for a context is as a supplemental tag at-
tached o messages on send and matched on receive, Each intra-communi-
cator stores the value of s two tags (one for point-to-point and one for
collective communication). Communicator-gengerating functions use a col-
lective communication o agree o & new group-wide unique context.

Analogously, in inter-communication {which is strictly point-to-point
COMMUDICALOnN], (wo context ags are stored per communicator, ome used
by group A to send and group B 1o receive, and a second used by group B
to send and for group A to receive.

Since contexts are nol explicit olyjects, other implementations are also
possible. (End of advice to implemenions.)

523 INTRA-COMMUNICATORS

Intra-communicators bring wgether the concepts of group and context. To
support implementation-specific optimizations, and application wpologies {(de-
fined in the next chapter, chapter 6}, communicators may also “cache™ additional
informaton (see Section 5.7). MPl communication operations reference come-
municators to determine the scope and the “communication universe” in which
& point-lo-paint or collective aperalion is w0 operate,

Each communicator contains a group of valid pardcipants; this group always
includes the local process, The source and destination of @ messape is identified
by process rank within that group.

For collective communication, the intra-=communicator specifies the set of
processes that participate in the collective operation (and their order, when
significant). Thus, the communicator restricts the “spatial” scope of communi-
cation, and provides machine-independent process addressing through ranks.

Intra-communicatars are represented by opague intra-communicator ob-
jects, and hence cannot be directly rransferred from one process 10 another.

5.2.4 PREDEFINED INTRA-COMMUNICATORS

An initial intra-communicator MPLCOMMWORLD of all processes the local pro-
cess can commuenicate wich after initalizaton (sell included) s defined once
MPLINIT has been called. In addition, the communicator MPLCOMM_SELF is
provided, which includes only the process issell.

The predefined constant MPLOOMM MULL 15 the value used for invalid com-
mumieator handles.

In a static-process-model implementation of MPI, all processes that partie-
ipate in the compuiation are available after MPI is initialived. For this casc,
MPICOMM WORLD is a communicator of all processes available for the compu-
tatien; this communicator has the game value in all processes, In an imple-
mentation of MPI where processes can dynamically join an MPl excoution, it
may be the case that a process starts an MPl computation without having access
o all other processes, [nsuch situations, SAFLCONM WORLD i5 a comimunic
tar incorporating all processes with which the joining process can immediately
communicate, Therefore, MPLCOMM WORLD may simulianeously have different
valites in ditferent processes,

All MPI implementations are required o provide the MPLCOMM_WORLL
communicator. [t cannot be deallocated during the life of a process. The group
corresponding o this communicator does not appear as a predefined constant,
but it may be accessed using MPLCOMM_GROUP (zee below), MPI docs not
specifv the correspondence between the process rank in MPLCOMM WORLD and
its (machine-dependent) absolute address. Neither does MPI specity the func-
tion of the host process, if any. Other implementation-dependent, predelined
communicators may also be provided.

5.2 Group Management

This section describes the manipulation of process groups in MPL These oper-
atiens are local and their execuation does not require interprocess communica-
LICHL.

5.3.1 GROUP ACCESSORS

FPLGROUP_SIZEgraoup, size)

[CroLp wroaap | handle]

auT size nuther of processes in the groogs {Lnneger]
int MPI Group size{NFI Group group, int +size)

MPI GROUP_ZIZECGROVF, SIZE, IERROR
INTESER GROUF, SIZE, IERROR

MPILGROUP _RANKIgroup, rank)

I gQroup group [laandle)

ouT rank rank of the calling process in growp. or
MPI_UMCEFIMED if the process is nota member
finteger

int MFI_Group rank(HPI Group group, int =rank}

MPI_GROUP_RANKE (GROUP, RANX, IERTOW)
IKTEGER GROUF, RAKK, IERROR

MPI_GROUP_TRANSLATE RANKS (groupl, n, ranks1, group?, ranks2)

1 graupl grougpl (handle)

1 n number of rnks in ranks1 and ranks2 areays
[aneger)

N ranksl array of wero o more valid ranks in groopl

I~ group group? (handle)

O ranksZ array of corvesponding ranks in groupE, MPL

UMDEFIMNED swhen no correspondense exisls,

int MPI Group tranalate ranks (MPI Group groupl, int n, int #*ranksl,
HPI Group group2, int =ranksi)

MPI_GROUP TRANSLATE RANES(GROUFL, H, RANESI, CGROUP2, MANES2, IERROED
IKTEGER GROUT1, W, RAMESL(+}, GEOUFZ, BAHESZ{+), IERRQR

This funciion is impertant for determining the relatve numbering of the
same processes in owo different groups, For instance, if one knows the ranks of
cerlain processes in the group of MPLCOMM WORLD, one might want to know
their ranks in a subset of that groap.

MFPILGROUP_COMPARE(group, group?, resull)

I groupl firat growp Chandle)
It groupd seopnd group Chandle)
ouT result result (ineger)

int ¥FI_Group cenpara(MPI Group groupl MPIGroup groupd, int sresule)

HPI_GEOUP_COMPARECGROUPL, GROUPZ, RESULT, IERROR?
INTEGER GROUP1, GROUPZ, RESULT, IERROR

MPLIDENT resulis if the group members and group order is exactly the same
in both groups. This happens for insance if group! and group2 are the same
handle, MPLSIMILAR results if the group members are the same but the order is
different, MPILUNEQUAL results otherwise,

5.3.2 GROUP CONSTRUCTORS

Group constructors are used to subset and superset existing groups, These
CONSIrUCs consiruct new groups [rom exising groups. These are local op-
erations, and distinct groups may be defined on different processes; a process
may alse deline a group that dees noet inclede isell. Consistent definitions ane
required when groups are used as arguments in communicator-building fune-
ton:, MP does not provide 3 mechanism to build & growp from scratch, bt
only from other, previously defined groups. The base group, upon which all
ather groups are defined, is the group associated with the initgal communicator

MPILCOMMWORLD (acceszible through the funcuon MPLCOMM_GROLUFY,

Rationele, In what follows, there 35 no group duplication function analo-
gous 1o MPLLCOMM_DUE, defined later in this chapter. There is no need
fora group duplicator. A group, once created, can have several relerences
o it hy making copies of the handle. The following constructors address
the need for subsets and supersels of existing groups, (Fed o stionede)

Advice to implementors. Each group constructor behaves as if it returned
a new group olject. When this new group is a copy of an existing group,
then one can avoid creating such new objects. using a reference-count
mechanism, (Ead of advice o fnjlesenios.)

