CHAPTER 4

COLLECTIVE COMMUMNICATION

4.1

Introduction and Owverview

Collective communication is defined as communication that involves a group of
processes, The functions of this wvpe provided by MPLare the follawng:

-

Barrier synchronization across all group members (Secton 4.3).
Broadcast from one member to all members of a group (Section 4.4, This
is shiewm in fgure 4.1,

Crather data from all group members o one member (Section .51, This
is shown in foure 4.1,

Scatter data from one member o all members of 3 group (Section 4,67,
Thiz 15 shown in figure 4.1,

Aovaration on Gather where all members of the group receive the resull
(Section 4.7}, This is shown as “allgather” in figure 4.1,

Scatter/ Gather data from all members 1o all members aof & group (also
called complete exchange or all-to-all) {Section 4.8}, This is shown as
“alltoall” in figure 4.1.

Crlobal reduction operations such az sum, max, min, or userdefined fune-
tions, where the result is returned to all group members and a variation
where the result iz returmed o only one member (Secuon 4.9),

A combined reduction and scatter operation (Section £.10).

Scan across all members of a group {also called prefix) (Secton 4.11).

A collective operation is executed by having all processes in the group call
the communicaton rowutine, with marching argumenis, The svniax and seman-
tics of the collective operations are defined o be consistent with the syntax and
semantics of the pointto-point operations. Thus, general datarypes are allowed
and must match between sending and receiving processes as specified in Chap-
ter 3. One of the key arguments is a communicator that defines the group of
participating processes and provides a context for the operation. Several collec-
tive routines such as broadeast and gather have a single originating or receiving
process. Such processes are called the mst. Some arguments in the collective
functions are specified as “significant only at root,” and are ignored for all par-

data —=

@
A A
g Ay
i bradoast
o = i
| ‘o
fa
fiy
fo] Aol Ryl M) B seatler 0
A
e
P
o T l'
[gathe Ay
==l |[%
"=
fa 5o Yol Ca] Mol Ba| Fo
B aglBal col ool Eal Fo
“p allg et Aa| 2a[“a| Pa) Eaf o
By [:::::i:} Aol ®al “a| 0| Eo| Fa
Eg Mg Bg) “o| %o Eo| Fao
Fa Ap| Bg| Sg) Py Ea| Fo
Ag| 1] Az| *a] Fa] M8 Aol Bo| So| Pof Eo| Fo
G.|G. | B, B, E,| B A B G D E,|F
i 1 3 a 4 g alleall i .I i .- 1
e e [el ealeal cs : a2l cal 05| x| P
Da|Dyf 2] Paf Pa| s Az|Ba| Ca) Da) Ex| ¥y
= 1 A o Gy e e P
Fol i Fa| P3| FalFs Ag|Bs)|C5| 05| 5| Fs

Fig. 2.1 Collective mowve functions illustrated for 8 group of six procosses.
In @ach case, pach row of baxes regrasents data locabions in ane progess, Thus, in the broadeast,
initially just the first process containg the data Ay, but afier the braadoast 2l processes contain it

ticipants except the root. The reader is referred to Chapter 3 for information
concerning communication buffers, general datatypes and type matching rules,
and 1o Chapter 5 for information on how o define groups and create commu-
nicalors.

The ype-matching conditions for the collective operations are more sirict
than the corresponding conditions between sender and receiver in point-lo-
point, Namely, for collective operations, the amount of data sent must exactly
match the amount of dataspecilicd bw the receiver. Disinct rvpe maps (the lavoun
in memery, @ee Section 2,12} betveen zender and recever are sall allowed.

LCollective routine calls can (b are not required o) retern as saan as their
participation in the collective communication is complete. The completion of a
call indicates that the caller is now free to access lacations in the communication
buffer. It does not indicate that other processes in the group have completed or
even started the operadon (unless otherwise indicated in the description of the
operation). Thus, a collectve commumication call may, ar may not, bave the
effect of symchronizing all calling processes. This statement excludes, of course,
the barvier unetion,

Collective communication calls may use the same communicarors as poini-
to-point communication; MPI guarantees thal messages generated on behalf of
collective communication calls will not be confused with messages generated
by point-to-point communicaion. A more detailed discussion of correct use of
collective routines is found in Section 4.12.

