4.9.2 PREDEFIMED REDUCE OPERATIOMNS

The following predefined operations are supplied for MPILREDUCE and related
functions MPI_LALLREDUCE, MPI_LREDUCE_SCATTER, and MP1LSCAN, These ap-

crations are invoked by placing the following in op.

Marme

PP WA,
FAPIRAIN
MPI_SLIA
MPILPROC
MFILAND
MPLBAND
MFILOR
MPILBOR
MPI_LXOR
MPILBXOR
FAPLMAXLOC

Meaning

MAKITLT
AT
ALLE
product
losgrical and
Lait-wise and
levgical ar

Lo Lawise or
levgrical xor
i Lwimes o
max value and lecarion

PAPLMAINLOC

min value and location

The o operations MPIMINLOC and MPILMAXLOC are discussed separately
in Sec, 493, For the other predefined operations, we enumerate below the
allowed combinations of op and datatype arguments. First, define groups of
PAPH Basic datatvpes i the fallowing way,

C integar:

Fortran integer:
Flaatiog paint:

Legical:
Carmplex:
Byta:

MPLINT, MPLLONG, MPILSHORT,
PFILUNSIGHNED SHORT, MPI_UMNSIGHNELD,
PAFLUINSIGRED LONG

MPIINTEGER

MPI_FLOAT, MPIDOUBLE, MPIREAL,
MPI_DOUBLE PRECISION,

MPILOMNG DOLBLE

MPI_LOGICAL

MPICOMPLER

MPI_LBYTE

Mow, the valid dataypes for cach option are specified below.

Op

BAFL RS, BRI RN

PAPLSUM, MPIPROD

EAFL LAND, MPILLOR, MPLLMOR
RAPILEAND, MPI_BOR, MPI_EXOR

Allowed Tvpes

 imteger, Fortran integar, Floating point
C imtegear, Fortran integer, Floating poan
C imteger, Logicel

Cimteger, Fortran integer, Byle

Example 4.15 A routine that computes the dot product of two vectors that are
distributed acress a group of processes and renerns the answer al nade zera.

SUBROUTIKE PAE_ELAS1inm, &, b, &,
REAL alm), bimd
NEAL & !
HERL sEm
INTEGER m, <opom, i, iarr
| lacal pumr
suc = 0.0
DD is=1, m

sum = sum # ali}*biil

EXD 00

| global sum
CALL WPI_REDUCE(sum, <, 1,
RETURH

MPT_REAL,

Lomn)
! local slica of array

regult (at node zera)

MPI_S1™, O, comm, isrcr)

Example 4.16 A routine that computes the product of a vector and an arcay that
are distribired across a group of processes and retarns the answer at node zero.

SUEROOTIKE PAR_BLASZm, m, a, b, c, conmn)
REAL afm), wim.n) | lpecal =lice of array
EEAL cin} ! result

REAL sumin)

INTEGER n, camm, i, j, isrr

! lacal sum
DO j= L1, m
sunlj} = 0.0
ol i=1,
gum{j) = sum{j) + afi)=h(i,j)
END [
END DD

1]

! glebal sun
CALL MPI_REDUCE(sum, ¢, mn, MPI_REAL, MPI_SUM, @, <omn, ierr)

! return result at neds zere {and garbage at the ather nodes)
RETUVRY

4.89.3 MINLOC AND MAXLOC

The operator MPLMINLOC is used to compuie a global minimum and alsa an
index attached 1o the minimum value, MPILMAXLOC similarly computes a glohal
maximum and index. One application of these is 1o compute a global minimuom
imaximum} and the rank of the process containing this value.

The operation that defines MPLMAXLOC is:

(e Gl (%)

o= maxiw, ¥}

and
i ite=w
k= iy, _.'-] fu=w
i iFu =z

PAPLMINLOC is defined similarly:

(£)=(3)=(%)

where

w = minlw,)

anl
i if &= v
k= mindi,) fu=w
b if o = o

Both eperatons are associative and commutative. Note that if MPLMAXLOC
is applied o reduce a sequence of pairs (g, 00, (. 1. .. (26, 7 — 1), then
the value returned iz {x,), where ¢ = max; a and 7 15 the index of the first
alobal maximum in the sequence. Thus, if sach process supplies a value and
its rank within the group, then 2 reduce operation with op = MPLMAXLOC will
retirn the maximum value and the ok of the ficst process with that value.
Similarly, MPLMINLOC can be used 1o retarn a minimum and s mdex. More
generally, MPLMINLOC computes a fexicographic minivium, where elements are
ordered according 1o the first component of cach pair, and ties are resolved
according to the second component,