MPICOMM_GROUPiecmm, groug)

[Camm commiuenicaior {handle)
OUT Qroug group corresponding w comm {handle)

int HFI_Ceomm groupi{MPI Comn comm, HPI.Group #group)

HMPI_COHH_GROUP (G0, GROUP, IERROR)
INTEGEER CLOMM, GEDUF, IERRDR

MPI_COMM_GROUF returns in group a handle to the group of comm,

MPIGROUP UMIOMIgroup 1, group, newgroup)

u} growp] firsl group (handle)
It gr’ﬂr.ll:rE skl oroup {handle)
LT newgraup umicn growp lndle)

int HPI Growp unisn{HPI Group groupl, MPI.Greop greupd, HPI Grouwp *nawgroup)

HPI_GROUP_UNION (GROUPL, GROUFZ, KEWGROUP, IERROR
INTEGEE GNOUFL, GROUFZ, RERGROUF, IERROR

MPILGROUP_INTERSECTIONIgroupl, group, newgraup)

1™ group first group (handle)
IN group? second group (handle)
T neEwWgraup tntersection group (handle)

int MPI Group imtersestion(MFI_Greup greoupl, HPL.Grouwp groupZ,
MPI Group =newgroup)

MPI_GROUP_INTERSECTION{GRODUFL, GROUFZ, MEWGROUF, IERAOR)
INTEGER GROUFL, GROUPE, MEWGROUF, IERROR

MPILGROUF_DIFFERENCEigroup], groups, newagroup)

13 qrau p1 first group {Heaedle)
1M group? second group [handle)
QUT newgroup cifference group (handle)

int MPIGroup difference (HPI Group groupl, MPIGroup groupl,
¥PI_Group =nowgraup)

HPI_GROUF DIFFERENCE{GROUPL, GROUPZ, KEWGROUF, IERROR}
INTEGER GROUPL, GROUPE, NEMGROUF, IERROR

The setlike operations are defined as follows:

union All elements of the first group (group?), followed by all clements of
second group (groupd) not in firse

intersect All elements of the first group that are also in the second group, or-
dered as in frst growgp.

difference All elements of the first group that are not in the sccond group,
ordered as in the first group.

Mote that for these operations the order of processes in the oatput group is de-
termined primarily by order in the first group (if possible) and then, ifnecessary,
by order in the second group. Neither union nor intersection are comimutalive,
bul both are associative.

The new group can be empty, that is, equal 1o MPILGROUP_EMPTY,

MPILGROUP_INCLIgroup, n, ranks, newgraup)

I group sroup hanedle)

I n number of clements in army ranks (and size of
newqroup (integer]

I ranks ranks of processes in Group to appear in new-
group (array of integers)

ouT MW GFoUpD new group derived from above, in the order de

limweed b ranks {handle)

int MPI Group incl{HPI Grewp group, int n, int =ranks, WPI.Group *ncwgroup)

HPI_GROUP_IHCL (GROUP, K, RANES, HEMGROUF, IERROR]
INTEGER GROUP, K, RAMES(+}, MEWGNOUF, IERROR

The function MELGROUP_INCL creates a group néwgroup that consists of
the Processes m graup with ranks rank[0].. . ., rank[n—1]; the process with mank
i in newgroup is the process with rank ranks(i] in group. Each of the n elements
of ranks muwst be o valid mank in group and all elements muost be distne, or clse
the program is erroncous. Ifn = 0, then newgroup is MPILGROUP_EMPTY, This
funcuon can, for insance, e used o reorder the elements of a gronp. See also

MPIGROUF COMPARE.

MPIGROUP_EXCLigroup, n, ranks, newgroup|

I group jrrop {handle)

[y 1 nurmher of elements in qrTay rnks -;_i1:|r|'j_ﬂe:r]

™ ranks array of integer ranks i Group nod o appear in
P T

LT nEwgraup new groap derived from above, preserving the

order defined by grawvp (handle]

int MPI Grovp excl{¥PI Group group, int n, int sranke, MFI_Greup =newgraoupl

v
]
-

GROUP_EXCLOGROUP, M, RANES, WEWGROUP, IERROR)
INTEGER GROUF, N, RANES(=), NEMGROUP, ITERROR

The function MPLGROUP EXCL creates a group of processes newgroup
that is obmined by deleting from group those processes with ranks ranks[0] ...
ranksin—1], The ordering of processes in nawgroup is identical to the ordenng
in group. Each of the nclements of ranks must be a valid rank in groug and all
elerments must be distinet; otherwise, the program is erroncous. If n= 0, then
newgroup is identical o groug.

MPLGROUP_RANGE INCL{group, m, rangess, n EwWGroup)

I Qraup group (handle)
I n number r|‘|'||'ip'|r=|.-: in ATy FENGES -;i1:|r|'j_ﬂe:r'l
ranges annray of ineger cplen, of the form (firserank,

Last rank, stride) indicating mnks in group of pro-
ceses 1 e included in nassgroups

OUT NEWgraup new group derived from above, o the order de-
fined by rangas (handle)

int MPIGroup range incl(¥FI roup group, iot m, int ranges[][3],
WFI_Group =oewgroup)

HFIGROUE JNHGE-IMCLIGROUF, N, RANGES, KEWGROUP, IERROR)
INTEGER GROUF, M. RANGES(S,+}, MEWGROUF, IERAOR

If ranges consist of the triplets
(firshy, lash, stride)), ... (first,, last,, siride,)

then newgroup consizts of the sequence of processes in group with ranks

basly = [irsy

sty Fivsly 4 slridey, L sl +
ighah IR [stride

J siridey. ...

last, — [irss,
stride,

firsty, first, + stride,, ..., firsf, + [J siride,.

Each computed rank must he a valid rank in group and all compuied ranks
must be distinet, or else the program is crroneous. Note that we may have
firsty = lask;, and stride, may be negative, bul cannot be zero.