Rotionale. The equal-data restriction (on type maiching) was made so
as 1o avaid the complexity of providing a facility analogous wo the stats
argument of MPI_LRECY for discovering the amount of data sent. Some of
the collective routines would require an arcay of status values,

The statements about synchronization are made so as to allow a variety
al implementations of the collective functions,

The collective operations do not accept a message @ag argument. 16
furnre revisions of MP| defing non-Ilocking collective functions, then tygs
(or o similar mechanizm} will need o be added so as o allow the dis-
ambiguation ol multiple, pending, collective operations. { S of rafonale,)

Adwice fo wsers, It 1= dangerous w rely on synchronization side-effects
of the collective operations [or program correctness, For example, even
though a particular implementaton may provide a broadeast routine with
a side-cffect of svnchronizaion, the standard does nol reguire this, and a
program that relies on this will not be portable.

Ln the other band, a correct, portalle progeam muestallow foe the B
that a collective call may be synchronizing. Though one cannot rely on
any synchronization side-effect, one must program o as o allow i, These
issues are discussed further in Section 412, (End of advice (o wsers.)

Advice o mplementars. While vendors may write oplimized collective rou-
tines matched 1o their architectures, a complete library of the collective
communication roulines can be written entively wsing the MPI point-to-
point communication functions and a few auxiliary functions. If imple-
menting on top of point-to-point, a hidden, special communicator must
ke created for the collective operation =0 as to avoid interference with any

q4.2
The
proe

oh-going paint-to-point communication at the @me of the collective call.
This is discussed further in Section 412, (End of aduvice fo implereiors.)

Communicator Argument

key concept of the collective functions is to have a “group” of participating
esses, The ronrnes do not have a group identifier as an explicit argument.

Instead, there is a communicator argument. For the purposes of this chapier,
a communicator can he thought of as a group identifier linked with a context.
An intercommunicator, that is, a communicator that spans two groups, is o
allowed as an argument o a collective function.

4.3

Barrier Synchronization

MPI_BARRIER(comm |

™

GO cammunicator (handle)

int WPI_Barrier(pFI Copn comm }

HPI_BARRIERCCOMM, IERROR}

INTEGER <OMM, IERROR

MPI_BARRIER blocks the caller until all group members have called it. The
call returns at any process only after all group members have entered the call.

a.4

MPI

Ix
I
Ik
I
1

AT

Broadcast

_BCAST! buffer, count, datatype, reot, camm |

OUT buiffer starting address of bufler (choice)
count nurmber of entries in buifer {integer]
datatype clata tvpe of buller (handle)
roat rank of broadcast root (Integer)
SO comimunicatar (handles)

MPT Brast(woids buffer, int count, MPI Datatype dataktype, int root,

MPI Coxm comm ¥

HPI_BCAST(BUFFER, COUNT, DATATYFE, RODT, COMM, IERKDR)

<typar GUFFER(=)
INTEGEE COUNT, DATATYPE, ROOT, OOMM, IERROR

MPI_BCAST broadeasts a message from the process with rank root to all

processes of the group, iself included, It is called by all members of group

using the same arguments for comm, root, On return, the contents of root’s
communication bulTer has been copicd to all processes,

General, derived datatypes are allowed for datatype. The type signature of
count, datatype on any process must be equal to the type signalure of count,
datatype at the root. This implies that the amount of data sent must be equal to
the amount received, pairwise between cach process and the rool. MPLBCAST
and all other data-movement collective routines make this restriction. Distinet
type maps between sender and receiver are stll allowed.