The reduce aperation is defined to operate on arguments that consist of @
pair: value and index. For both Fortan and C, types are provided to describe
the pair. The potentially mixed-type nature of such arguments is a problem in
Fortran. The problem is cirewmvented, for Fortran, by having the MPl-provided
type consist of a pair of the same type as value, and coercing the index 1o this
rype also. In C, the MPlprovided pair type has distinet types and the index s an
int,

In order to use MPLMINLOC and MPLMAXLOC in a reduce operation, one
musl provide a datatype argument that represents a pair (value and index). M2
provides seven such predefined daavpes. The operatons MPLMAXLOC aned
MPLMINLOC can be used with each of the following datatypes,

Fartran:

Marme Drezeriprion
MPI_ZREAL pair of REALS
MPI_2DOUBLE PRECISION pair of DOUELE PRECISION variables
MPI_2INTEGER pair of INTEGERS
C:

Marne Description
MPI_FLOAT_INT float and int
PP COUBLE INT double and int
PAPLLONG_INT long and int
PP 2INT pauir of int

MPI_SHORT_INT short and int

MFI_LONG_DOUBLE INT leng double and int
The datatype MPIZREAL 15 as & defined by the following (sce Section 3.12).

HPI_TYPE_CONTIGUOUS(Z, HPI_REAL, HPI_ZREAL)

Similar statements apply for MPILZINTEGER, MPI_2ZDOUBLE_PRECISION, and
MPILZINT.

The datatype MPLFLOATINT is as f defined by the following sequence of
instructions.

typa[0] = MPI_FLOAT

typell] = MPI_INT

disggfo] = @

displi] = sizecf(float)

block[D] = 1

black[i] = 1

HFI_TYFE_STRUCT{Z, block, disp, eype, HPI_FLOAT_INT]

Similar statements apply for MPLLONGINT and MPI_LDOUBLEINT.

Example 617 Fach process has an arcay of 30 deables, in G, For each of the
30 locations, compute the value and rank of the process containing the largest
value,

fo aach process hae an arcay of 30 double: ain[30]
L

double ainl[30], asux[30];

int ird[3G0];

atruct o{
double wval;
ALt rank;

¥} ia[30], aaut(30];
int 1, m&'raﬂ.‘t[;. i

MPI_Comm_rank (MPI_COHH_WORLD, fmyrani);
far (i=0: i<50; ++1i) {
inlil.val = ainli];
in[i] .rack = myrack;
1
MPI_Meducal ip, gut, 50, MPI_DOUBLE_INT, MPI_HAXLOS, root, caoo)
f= AT thia Fll.'-\il'll'-. the anavwar regidess on pracess Dedl
=}
if (myrank == reotd {
/* road ranks out
)

for (i=D; i<30; ++i) {
acz[i] = ows[i].wal;
ind[i] = ous[i].rark;

]

Example 4.18 Same example, in Forran.

| aach process has an array of 20 double: adiw(30]

LOUBLE PRECISION ain(300, asut (3]
INTEGER ind{303;

LOURLE PRECISION in{2,300, sut(2,30)
IKTEGEER 1, myrank, raot, ierr;

MPL_COMH_RANXCHPI _COMM_WORLD, nyrank];

oo I=1, 30

in{l,i) = ainli}

in{2,8) = pyrank ! myrank is coerceod to a double
EHND L

MPI_REMCE(in, aut, 30, HPI_ZDOUBLE_FRECISION, MPI_MAXLOC, root,
coftn, ierr 1;
! At this point, the answer regides on process raot

1¥ i{myrank .EQ. roat) THENM
I repd ranks out
oo I= 1, 30
asut (i) = out(l,i}
ind{i) = gut{2,4) | rank is coerced back ta an intager
END DD
EXL: IF

Example 4.19 Each process has a non-empy array of values. Find the minimum
glabal value, the rank of the process that holds it and iz index on this process.