The functionality of this routine is specified 10 be equivalent 1o expanding
the arvay of ranges to an array of the included ranks and passing the resulting
array of ranks and other arguments to MPLGROUP_INCL. A call 1o MPILGROUP_
INCL is equivalent to a call to MPILGROUP_RANGE _INCL with cach rank i in ranks
replaced by the triplet (1,4,1) in the argument ranges.

MPIGROUF_RANGE_EXCL{group, n, ranges, newqgroup)

1IN qrowup group (handie)
I n number of elemenis in armay ranks {ineger]
[ranges a nnedimensional areay of integer taplets of the

Form (hese rank, kst mnk, stride), indicating the
ranks in graup of processes 1o be excloded from
the CUrpn grougs NEWG U,

o newgroup new grroap clerived from above, preserving the
arder in group (leandle)

int HPI.Group.range excl(MFI Group group, iot n, int rangea(][3],
MPI Group =newgroupl

HPEI GROUP RANGE EXCLOGROUF, N, HANGES, KEWGEOUP, IERROR)
INTEGER GROUF, M, RAWGES(SE.+), NEWGRLODUP, IERROR

Each computed rank muost e avalid rank in group and all computed ranks must
be distinet, or else the program is erroneous.

The functicnality of this routine 15 specified 10 be equivalent 1o expand-
ing the array of ranges 1o an array of the excluded ranks and passing the
resulting array of ranks and other arguments to MPILLGROLUP_EXCL. A call 1o
MPILGROUP_EXCL is equivalent ta a call 1o MPLGROUP_RANGE _EXCL with each
rank i in ranks replaced by the wriplet €i,1i,1) in the argument ranges,

Advice fo ugers, The range operations do not explicitly enumerate ranks,
and therefore are more scalable if implemented efficientdy. Hence, we
recommend MPl programmers o use them whenever possible, as high-
quality implementations will take advantage of this fact. (End of adwvice lo
PLSET, |

Aduice to implementsrs. The range operations should be implemented,
if possible, without enumerating the group members, in order 1o obtain
heer scalahility (time and space). (End of aduice to fmfilementors.)

5.3.3 GROUP DESTRUCTORS

rPIGROLP FREE|graup)

INOUT group group Chanedle]

int HPI Group fres{MFI Group =group)

MFI_GROUF _FREE(GROUF, TERROR)
INTEGER GEOUF, IERROR

This operation marks a group object for deallocation. The handle group is
set o MPLGROUP_ NULL by the call. Any on-going operation using this group will
complete normally.

Aduvice to implesmentors, One can keep a reference count that is incre-
mented for cach call o MPLCOMM CREATE and MPILCOMM_DUP, and
decremented Mor each call to MPI_GROUP_FREE or MPI_COMM_FREE: the
group object is ultimately deallocated when the reference count drops 1o
werd, CEnd of advice to nflemicnions.)

5.4 Communicator Management

This section describes the manipulation of communicators in MPL Operations
thal access communicators are local and their execution does not require inter-
process communication, Operations that create communicators are collective
and may require interprocess communication.

Advice o impdementzrs. High-quality implementations should amaortize the
aoverheads associated with the creaton of communicators (for the same
group, or subsets thereol) over several calls, by allocating multiple contexts
with one collective communication. {End of ndvice fo tnflemeritor.)

5.4.1 COMMUNICATOR ACCESSORS

The Fllowing are all lacal operatons,

MELCOMM_SIZElcomm, size]

I

SO comumunicatos (lrandle)

QU size number of processes in the group of comm

['i:ll-e:;_.:l.'l':l

int NPT Como gize(HPI Comm ¢opn, int *sizal

HPI_COMM_SIZE(COMM, S5IEE, IERROR)

INTEGER (OMM, SIZE, IERTOR

Rationale. This function is equivalent to accessing the communicators
group with MPLCOMM GROUP (see helow), computing the size using
MPIGROUP SIZE, and then freeing the group lemporary via MPLGROUP.
FREE. However, this functien iz 20 commaonly used, that this shortout was
iniroduced. [Frd of vetionale)

Adyice to wsers. This function indicates the number of processes involved
in a communicaior. For MPLCOMMOWORLD, it indicates the ol number
of processes available (For this version of MP, there is no standard way 1o
change the number of processes once initialization has taken place).

Thiz call i= often used with the next call 1o determine the amount of
concurrency available for a specific library or program, The following call,
MPI_COMM_RAMNK indicates the rank of the process that calls itin the range
fram (1. . .size—1, where size is the return value of MPLCOMM_SIZE. | Faad
of advice to users.)

MPI_COMM_RAMEK [comm, rank)

N COMmim commuicator (handle)
OUT rank rank of the ealling process in group of comm
(inLeger

int MNP Copn rank (HPI Comm comm, int *rack)

HPL_COMM_BARE(COMM, RANX, TERROR)

INTEGEN COMHM, RAKX, IERROR

Fationale. This function s equivalent 1o accessing the communicator's
group with MPLCOMM GROUP (sce below), computing the size using
MPLGROUP_RANK, and then freeing the group temporary via MPL
GROUP_FREE, However, this function is so commonly used, that this short-
cut was introduced. (End of rabona,)

Adwice to wsers, This function gives the rank of the process in the partoular
communicarers group. It is useful, as noted above, in conjunciion with
MFILCOMM_SIZE,

Manv programs will he written with the master-slave model, where one
process (such as the rank-ero process) will play a supervisory role, and the
other processes will serve as compute nodes, In this framework, the two
preceding calls are useful for determining the roles of the variows processes
of a commumicator, {Frd of aduvice to wsers.)