4.4.1 EXAMPLE USING MPIBCAST

Example 4.1 Broadcast 100 ints from process 0 to every process in the group,

HPI_Connm oomm
int array[10d];
ipt raat=0;

HFI_EBeast(array, 100, MPI_IKT, root, comn);
As in many of our example code fragments, we assume that some of the variables
(=uch as eome in the above) have been assigned appropeiate values.
4.5 Gather

MPILGATHERI sendbuf, sendcount, sendtvpe, recvbuf, recvoount, recviype,
FooL, Comim]j

1M sandbuf starting address of send buffer (choice]

™ sencoount mumibeer of Elenents in send buffer [ileger)

1M sandiype chana type of send butfer elemenis (hancdle)

QLT recyvhuf arcdress of receive batfer (chodce, signilicant only
AL o)

™ recvoaunt number of elements bor any sangle FECEve {ine-
wer, stgnificant only an reon)

I recviype et ivpe of recy budfer elemenis (significant only
ar rout) (handie)

I raot rank 1:-I':r|.'-::|.'i'.i.|1;_.: EIRATHECHS -:il'llil.'gc:l'_l

1™ COmm cormmunicator {handle)

int MPI Gathar(void+ sendbuf, int sendcount, MPI Datatype sandiypa,
wolds racvbuf, int recvcount, MPI Datatype recviype,

int raat, MPI_Ceam caon)

MPI GATHER{SENDEUF, SENDCOUNT, SENWDTYFE, RECVBUF, RECVCOUNT, RECVTYFE, ROOT,
COMM, IEREOR}
<type> SENDRUF(=), RECVEUF{+)
INTEGER SENDCOUNT, SENDTYPE, BECVCOUNT, BRECVTYPE, RODT, COMM, IEREROR

Each process (raol process included) sends the cantentz of s send buller
o the root process. The root process receives the messages and stores them in
rank order. The outcame iz as i each of the n pracesses in the group (nclwding
the root process) had executed a call o

MFI_Send{zendbul, sendcount, sendbype, root, ...,
aned the root had executed ncalls 1o

MFT Resvireovbud + i - recvosunt - extent{recvtypal, recroount,

racvtype, L. .].

where extent{recviype) iz the type extent oblained from a call w HPI_Typa.
pxtant (),

An alternatve description is that the o messages sent by the processes in the
group are concatenated in rank order, and the resulting message is received by
the root as if by a call 1o MPILRECY{recvbuf, recveount:n, recviype, ... L

The receive bulfer is ignored for all non-root processes.

Creneral, derved datatypes are allowed for Bt sendtype and recvivpe, The
pvpe signature of sendoount, senditype on process i must be equal to the ovpe
signature of recvoount, recvtype at the root. This implies that the amount of data
sent must be cqual to the amount of data received, pairwise between cach process
and the root, Distinet type maps between sender and receiver are sill allowed.

All arguments 1o the linction are signilicant on process root, while on other
processes, onlv arzuments sendbuf, sendcount, sendtype, roat, comm are signil-
icant. The arguments root and comm must have idendcal values on all processes,

The specifcatan of countz and tpes shauld nal casse any lacalion on the
root to be written more than once. Such a call is erroneous.

Mote that the recveount argument 2l the reot indicates the number ol ilems
it receives from eack process, not the total number of items it receives.

MPILGATHERV| sendbuf, sendcount, sendtype, recvbuf, recwocounts, displs,
racvivpe, root, camm)

IH sendbuf sarting address of send bulfer (choice)

I sandcount mmher of elerments o send buffer {integer)

I sendivpe data pype of send buffer elemenis (handle)

1 recvbuf akdress of receve butfer (chowce, significant cnly
At o)

1N recvGounls integer avray (of length group size} containing

the mumi=er of elements thar are received Trom
cach process (ignificant cnly at root)

1™ cispls integer array (of length group size). Entry £ spec
thes the displacement relative wo recybuf acwhich
I p'l:u:{' the im:\:.hln'ing clacn from process i [:-;ig'.ltil'-
tcant cnly at moeot)

[FM recvivpe dana type of ooy bulfer elements (significant anly
il roo) | haaneile)

™ ract rank of receiving process (inweger)

19 COrnm cammurncator | luaedle)

int HPIGatberv{void* sendbuf, int sendcount, MPI_Datatype sendiype,
waid= pesvionl, int srecyiounte, int =displs,
MPI Datatype recwtype, int root, HPI Comm comm)