#dafine LEN LG

flaat val [LEN]; f* lacal array of valoss =/
int count; F& local numbar of waluos =/
int ayrank, minrank, ninindex;

flaoat minval;

struct
float walae;

int Indax;

} io, out:

Jo local minloc +f
in.valua = walld]:
in.ipdex = 0;
for (i=1; i < count; 1++)
if {ip.value > wal[i])
in.valua = wallil;

jin.index 1

f* global minloc */
MPI_Comee_rank (MPI_COMM_WORLD, Mmeyrank);
in.index = myrank=LEN + in.index;
WFI_Redugel in, out, 1, MPI_FLOAT_INT, MFI_HIKNLOC, root, comm)
f* At this paint, the apswer resides oo process rook
L
if (myrank == raat) {
J¥ raad answar ont
W
ninval = out.valua;
minrank = gut.ipdex ; LEN;

minindex = out.indax ¥ LEKW:

Rationale. The definition of MPILMINLOC and MPLMAXLOC given here
has the advamage that it dees not require any special-case handling of
these two operatons: they are handled like any other reduce operation.
A programmer can provide his or her own definition of MPLMAXLOC and
MPLMIMNLOC, if so desired. The disadvantage is that values and indices have
v e fiese imerleaved, and thar indices and values have o be coerced 1o
the same wpe, in Fortran. (fxd of rationale)

4.9.4 USER-DEFINED QPERATIONS

MPIOP_.CREATE] function, caommute, apl

[l function wserclefined Tonetion {function)
I commute teue if commutative; Talse otherwise,
T A aperiton wandle)

int MPI_Dp.create{MPI User functicn *function, int commute, HFLLOp +ap)

MPI_OP_CAEATE(FUNCTION, COMHUTE, (0P, IERRORE)
EXTERMAL FUKCTION
LOGICAL COMMUTE
INTEGER (P, IERROR

MPI_OP CREATE binds a userdefined global operation to an op handle
that can subsequently be used in MPI_REDUCE, MPIALLREDUCE, MPILREDUCE.
SCATTER, and MPILESCAM, The user-defined operation is assumed o be associa-
tive, If commute = true, then the operation should be both commutative and
assaciative. If commute = false, then the order of operations is fixed and is
defined to be in ascending, process rank order, beginning with process sero.

function is the user<lefined function, which must have the following four
arguments: invee, inoutvec, len and datatype.

The ANSIC prototype for the function is the following.

vypeded void MPT_User_functien{ wveid #inves, veid =ipputvec, Ipt slen,
HPI_Datatype =datatypel;

The Foriran declaration of the user-defined function appears below,

FUNCTION VSER_FUKCTIOND IKVEC{=), INOUTVEZ{(+), LEN, TY¥PE}
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, TYPE

The datatype argument is a handle to the data type that was pazssed into the
call 1 MPI_REDUCE. The user reduce function should he written such that the
following holds: Let w[0], ..., ullen — 1] be the len clements in the commu-
nication buiTer described by the arguments invec, len and datatype when the
function is inveked; let v[0], ..., v[len = 1] be len elements in the communi-
cation bufler described by the arguments inoutvec, len and datatype when the
function is invoked; lerw[0], ..., wllen = 1] be len elements in the commumn-
cation bufler described by the arguments inoutvac, len and datatype when the
function remrns; then wlil = wlijevli], fori=Qa, ... len — 1, where o is the redoce
operation that the funcion computes,

Informally, we can think of invee and ingutvec as arrays of lan elements
that function is combining. The result of the reduction over-writes values in
inoutvee, hence the name. Fach invocation of the function resulis in the point-
wise evaluation of the reduce operator on len clements: e, the funclion requrns
in inoutveci] the value invec[i] ¢ inoutvec[i], for i = 0,..., count — 1, where o
is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE 1o avoid calling the
function for each element in the input buffer. Rather, the system can
choose to apply the function to chunks of input. In G, i s passcd in as a
reference for reasons of compatibility with Fortran.

By internally camparing the value of the datatype argument to known,

global handles, it is possible w overload the use of a single user-defined
function for several, different dara tvpes. {FEnd of rationale)

General datatvpes may he passed o the user lunction, However, use of
darzivpes that are not contiguous is likely to lead o inefficiencies.

No MPI communication function mav be called inside the user function.
MFILABORT may be called mside the funcuon in case of an error.