MPLCOMM_COMPARE|lcomml, comma, result)

I™ cammi first commumisiior handle]
I CEOTITE second communicater Chandle)
ouT result resili -:i1'.-||'j_ne:r'l

int HMPI_Comm_compara(HPI Comn comnl MPI Comm commZ, int =result)

MPI_COMM_COMFARE (GOMM1, CO02£2, RESULT, IEAAOR)
INTEGER COMML, COHMEZ, RESULT, IERRDR

MPLIDEMT results if and only if comm and comm are handles for the same
object (identical groups and same contexts), MPLCONGRUENT results if the
underlying groups are identical in constitnents and rank order; these communi-
cators differ enly by context. MPLSIMILAR results il the group members of both
communicators are the same but the rank order differs, MPLUNEQUAL results
otherwise,

5.4.2 COMMUNICATOR COMSTRUCTORS

The following are collective functions that are invoked by all processes in the

group associated with comm.
Rationele, Note that there s a chicken-and-egg aspeet to MPIin thal
communicatar 1% needed 10 create a new communicator, The base com-
municator for all MPl communicatons is predefined ouside of MPL, and
is MPLCOMMOWORLD, This model was arrived at after considerahle debate,
and wag chosen 1o increase “safety” of programs written in MPl. (End of
rationale)

MPI_COMM_DUP{comm, newcomm)

™ Leteluglnn] communicaror [handbe)
T eSO copy ol conmm {handle)

int MPI_Comm duplHPI Comm comm, HPI_Comm *newvcomm)

HPI_COMM_OUP (Q0MM, NEWOIMM, IERROR)
INTEGER COMM, WEWCOMH, IERROR

MEI_COMM_DUP Duplicates the existing communicator comm with associ-
ated kev values. For cach key value, the respective copy callback function deter-

mines the atribute value associated with this key in the new communicator; onc
particular action that a copy callback may take is o delete the atribute from the
new communicator. Beturns in newoamm a new communicater with the same
group, any copied cached informadon, but a new contexe (see Section 5.7.1),

Adwice towsers, Thisoperation is used o provide a parallel library call with a
duplicate communication space that has the same properties as the original
communicaror, This includes any atributes (see below), and wopologies
(ste chapter 6). This call s valid even if there are pending point-to-point
communications involving the communicater comm. A wypical call might
invalve a MPILCOMM_DUFP at the beginning of the parallel call, and an
MPILCOMM_FREE of that duplicated communicator at the end of the cill,
Other models of communicator management are also possible.

This call applies o hoth intra- and inter-communicators, {Snd of aduvice
foy wsers.)

Advice to tmplementors. One need not actually copy the group information,
bur only add a new reference and increment the reference count. Copy on
write can be used for the cached information. { Ead of aduice fo smfdemeniors,)

MPLCOMM CREATE{commn, group, neweommim)

I COMmm communicatar (andle)

™ Grau Larougy, which is o subset of the group of comm
(handle)

OUT MEWEDITI new corrmunieitor {handle)

int MFI_Ceoom created{MPI_Comn comme, HPI Group Froup, MPI_Conn =newcomn)

HPI_COHM_CREATE(OIMM, GROUF, HEWOSIMM, IERROR)
INTECER ©0MM, GROUF, MEWCOMM, IERROR

This Munction creaies 50 new CoOmmunicator NEwWesmm with communication
group defined by group and a new context. No cached information propagates
from comm e newcomm. The function retums MPLLCOMM_NULL to processes
that are not in group. The call is erroneous if no all group arpuments have
the same value, or if group is not a subset of the group associated with comm.
Mote that the call is to be executed by all processes in comm, even il they do not
belong 1o the new group. This call applies only W intra-communicators.

fufionale. The requirement that the entire group of comm participare in
the call stems from the following considerations:
¢ [tallows the implementatdon w layver MPILLCOMM_CREATE on 1op of
regular collective communications,
o [t provides additonal safety, in particular in the case where partially
overlapping groups are used 10 CUrEALE NEW COMIMUNIGLLOTE,

o It permits implementations sometimes o avoid communication re-
lated to context creation. (Frd of stionale.)

Advire fo users. MPILCOMM_CREATE provides a means 1o subset a group
of processes for the purpose of separate MIMD computation, with sepa-
rate communication space. newcomm, which emerges from MPLLCOMM.
CREATE can he used in subsequent calls to MPILCOMM_CREATE (or other
communicator constructors) further to subdivide a computation into par-
allel sub-computations. A more general service is provided by MPLCOMM.
SPLIT, below, (Erd af adwice fa HFENE)

Advige o implementms. Since all processes calling MPILCOMM_DUR or
MPI COMM_CREATE provide the same group argument, it is theoretically
possible 1o agree on a group-wide unique context with no communicaticn.
However, local execution of these functions requires use of a larger context
name space and reduces error checking, Implementations may strike var-
icus compromises between these conflicting goals, such as bulk allocation
of multiple contexis in one collective operation.

[mportant: If new communicators are created without synchronizing
the processes involved then the communication system should be able 1o
cope with messiges arriving in a contexe that has not yet been allocated at
the receiving process. {End of advice fo implementors.)

RPLCOMM_SPLIT{comm, color, key, newcanm)

I COMIEm communicator (lramdle)

IM color control of subser assipnment (integer)
1™ kay control of rank assigment (integer)
QUT MESE O Im meiy communicaior (amndle)

int MPI Comm split(MPI_Coxm comm, int color, int key, MFIConm =newcoon)

HMPI_GOMM_SPLIT(COMM, COLOR, KEY, HNEWCOMM, IERROR}
INTEGER ©0MM, COLDR, EEY, NEWCOHH, I1ERROR

This functicn partiticns the group asseciated with comm into disjoinLsubgrowps,
one for cach value of color, Each subgroup contains all processes of the same
color. Within each subgroup, the processes are ranked in the order defined by
the value of the argument key, with tes broken according (o their rank in the
old group, A new communicator is created for each su bgroup and returned in
newecamm. A process may supply the color value MPLUND EFINED, in which case
FEWCSTIM relnrns MPLCOMM_MULL, This is a collective call, but each process is
permitted to provide different values tor color and key,

A call to MPILCOMM_CREATE(comm, group, nawsomm) is equivalent o a
call 1o MPLCOMM_SPLITicomm, color, key, newcomm), where all members
of group provide colar = 0 and key = rmank in group, and all processes

that are not members of group provide color = MPLUNDEFINED. The une-
tion MPI_LCOMM_SPLIT allows more general partitioning of a group into one
or more subgroups with opticnal reordering, This call applies only 0 inoa-
COMITUANICLOTS,

Adwice to users. This is an extremely powerful mechanism for dividing a
single commumicating group of proceses e & subgroups, with & chosen
implicitly by the user (by the number of colors asserted over all the pro-
cesses). Each resulting communicater will be non-overlapping, Such a
division could be useful for defining a hierarchy of computations, such as
for multigrid, or linear algehra.