MFI_GATHERY (SENDBUF, SENDCOUKT, SENOTYRE, RECVEUF, RECVCOUNTS, DISPLS,
RECVTYFE, ROOT, COHMH, IEREOR)
<typar SENDEUF (=), RECVEBUF(+)
IKTEGER SEKDCOUNT, SENDTYPE, RECWOOUNTS(=), DISPLS(+), RECVTYPE, NOOT,
CoMM, IERROR

MPILGATHERY extends the functionality of MPILGATHER by allowing a vary
ing count of data from each process, since reCYeoUnts is now an array. It also
allows more flexibility as to where the dat is placed on the raot, by providing
the new argument, displs.

The outcome is as §f each process. including the root process, sends a mes-
sage o the root,

!'EP‘I.Snnd[:anth. sandcaunt, sandtype, roat, .. _}_
andd the roon execiies oo receives,

MPI Racwi{rccvbaf 4+ disp[i] - extentiresviype), recveounte[i],

racvLype, i, .. .].

Messages are placed in the receive bufler of the rool process in ank order,
that is, the daa sent from process § s placed in the joh portion of the receive
buffer reevbul on process root. The jth porion of recvbuf begins at offset
displzlj] clementz (in werms of recviype) into recvbuf,

The receive buffer is ignored for all non-raol processes,

The rype signature implied by sendeount, sendtype on process 1 must he
equal to the wpe signature implied by recvoounts(i], recvtype at the root. This
implics that the amount of data sent must be equal to the amount of data re-
ceived, pairwise between each process and the root. Distinet type maps between
sender and receiver are sl allowed, as iMusosied in E.:'-:El[[tp]f..‘ 4.6,

All arguments to the function are significant on process roat, while on other
processes, only arguments sendbuf, sendcount, sendtype, root, comm are signif-
icant. The arguments rogt and comm must have identical values on all processes,

The specification of counts, types, and displacements should not cause any
lecation on the root to be witten more than once. Such a call is erroneous,

Xl e jen

—
_ | i
|

rbuf

Fig. 4.2 Tha root procass gathors 100 ints from sach process in the group.

4.5.1 EXAMPLES USING MPILGATHER, MPILGATHERY

Example 4.2 Cather 100 ints from every process in group 1o root. See figure
4.2,

MPI_{omm comm;

int geize,sendarcay [1EH] ;

int root, =rbuf;

MPI_Comr_size{ coon, Egsize);

rouf = {int s«lmalloc(gsize=100esizect (intl);

MPI_Gather(=endarray, 100, MFI_INT, rbaf, 100, HPI_INT, reot, comm);

Example 4.3 Previous example modified—only the root allocates memory for
the receive bulfer.

MPT Comm coom;
int gaize,sendarray[100] ;
int root, oyrank, =*rbuef;
MPT_Coom_rank(comn, oycank);
if { myrank == root) {
HPI_Comn_size{ comm, kgsize);
rbuf = {ipt *lmallocigsize=l{d+sizect{intl};
}
¥FI_Gather{ sendarray, 100, HPI_INT, cbuf, 100, ¥MPI_INT, root, <omm);

Example 4.4 Da the same as the previous example, but use a derived datatype.
Mote that the type cannot be the entire set of gsizex100 ints since ype matching
15 defined pairwise between the root and each process in the gather.

HFI_Comm comn;
int geize,sendareay[100];

int root, *rhouf;

m el IBERCRET W-’-‘:"
1r"":‘l

i
-1 1=
HEHL FL 2.3 ‘“-\.':--1' il .d-'
et 3."- R e "

SN ey T

i vies

LY h]
Fon HiX Fog
af Faor
sirile
rhuf

Fig. 4.3 The root process gathers 100 ints from sach process in the group,

and oach sot is placed stride ints apart.