Aduvige foawsers, Suppose one defines a library of user-defined reduce fune-
tions that are overloaded: the datatype argument is used o select the right
execution path at gach invocation, according to the types of the operands.
The userdefined reduce function cannot “decode” the datatype argumenl
that it is passed, and cannot identify, by itself, the correspondence between
the datatype handles and the datarype they represent, This correspon-
dence was established when the datatypes were created. Before the library
is used, a library inidalization preamble must be executed, This preamble
code will defing the datatypes that are used by the library, and store han-
dles o these datatvpes in global, static variables that arve shared by the user
code and the lihbeary code,

The Fortran version of MPI_LREDUCE will invoke a user-defined reduce
funcrion using the Fortran calling conventions and will pass a Fortran-ovpe
datatype argument; the © version will use C calling convention and the
L representation of 2 daaype handle, Users who plan to mix languages
should define their reduction functions accordingly, (Eud of aduios o nsers,)

Advice fo fmplementors. We outline below a naive and inefficient implemen-
tation of MPI_REDLICE,

if [rank > 03 {
RECV{templuf, count, datatype, rank-1,...3
User_reduce! tempbud, sendbuf, count, datacyps)
¥
if (rank < El:rﬂ-'llpﬂ'.izﬁ—_l_] i
SENDC eendbuf, count, datatype, Tank+i, ...]}
¥
f* ansver now resides in process groupsize-1 ... now send to root
W
if {rank == groupsize-11 {
SENDL sendbof, coant, datatype, roeot, ...}
T
if {rack == raot) {

RECY(recvibul , count, datatyps, groupeize=1,_..0%

The reduction computation proceeds, sequentially, from process o to
process greupsize-1. This order is chosen so as to respect the ovder ol a
possibly non-commutative operator defined by the function Uaer_reducs ().

A more efficient implementation is achieved by aking advaniage of as-
sociativity and using a logarithmic tree reduction. Commutativity can be
wsedd o advantage, for those cazes in which the commute argument to
MPILOP_CREATE is true. Also, the amount of temporary buffer required
can be reduced, and communication can e pipelined with computanon,
by transferring and reducing the elements in chunks of sive 1en < count,

The predefined reduce operations can be implemented as a library of
user-defined operations. However, better performance might be achieved
if MPI_REDUCE handles these functions as a special case. (End of adwice to
e iars.)

WP OF FREEL ap)

[l op -:'||:n:|'.:'||:i{'||'| {handle]

int MFI op.free{ MPIOp =op)

MPI.0R _FREE(OF, IERRORY
IKTEGER OF, IEREUR

Marks a vser-dehned reduction operation [or deallocation and sets Op w
MF1LLOP NULL.

Example of User-cdefined Reduce

[vis tme [or an example of vser-defined reduction.
Example 4.20 Compuie the product of an array of complex numbers, in C,

cypadel struct {
double real,imag;
1 Complex;

f% the usar-defined functian
wy
vald nyProd{ Complex =in, Complex *inowt, int =Llen, MPL_Datatype =dpir 1
{
iot i;

Complex <;

far [i=0: i< «lan: ++1) {
c.raal = ingat=rreal*in=rreal -
i]'II:ll.'I'E-‘}llT-'.IE“'JD—}‘II'I:r'IF_.',
c.imag = inout=rreal+*in=rimag +
inout-Fimag=in-rraal;

®ingut = o;

ind+; dnouted;

S+ and, to call it...
+f

f* cach pracess has an array of 100 Complexes

af
Complex a[100), answer[100];
MFI_Op mylp:

MPI_Datatype ctype;

f* oxplain to MPI how type Cooplex iz defined
!

WFI_Type_contigecus! 2, WFI_DOUELE, &otype };
MPI_Typr_comnmit(Ectype };

v create Ghe complex-produst USEr-op

S

MFI_Op_createl myFrod, Truwe, &nylp)3

WFI_Reduce{ a, answer, 100, ctype, mylp, reot, comm)

f# At this point, The answer, which comsists of 10D Complaxas,
* rasidos an procoss root

.

4.9.5 ALL-REDLUCE

MPI includes varianis of each of the reduce operations where the result 35 re-
mirned wo all processes in the group, MPrequires that all processes participating
inn these aperations receive identical resulis.