Multiple calls w MPILCOMM_SPLIT can be used to overcome the re-
quirement that any call have no overlap of the resulting communicators
(each process is of only ene color per call). In this way, multiple overlap-
ping communication struciures can be created. Creative use of the color
and key in such splitting operations is encouraged.

Mote that, for a fixed color, the kevs need not be wnique. 1o is MP
COMM_SPLIT's responsibility to sort processes in ascending order accord-
ing o this key, and o break ties in a consistent way. 1F all the keys are
specified in the same way, then all the processes inoa given color will have
the relative rank order as they did in their parent group. {In general, they
will hawve different ranks,)

Ezzeniially, making the kevvalue zero for all processes of a given color
means that one doesn’t really care about the rank-order of the processes
in the new communicatorn (fd of advice e isers.)

54.3 COMMUNMNICATOR DESTRUCTORS

rPILCOMM_FREE(Camm]

INOITT COMmm coxmmuanicator i he (Iq-wrr_.:.'m_-l thandle]

int HPI_Comm free{MPI_Cofm =comm)

MPI_COMH_FRZE(COMM, IERROR}
IKTEGER COMM, IEERDR

Thiz collective operation marks the communication object for deallocation.
The handle is set to MPLCOMM_NULL. Any pending operations that use this
commumnicator will complete normally; the object is actually deallocated only
if there are no other active references o it This call applies w intra- and inter-
communicators, The delete callback functions Tor all cached atribaces (see
Section 5.7) are called in arbitrary order.

Adwice to implementors. A referencecount mechanism may be used: the
reference count is incremented by each call to MPILCOMM_DUP, and decre-

T

== D Tt
e

el

ok e P Ll
s St e

P

- |

5.5

5.58.

mented by each call o MPLCOMM.FREE. The object is ultimately deallo-
cated when the count reaches zera.

Though collective, itis anticipated that this operation will normallv be
implemented to be local, though the debugping version of an MP| library
might choose w synchranize, {(Fnd of advice o imjlenentor)

Motivating Examples
1 CURRENT PRACTICE #1

Example #la:

mainl(int arge, char iia:'_gl.':l

{

¥

int me, size;

MPI_Tnit { &arpe, &arpy };

MPFI Comm rank (MPI_COMM_WORLD, Eme);
MPT_Comm_size (MFI_COMM_WORLD, &ksizal;

{void)printf ("Process W sime Nd\n", me, siza);

MFI_Fipalizall:

Example #la is a do-nothing program that initalizes itsclt legally, andl refers o

Lk

the “all” communicator, and prints a message. [terminates isell legally

too. This example does not imply that MPsupports printf-like communication
itsell,

Example #1b (supposing that size is cven):

main{int arge, char ++arge)
:

int ma, size;
int SOHE_TAG = 0O;

HPI_ Init(kargs, kargvl;

HPI Corn_rank(MPI_COMM_WORLD, &ma): fa local =/
HPI_Conn_gize{MPI_CO0M_WORLD, &ksize); F* local +f

Affme ¥ 20 == 0

)

fe send unless highest-rumbarad procass *f
ifi{ima + 1} < size}
MPI_Semd{,.., me + 1, SOME_TAG, MPI_COMM_WORLD);

alaa
HPI_Regw(,.., me = 1, SOME_TAG, HPI_COMH_WORLD) :

MPI_Finalize{);

}

Example #1b schematically illusirates message exchanges between “even”™ and
“odd" processes in the =all” communicator,

5.5.2 CURRENT PRACTICE #2

painlint arge, char esargv)
i
int ma, count;

raild =data;

NPI_Init{iargec, bargv);
MPI_Comn_rank (MFI_COMM_WIRLD, Rme);

if (me == Q)

f* gat input, create beffer ''data'’ =f

MPI_Becasti{data, count, WHPI_BYTE, O, MPI_C0MM_WORLD) ;

MPI_Finalize(};

}

This example iMusirates the use of a callective communicaton,

5.5.3 [(APPROXIMATE} CURREMNT PRACTICE #3

mainlint arge, char ssargy)
Ly

int ma, ceunt, count?;

wipid =gend_buf, *recv_buf, sgend_buf?, srecy_buf2;
¥FI_Group MPI_GROUF_MORLD, grprem;

MPI_Comm camnslave:

static int ranke[] = {0};

MPI_Initikarge, hargy);

MFI_Conn_graagp (HPL_COMH_WORLD, EMPI_GROUP_WIRLDD;
MPI_Cooo_rank (HPI_COMM_WORLD, &os); /= Llocal =

MPI_Group_excl(HPI_GROUP_WOALD, f, ranks, Egrprem}; 4= local =f
HPI_Comn_create (MPI_COMH_WORLD, prprem, kcommslavel;

iflma 1= 0)
i
fo gompute on alawa *f

MPI_Baducel{saend_buf ,recv_buff count, MPI_INT, HPI_3UM, 1, commslavel:
1
f= zera falls throwgh imnediately to this reduge, othars do latar... +/f
HMPI_Heduce(send_bufl?, recv_buffld, countd,
MPI_INT, MFI_SUM, O, HPI_G0MM_WORLDD;

HPI_Come_Cree{ksomnslavel
HMPI_Group_free{kMPI_GROUP_WORLD) ;
HPI_Group freel{dgrprem}
MPI_Finalizel};

¥

This example illustrates how a group consisting of all but the seroth process of
the “all” group is created, and then how a communicatoris formed § commslave)
for that new group. The new communicator is used in a collective call, and all
processes execute a collective call in the MPLCOMM_WORLD context. This exam-
ple illustrates how the two communicators {that inherently possess distinet con-
texis) protect communication. That is, communication in MPLCOMM WORLD
is insulated from communicalion in commslave, and vice versa.

In summary, “group safety” is achieved via communicators becausze distinct
contexts within communicators are enforced o be unigue on any process.

554 EXAMPLE ¥4

The following example is meant wo illustrate “safery” between point-to-point and
collective communication. MP| guarantees that a single communicator can do
safe point-to-point and collective communication,

#dafine TAG_ARBITRARY 12345
fdefine SIME_COUNT e

main{int arge, char ssargy)
{

int oe;

MFI_Bequast reguest[2];

HPI_Status statasll2];

HPI_fGroup HPI_GROUP_WIALD, subgroup;
iot ranksl) = {2, 4, &, 8);
MPI_Cofn the_oomn;

HPI_Init{karge, darpv);
HPI _Comn_group{MPI_COMM_WORLD, EWPI_CGROUP_WORLED);

HPI_Graup_incl{MPI_GROUF_WORLD, 4, ranks, tr.u'h-gr-:up_‘.l; f* local =5
HPI _Group_renk{subgroup, kne); Fe lacal +f

HPI _Conn_create(HPI_COMH_WORLD, subgroop, Ethe_comm)

ifime 1= MPI_UNDEFINED

i
MPI_Ivecw{oufll, count, MPI_DOVELE, HPI_ANY_SOURCE, TAG_ARBITRARY,
the_comm, roeguest);
HPI_Isend{oufl?, count, MFI_DOVELE, (met+ll¥4, TAG_ARBITRARY,
the_comm, reguast+l);
I

fordi = 0; 1 < SOME_COUNT, i++)
MPT Beducef ..., the_comm);

MFI_Maitalll?, reguest, statos);

HFI_Comm_ fras (Tkhe_comnd
MPI_Group_froal(EMPI _GEOUP_WIRLD) ;
HFI_Group_fras (Esubgroupl
MPI_Fipalizall:

6.6.5 LIERARY EXAMPLE #1

The main program:

maindint arge, char ssargy)
{

int depe = 03

usar_lib_t =libh_a, =libh_k;

vaid sdacasatl, +dstagzerd;
HPI_Init{iarpe, Rargv);
init_user Lib(MPI_COMM_WIRLD, Elibh_a);
init_usar_Lib(MPI_COMM_WIRLD, Elith_b);

usar_start_opllibh_a, gatasoti);
uger _start_opl(libh b, datasatdl;

¥hilal!donal

i
S work =S
éfi Kedusal. .., MPI_COMM_MORLD} ;
f;-ﬁnn if dome */

b

vser_sod_opilibb_a};
ugar _and_cpi{libh_bl;

uninit_user_lib({libh_a);
wrinit_uvger_1lik(libh_%);:
MPI _Fioalizel];

3

The user hlvary iniualizaton code:

void init_user_1ih(MPI_Cann come, uses_lik t sshandle)

{

usar_lik_t *5ava;

pser_lib_iritsave(keavel:; S+ lacal &

HPI_Cenn_duplcemn, kisave - comn));

f= gther inits =*f

=handle = save;

}
Uzer start-up code:

woid weer_start_spioser_1it_t =handlae, wedd =dazal
i
NPI_Irecvl ..., handle->gomm, &{handle -> irecv_handle} };
MPI Isand({ ..., handle-»camn, Ef{handle =» igend_handle) };
}

User communication clean-up code:

voild user_and_cpluser_Lib_t +hapdle)

MPI_Status +statue;

HPI _Waiti(handla -> isand_handle, status);

MPI_Wait(handle => irecv_hkandle, aTatus):
I

User abject clean-up code:

vold wninit_uaer libluser _lib_t =handlel
{
HPI _Comn_free(k(handla -> cemm]);
frepf{handle);

656 LIBRARY EXAMPLE #2

The main program:

mainlint argc, char =+argv)
{
int ma, ob;
HPI_Group HPLI_GROUP_WORLD, greup_a, group_b;

MPI_{Comm comm_a, comm_b;

static int list_all = {2, 1};
#if defined{EXAMPLE_2B) | dafined (EXAHPLE_3I)
static int list_bi] = {0, 2 ,3};
aalaal= EXANFLE_ 24 »/f
static int list_b[] = {3, 2k;
Fendil
iot eize lipt_a = sizesd{list_alfzizeci{int);

T_a
int size_list b = sizeof{list_ blfsirccf{int):

HPI_Initikarge, Rargv);
MPI_Comn_grovp(dPI_COMM_WIRLD, EMPI_GROUF_WORLD);

MPI_Group_incl{MPI_GRDUP_WOELD, size_ligt_a, lipk_a, i:g:‘&u]}_a‘.l-,
HPI_Group incl{¥Fl_GROUF_MORLD, sime_list_w, list b, kgroup b);

HPI_Come_create{MFI_COMM_MORLD, group_a, kcomno_al;
MPI_Ceoom_createi{MPI_COMM_WOELD, group_b, Beaon_b);

MPI_{Comor_raok(comm &, fma);
HPI_Comie_rank(comm_b, fmmbl;

if{oa != MPI_UKDEFINED}

12b_callicomm_a);

if{ph !'= MPI_UNDEFINED}
{
lib_calli{comn_b};
1lik_eall{somn_bl;

MPT_Coon_froolkcoom_a);
HPI_Comn_fres(kcomm_ o) ;
MPI_Group_fros(@proup_a);
HPI_tGroup_fres(kgroup_bi;
WPI_Group_free{&HPI_GROUP_WORLDY ;
HPI_Finalizel{};

1

The library:

waid lib_call (MPI_Conn cofm)
1
int me, doos = O
HPI_Comn_rank(comm, fme);
if (ma == 0]
whiiled domed

e
'
L}

MFI_Becvw(. .., HPI_ANY_SOURCE, HPI_ANY_TAG, comm);
¥
plua
{
v ounrk f
MPT_Send{..., O, ARBITRARNY_TAG, comm);
I

Hifdef EXRMPLE_20G
e include {resp, exclude) for zafety (resp, no safety): =/
HPI_Barrier{comml ;
fandif
}

The above example is really three examples, depending on whether or not
one includes rank 3 in lst b, and whether or not a synchronize is included in
lib_call. This example illustrates that, despite contexts, subsequent ealls e libocall
with the same context need not be zafe from one anather (collogquially, *back-
masking”). Safety is realized if the MPI_Barrier is added. What this demonstrates

A R T R T
n-H. _-q'qn - .} iy '-\. IS 4
L P R e

is that librarics have to be written carefully, even with contexts. When rank 3 is
excluded, then the synchronize is not needed 1o get safety from back-masking,

Algorithms like “reduce” and “allreduce” have strong enough source selectiv-
ity properties so that they are inherenty okay (no back-masking), provided that
MP| provides basic guarantees. So are muldple calls 1o a pypical tree-broadcase
algorithm with the same rool or different roots (see [28]). Here we rely on two
guarantees of MPI: pairwise ordering of messages between processes in the same
contexl, and source selectivity—deleling either feature removes the puarantee
that back-masking cannot be required.