KMPILALLREDUCED sendbul, recvbuf, count, datatype, op, camm)

I sendbuf starting address of send buffer {choice)

LT recwvbuf starbng addres of reccive Buller (choice)

I COLnt number of elements in send botfer {intejer)
X datatype data type of elements of send buffer {handle)
I ar cr]:n,'r.g,l_im:. {handle)

1 COMmIm conmunuricatog lyandle)

int HPI_Allreduse(void+ sandbuf, woid= recvbuf, int count,
MPI Datatyps datatype, NFIOp op, WPI_Coam comnd

o o e e S C

MPI1_ALLEEDDCE(SENDEUF, RECYEUF, COUNT, DATATYFE, OP, COMM, IERRDR)
ceype> SENDEUF (=), HECVEUF(#)
INTEGER COUNT, DATATYPE, OF, COMM, IERROR

Same as MPI_REDUCE except that the result appears in the receive buffer of
all the group members,

Aduvice fo imjdemeniors. The allreduce operations can be implementeed as
a reduce, followed by a broadeast. However, a direct implementation can
lead 1o bewer performance. (fnd of advice to imfdementons.)

Example 4.21 A routing that computes the product of a vector and an array that
are distributed across a group of processes and returns the answer at all nodes
(sce also Example 4.16).

SUBROUTINE PAR_BLASZ{m, 0, &, b, <, comm)
REAL ai{m), bilm,mnd | lozal slice of array
REAL cin] | rasult

REAL aum{nl}

INTEGER o, comm, i, j, ierr

1 lopcal sun
oo j= 1, |
semij) = 0.0
plL =1, =
sum{j) = sum{j) + alil=*b{i, i}
EHD T
END DD

! global sun
GALL MPI_ALLREDUCE{sum, =, n, HPI_REAL, MPI_SUM, ©, comn, ierz)

| raturn resalt at all oodes
NETURN

4.10 Reduce-Scatter

PP includes variants of each of the reduce operations where the result s scat-
tered to all processes in the group.on return.

P REDUCE SCATTER| sendbuf, recvbuf, recveounts, datatypa, ap, coamim)

1Y sandbuf starting address of send baller (choce)
OUT regvibuf stirting adedvess of receive buffer (choice)
1 recyeounts integer array specifving the number of elemenis

in resalt distributed o each process, Armiy must
he identicial on all calling proceses,

I datatvpe data type ol elements of input buffer (uandle)
[op operation (handle)
i COMm cormimumicater {handle)

int ¥PI_Reduce _scattec{void* sondbuf, wvaid= recvioaf , int FTrecvocounts,

MFI Dacatype datatype, MFIOp op, HPI_Coaxm coon)

MPI_REDINCE SCATTERCSERDAUE , RECVBUF, RECVCOUNTS, DATATYFE, DOPF, COHH, IERROR)
<iype> SENDEUF{+), RECVIUF(=)
INTEGER RECVCOUNTS(=), DATATYFE, OF, COMM, IERROR

MPI.REDUCE SCATTER hirzt does an elementwise reduction on vector of
gount = 3 recveounts[i] elements in the send buffer defined by sandbuf,
count and datatype. Next, the resulting vector of results is split into » disjoint
segrnents, where o is the number of members in the group. Segment 1 containg
recvcounts(i] elemenis. The ith segment is sent 1o process i and stored in the
receive buffer defined by recvbuf, recveounts(i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally
equivalent to: A MPLREDUCE operation function with count egual to the
sum of recvcountsfi] followed by MPILSCATTERY with sendcounts equal
to recvcounts. However, & direct implementation may run faster, (End of
aelvice (o imflemeniors.)

4.11 Scan

MPLZCANT sendbuf, recvbuf, count, datatype, op, camm)

[sendbuf starting address of send buffer (chaice)

auT recvibuf ararting address of recewve buffer (clhoice)

[l count rmher of elements in i1!||'_|-'|,l.l_ bafTer I:'iﬂl_-n:gt"l':l
[datatype data ype of elements of inpal baller {hundle)
[l op npﬂr:u:inn {handle)

[GO cormmunieater {handle)

int MPI_Scanl(voide soaodbuef, wvoid* rocvbef, int count, HWPI Datatyps datatypsa,
HRPI_Op op, HPI Comn comm)

MPI_SCAN{SENDEUF, RECVEUF, COUNT, DATATYPE, OF, COMM, IERROR)
Siypes SENDBUF{+), RECVIUF{=)
INTEGER COUNT, DATATYPE, 0P, COMM, IERRDR

MPILSCAN is used 1o perform a prefix reduction on data distributed across
the group. The operation returns, in the receive buifer of the process with
rank i, the reduction of the values in the send buffers of processes with ranks

i, Fl}'\i::ﬁ'i:""
OL

Pt
ST B

mm;m%*fﬁ}ﬁ;ﬁ E

NG LI

0.... .4 (inclusive). The type of operatons supported, their semantics, and the
constraints an send and receive buffers are as for MPLREDUCE.