Algorithms that try 1o do non-deterministic broadeasts or other calls that
include wildeard operations will not generally have the good properties of the
deterministic implementations of "redoce,” "allreduce,” and "broadeast,” Such
algorithms would have to utilize the monotonically increasing tags (within a
CoOmMmMunicator scope) w keep things straight,

All of the foregoing is a supposition of “collective calls” implemented with
point-lo-point operations, MP1 implementations may or may not implement
collective calls using point-to-point operations. These algorithms are used to il-
lustrate the issues of correciness and safery, independent of how MPLimplemenis
its collectve calls. See also Secton 5.8,

5.6 Inter-Communication

This section introduces the concept of inter-communication and describes the
portions of MPL that suppaort it It describes support for wriling programs that
contain user-level servers.

All point-to-point communication described thus far bas involved commu-
nication between processes that are members of the same group. This ype of
communication is called "inirgcommunication” and the communicator wsed is
called an “intra-communicator,” as we have noted earlier in the chapter.

In modular and mult-disciplinary applications, dilferent process groups ex-
ecute distinet modules and processes within different modules communicate
with one ancther in a pipeline or 3 more general module graph, In these ap-
plications, the most natural way for a process to specify a target process is by
the rank of the target process within the target group. In applications that con-
tain internal user-level servers, cach server may be a process group that provides
services (0 one or more clients, and each client may be a process group that
uses the services of one or more servers, It is again most natural o specify the
target process by rank within the target group in these applications. This trpe of
communication is called “intercommunication”™ and the communicator used is
called an “inter-communicatar,” as introduced earlier.

An intercommunication is a pointte-point communication between pro-
cesses in different groups. The group containing a process that initiates an
inter-communication operation is called the *local group,” that is, the sender in
a send and the receiver in a receive. The group containing the target process

A et o
B R

AR B e

is called the “remote group,” that is, the receiver in a send and the sender in
A receivie, As I inbaecammunication, the arget process is specilicd using a
[communicator, rank} pair. Unlike intra-communication, the rank is relative 1o
a second, remote group,

All inter-communicator constructors are blocking and require that the local
and remote groups be disjoint in order 1o avoid deadlock.

Here is & summary of the propertics of intercommunication and inter-
COMIMUNICALors:

o Thesyniax of point-to-point communication is the same for both interand
intra-commumcation, The same communicaror can be used both for send
and for receive operations.

o A warget process is addressed by its rank in the remote group, both for
sends and for receives.

& Comumunicalions using an inler-comminicalor are guarantesd not w con-
flict with any communications that use a different communicator.

& An mlercommunicator cannot be used for collective communication.

o A communicator will provide either intra- or intercommunication, never
b,

The rontine MPILCOMM_TEST_INTER may be used to determine if a communi-
CALGC 12 AN Inkers or ina-commuunicatan Inter-communicators can be used as
arguments o some of the other communicator access rouines. Intercommun-

icators cannot be used as input o some of the constructor routines for intra-
commitnicarors (for instance, MPILCOMM_CREATE).

Advice fo pufilementors. Tor the purpose of point-ioe-point communication,
communicarors can be represented in cach process by a tuple consisting

of

grop
send_conbexi
receive oontext
SOurce

For interrommunicators, group describes the remote group, and source
is the rank of the process in the local group. For intra-communicators,
group is the communicator group (remote=local), souree is the rank of the
process in this group, and send context and receive context are identical.
A group is represented by a rank-to-absolute-address translation mable.

The intercommunicator cannot be discussed sensibly without consid-
ering procesacs in hoth the local and remote groups. Inagine a process
P in group 7, which has an inter-communicator Ce, and a process 0 in
group €, which has an intercommunicator Cg. Then

o Cp.group describes the group € and Cg.group describes the group P,

o Cpgend context = Co.receive_context and the contextis unigue in Q;
Cp receive_context = Cg.send_contextand this context is unigue in 7.

Cop.source is rank of P in T and Ca.source is rank of () in Q.

Assume that P sends a message o O} using the inler-communicalar,
Then P uses the group wble w find the absolute address of Q; source and
send_context are appended o the message.

Assume that Q) posts a receive with an explicit source argument using
the intercommunicator. Then €} maiches receive_context 1o the message
context and source argument to the message source.,

The same algorithm is appropriate for intrra-communicators as well.

In order 1o support inler-communicalor accessors and constructors,
it s necessary o supplement this model with adeditonal structures, thae
store information about the local communication group, and additonal
safe contexts. (End of advice to fmfdenienion.)

56.1 INTER-COMMUNICATOR ACCESSORS

MPLCOMBM_TEST INTERIcomm, flag)

1™ SO commmuntcatar {handle)
O] flag {logical)

int HPI Comn test_inter(HPI Comm comn, ine +flap)

MFI_COMM_TEST_INTER{COMH, FLAG, IERROR)
INTEGER COHH, IERRIR
LUGLICAL FLAG

This lacal routing allows the calling process to determine if a communicator
i5 an infer-communicaior oF an intra-commumicatorn [0 retarns troe 1F 1L 15 an
intercommunicaton, otherwise falsa.

When an inter-communicator is used as an input argument o the commun-
cator accessors described above under intra-communication, the following table
describes boehavior

MPI_COMM_* Funcrion Behavior

tin Inter-Communication Mode)
MPILCOMM_SIZE | returns the size of the local group.
MPI_COMM_GROUP | returns the local group,
MPI_COMM_RAMK | returns the rank in the local group.

Furthermore, the operation MPI_.COMM_COMPARE is valid for intercommuni-
cators. Both commumnicatars must be either inte or inlercommunicators, or
else MPILUNEQUAL results. Both corresponding local and remote groups must
compare correctly o get the resulis MPLCONGRUENT and MPLSIMILAR, In pxue-

ticular, it is possible for MPLSIMILAR Lo result because either the local or remote
groups were similar but not identical.

The following accessors provide consistent access to the remote group ofan
InLer-COmImuniciLar;

The lollowing are all local operations,

MPI_COMM_REMOTE _SIZE|comm, size|

[COTI inter-communicacor (handle)
OuT size mumber of precesies o the remote group of
COmm (integer)

int HPI Comm_ rencte size(MPl Comn comm, int #eizel

MFI COMM REMOTE_SIZE(COMM, SIEE, TERRORM
INTEGER COMH, STZE, IERROR

RAPLLCOMM_REMOTE GROUP{comim, group)

I COImm inter-rommunicator |fandle)
OuT ([guli]4] rerote group corresponding to cammim {hanedle)

int MPI_Comm rencte groupiHPI Comm comm, MPI.Group +group)

MPI_COMH_REMOTE GROUP (COMM, GROUF, IERRORD
INTEGER COHM, GROUP, IERROR

Rationale, Symmetric access to both the local and remote groups of an
inter-communicator is important, so this function, as well as MPILCOMM
REMOTE_SIZE have been provided. (End of rafionate)

5.6.2 INTER-COMMUNICATOR OPERATIONS

This section introduces four blocking intercommunicator operations. MPL
INTERCOMM CREATE is used o hind two intra-communicators inle an inter-
communicator; the function MPLINTERCOMM_MERGE creates an intra-com-
mumnicator by merging the local and remote groups of an inter-communicalor.
The functions MPILCOMM_DUP and MPI.COMM_FREE, introduced previously,
duplicate and free an inter-communicator, respectively.

Overlap of local and remote groups that are bound into &n intercommuni-
cator is prohibited. If there is overlap, then the program is erroneous and is
likely to deadlock. (If a process is multi-threaded, and MPL calls hlock only a
thread, rather than a process, then “dual membership” can be supported, Iuis
then the user's responsibility 1o make sure that calls on behall of the two “roles”
of a process are executed by two independent threacs.)

The function MPLINTERCOMM_CREATE can be used to create an inter

communicator from twe existing intra-communicators, in the following sita-
ion: At least one selecled member from each group (the “group leader”) has
the ability to communicate with the selected member from the other group; that
i5, & "peer” communicalor exists 1o which both leaders belong, and each leader
knows the rank of the other leader in this peer communicator (the two leaders
could be the same process). Furthermore, members of cach group know the
rank of their leader.

Construction of an intercommunicator from two intra<communicators re-
guires separate collective operations in the local growp and in the remote group,
as well as a poin-io-point communication between a process in the local group
and a process in the remote group.

In standlizrd MPlimplementations (with statie process allocation at initializa-
tion), the MPILCOMM_WORLD communicator {or preferably a dedicated dupli-
cate thereof) can be this peer communicator, In dwmamic MPlimplementations,
where, for example, a process may spawn new child processes during an MPexe-
cution, the parent process may be the "bridge” between the old communication
universe and the new communication world cthat includes the parent and s
children.

The application topology functions described in chapter 6 do not apply
o inter-comminicarors. Users that reguire this capabality should atilize MPL
INTERCOMM _MERGE 1o build an intra-communicator, then apply the graph or
cartesian topelogy capabilities to that intra-communicator, crealing an appropri-
ate wpolopeoriented intra-communicator. Alternatively, it may be reasonable
o devise one's own application wpolagy mechanisms for this case, withouwt loss
of penerality,

MPINTERCOMM CREATElocal comm, local leader, pear_comm,
rermate_leader, tag, newintercomm)

I~ lezal_comm loseal intra-communicator [fandle)

I local_leader rank of Incal group leader in local_carmm
{imteger]

[[PEEr_carmm “pear”intrmcommunicaion; significant only acthe
legal leader {handle)

I remate_leader rank of remote group leader in peer. comm; sig-
nificant only an the local_leader (inleger)

ik tag “safe” g integer)

Crr nawintercomm new inter=comunicater {handle)

int HPI_Intercoms creata(HPI Comm lacal_camn, int lacal laader,
MFI Comr peer_comm, int remete_leader, int bag,
MPI _ Cinn =pewintercomm)

MBI _INTERCOMM_CREATECLOCAL COMM, LOCAL_LEADER, PEEE COMHM, REMOTE LERDER, TRG,
NEWINTERCOHH, IEAROR)
INTEGER LOCAL_COMM, LOCAL_LEADER, PEER.COMM, REMOTE_LEADER, TAG,
MEWIKTERCOMH, IERRDR

This call ereates an inter-communicator. It is collective over the union of the
lacal and remote groups. Processes should provide identical local camm and
local leader arguments within each group. Wildcards are not permitted for
remaote_leader, local leadar, and 1ag.

This call uses -I-_;.;;.i_[][.u;..|;.|;.'m| communicalan with communicator Reer
comm, and with tag tag between the leaders. Thus, care must be taken that
there be no pending communication on peer_camm that could interfere with
this communication.

Adwice fo awsers. We recommend using a dedicated peer COTTTLLNICELLOT,

such as a duplicate of MPICOMM WORLD, to avoid trouble with pecr
communicators. {(End of advice (o s)

MPIINTERCOMM _MERGE(intercomm, high, newintracommy)

i IFEFCaTTm Tner-Cormmunicatoer {handle)
It high (logical)
QuUT nes niracomm pew intra-communicitor {handle)

int MPI_Interconn merge(MPI Comm intercomn, int high, MFI_Conm =newintracomm)

MPI_INTERCOMM HERGE{INTERCOMM, HIGH, INTRACOMH, IERROR)
INTEGER INTERCOMM, INTRACOHM, IERROR
LOGICAL HIGH

This function creates an intracommunicator from the union of the two groups
that are associated with intercomm. All processes should provide the same high
value within each of the two groups, 1f processes in one group provided the value
high = false and processes in the other group provided the value high = true
then the union arders the “low™ group before the “high” group. IHall processes
pravided the same high argument then the order of the union &s arbatary. This
call is Blocking and collective within the union of the two groups.

Advice to implementors. The implemen tation of MPLINTERCZOMM_MERGE,
MEI_COMM_FREE and MPI_LCOMM _DUP are similar e the implementation
of MPLINTERCOMM_CREATE, cxcept that contexts private to the input
inter-communicator are used for communication between group leaders
rather than contexts inside a bridge communicator. (Knd of aduvice o fnfile-
ERis.)