Rattonale. We have defined an inclusive scan, that is, the prefix reduction
on process i inchudes the data from process i, An alternative is to define
scan in an exclusive manner, where the result on 1 only includes dat up
to i-1. Both definitions are uscful. The latter has some advantages: the
inclusive scan can always e computed rom the exclusive scan with no
additional communication; for non-nvertible operations such as max and
min, communication i required o compure the exclusive scan from the
inclusive scan. There is, however, a complication with exclusive scan since
one must define the "unit” element for the reduction in this case. hal
is, one must explicitly say what occurs for process 0. This was thought 1o
be complex For user<delined cperations and hence, the exclusive scan was
dropped. (End of ratonal.)

4.11.1 EXAMPLE USING MPI.SCAN

Example 4.22 Thizcxample usesa uscr-lefined operation o produce a segmenfed
seam. A segmented scan takes, as input, a sel of values and a set of logicals, and
the logicals delineate the various segments of the scan. For example:

vafues 1 e i L] i 1 5 i
lopicals) 1] 1 l L i] 1
resudd m wtw m wtwm wtwmty g it

The operator that produces this effect is,
G RE)
: i i

w__[n+w fi=j

T ifiz g

whiere,

Mote that this is a non-commutative operator. C code thal implements it is
given Telow.

vypeded struct |
doubla wal;
int log;

} SegScanPair;

/= the user-defined furctian
i
void segican(ZegdcanPair +in, SegfcanPair +inout, int *len,
HPI_Detatype =dptr)
{

int i;
SagScanfair o
far (1=0; i< *lem; +#4) {

if { in-2lpg == ipout->log }
2.val = in-*wal + inout->val;
mlep

f.val = inout->ral;
c.lag = incut=>Log;
®inout = o

int+; Spouett;

Mote that the ingut argument o the vser-delined function corresponds 1o
the right-hand operand of the operator. When using this operator, we must be
careful 1o specily that it is nan-commutative, a2 in the fallowing,

int i,basa;
SegScanfair a, answer;
MPL_Up oy

HPI_Datatype typal2]l = {NPI_DDUBLE, HMPI_INTE;
HPI_aint displ2];

int klocklem[*] = { 1, 1};
HPI_Datatype sspair;

fe explain oo HPI how bype SeglcanPair iz defined
*f

HPI_Address{ a, displ;

HMPI_#ddress{ a.log, disp=i);

bage = dizpld];

for {i=0; i<?; #£i) displil -= base;

HEL Typa_strust(2, blocklen, dizp, typse, Esapair)
MPI_Type_commit(&sspair J;

S craate the segmented-scan 0ser—op

L

MFI_Op_creatal seghcan, False, &nylp);

MFI_Scan(a, answer, 1, sspalr, nylp, root, comm 3;

4.12 Correctness

A correct, portable program must invoke collective communications so that
deadlock will not cccur, whether collective communications are synchronizing
or not. The following examples illustrate dangerous use of collective routines.

Example 4.23 The following is erroneous.

switsh{rank} {
caga 0
MPI_Bcast{tmfl, count, type, O, comm);
MFI_Beaszt(buf?, couwnt, type, 1, coaml;
birank ;
caga 1:
MPI_Brast(bufl, count, type, 1, coTm) ;
MPI_Boast(bufl, couwnt, type, &, comml;
break;

We assume that the group of comm is {0,1]. Two processes execule two
broadeast operations in reverse order. If the operation is synchronizing then a
deadlock will occur

Collective operations must be execured in the same order at all members of
the communication group.

Example 4.24 The [ollowing is erroneons.

awivchirank) {
casa 0:
HPI_Ecast (bufl, count, type, O, commil);
HPI_Ecast(buf?, count, typs, 2, aonnz)
brenk;
casa 1:
HPI_EBcast(bufl, count, type, 1, commi};
HPI_Bcast(bufZ, count, type, 0, commb);
braak;
casa 2:
MPI_Bcast(bufl, count, typa, 2, caoon2);
WPI_Gecast(buf2, count, typa, 1, comml);
wraalk;

Assume that the group of commd is (0.1}, of comm iz {1, 2} and of comm2
is {200, IF the broadeast is 8 synchronizing operation, then there is a oyclic
dependency: the broadeast in comm completes only after the broadeast in
comm; the broadeast in comm0 completes only after the broadeast in comm;
and the broadcast in eomm1 completes only after the broadeast in comma,
Thus, the code will deadlock,

Collective operations must be executed in an order so that no cvelic depen-
dences accur,

Example 4.25 The following is erroneous.

SUPERCONPUTER APPLGATONS

switch{rank) {
caga 0:
HPI_Geast{bufi, count, typa, 0, comn);
MPI_Send{buf2, count, type, 1, tag, comm};
braak;
caga 1:
HPI_Recvibuf2, count, eype, 0, Eag, cosm};
HMPI_Bcast(bufl, count, typa, 0, connl;
Break;

Process zero executes a broadeast, followed by a blocking send operation.
Process one fivst execules a Blocking receive that matches the send, followed
by broadeast call that matches the broadeast of process zero. This program
may deadlock, The broadeast call on process zere way Block umil process one
executes the matching broadeoase call, so that the send is not executed, Process
one will definiely block on the receive and so, in this case, never execules the
broadcast.

The relative order of execution of collective operations and point-to-point
operations should be such, so that even if the collective operatons and the
point-to-point aperations are synchronizing, no deadlock will ocoar.

Example 4.26 A correct, bul non-deterministic program,

switchirank) {

caza O
MPI_Brast(bufl, count, type, O, comm)
HPI_Sendibufi, ¢ount, type, 1, tag, comm);
break;

casa L
WFI_Recy(bufd, count, type, MPI_AHNY_S0URCE, tag, comm);
MPI_Boast(bufl, count, type, &, comm);
HFI_Recy (bufd, count, typs, MPI_ANY_SIURCE, tag, aoam)
braak;

cage 2.
MPI_Send(buf?, count, type, 1, tag, comm);
MFI_Beast(bufl, count, type, O, comm};

broak;

All three processes participate in a broadeast, Process (F sends a message o
process | after the broadeast, and process 2 sends a message to process 1 before
the broadeast. Process | receives belore and aler the broadcast, with a wildeard
SOUTCe Argument.

Twa possible executions of this program, with dilferent matchings ol sends
and receives, are illustrated in figure 4.10. Note that the second execution has

coucomvecommmcamon |

QHT"E"—-' A e T
SUPERCE T

Erftmipie i Lamlirih

Pt Execution

JrRCEIs: i | 2
ST
recy — send
birgadcnst hroadeast broacdeast
il
il = CW

Second Bxecuiion

broadeast
RN
send recy
Broadeast
Marel
necy senid

becraddeast

Fig. 4.10 A raco condition causes non-datarministlc matching of sends and
recaivas, One canngd rely on synchronizaticn from @ broadcast i make the program detesmin-
intic.

the peculiar effect that a send executed afier the hroadeast is received at another
node before the broadeast. This example illustrates the fact that one should not
rely on collective communication funetions 1o have particular synchronization
effects. A program that works correctly only when the first execurion occurs
{only when broadeast is synchronizing) is erroneous.

Fimally, in muli-threaded implementations, one can have more than one,
concurrently executing, collective communication call at a process, In these
sitgations, it is the user's responsibility 1o ensure that the same communicator
is ot used concurrently by two different collective communication calls at the
SEIME PIOCCSS.

Advice to tmplemeridors, Assume that broadeast is implemented using point-
w-point MPl communication. Suppose the following two rules are fol-
lowesd.

1. All receives specify their source explicitly {no wildeardz).

2, Each process sends all messages that pertain 10 one collective call
hefore sending any messages that pertain to a subsequent collective
call,

Then, messages belonging to successive broadeasts cannot he confused, as
the order of point-lo-point messages is preserved.

Itis the implemennor’s responsibility o ensure tha Poini-Lo-point mes-
sages are not confused with collective messages. One way to accomplish
this s, whenever a communicator is created, woalse creste a “hidden com-
municator” for collective communication. One could achieve 3 similar
eifect more cheaply, for example, by using a hidden tag or contexe bit 1o
ndicate whether the communicator is used for pointte-paint or collective
commumcation. {Fud of advice to fmplemen tors.)