MPI_Datatypsa riype;

MFI_Corm_sizel comm, kgsizal;
¥PI_Type_contipecus{ 100, MPI_INT, &riype);
MPI_Type_comnmit(Ertype };

rbuf = {int =)mallos{geizesi00=gizeaf (inc});

MPI_Gather{ sendarray, 10{, MPI_INT, rbuf, 1, rtype, root, coom) ;

Example 4.5 Mow have each process send L ints to root, but place each set

{of 100} stride ints apart at receiving end. Use MPILGATHERY and the displs

argument 1o achieve this effect. Assume siride = 1M Sce figure 4.5

MPFI_Comm <OMEE:
int geize,sendarcay[100] ;
int reot, =rboul, atride;

int =diepls,i,*rcounts;

MPI_Comm_sizel comm, Egeize);
rhaf = (int =lmallec(gsizasatridersizect (intld;
dimple = {int *)mallocigsizessizesf(int));
reounts = (ipt *imalloclgaizme=sizeof (imtlh);
for (i=0; i<geize; ++5i) {

displs[i] = i#stride;

recunts[4] = 100;

}

MPI_Gatherv(sendarray, 100, HPI_INT, rbuf, roounts, displa, HPI_INT,

raot,

Mote that the program is erroneous if séride = 100,

Example 4.6 Same as Example 4.5 on the receiving side, but send the 100 ints

from the Oth column of a 100 150 int array, in C. See figure 4.4,

T TR e ot -'!-':-"'.n-\.-.

|'\. O LEET] .-.;-J- A
I.'\."-\.".- -""i':T\-l._ bo. H_r pr .\,.-q,.-'-'r\':L"

L) (30 15

i 7] ik @l processes
-
-
L
i o I
- - - Ilr m.f
siridi
thul

Fig. 4.4 Tha root process gathars column 0 of a 100160 C array, and sach
gat is placed gLride ints apart.

HPI_Camn comm;

int gsime,sendarray [10a] [160] ;
iot Eoat, =rbuf, stride;
HPI_Datatype stype;

int *diS?LB,i.*r¢DuﬂEBI

HPI_Come_sizel comm, kgaizel;
thuf = {int *lmalloc(gsizesstridessizeaf(ine}];
digple = (int *lpmalloc{gaizeraizect (int]]);
roounts = (int #)oalloc{gsizessizect{int));
Tor (i=0; i<gaize; ++1} {

displsfi] = ie=strids;

resuntali] = 100;
}
f= Creata datatypsa for 1 coluam aof array
Lr
HPI_Type_vacter{ 100, 1, 160, MPI_INT, &:t.','pr:_':;
HPI_Type_comnit{ &stype 1;
MPI_Gatharv(sendarray, 1, stype, rbuef, roounts, diepls, MPI_INT,

root, comm);

Example 4.7 Process i sends (100 — i) ins from the ith column of a 100 = 150
int array, in C. [t is received into a buffer with stride, as in the previous two
examples. See figure L4,

MPI_Comm <apnn;

int gsize,sendarray[100] [150],+sptr;
int roct, srbul, stride, myrank:
MPI_Datatype stype;

int *iiEPJE;L,*f3¢Uﬂ1$i

(e L0 (30

flLn o I Fied I all provesres

Fig. 4.5 Tha roct procass gathars 100-i ints from calumn 1 of o 1002150 ©
array, and sach set is placed stride inte apart,

HPI_Conn_size{ coon, kgsize);
HMPI_Comn_rank{ comm, Emyrack };
rbuf = (ipt +lpallocigasize=ecride=sizesf(intli};
displs = (int #*)mallocigsize+*sizaof (int));
recunts = (int =)nallocigeizesgizmant (int));
for {i=0; i<gmiza; ++i) {
digplali] = i=grride;
reaunts[i] = 100-1; f* note change from previcus exanple -

=

k)
#= Create datatype for the column we are sending

=F

HPI_Type_vectort 100-myrank, 1, 150, MPI_INT, Rstype);
HPI_Typa_commit(kstypa J;

f* sptr is the address of start of "myrank® coelumn

=f

sptr = isendarray (0] [myrank] ;

HPI _Gathears{ aptr, 1, stypa, rhuf, roounts, displs, MPI_INT,

root, coTe);

Mote that a different amount of data is received from each process.

Example 4.8 Samc as Example 4.7, but done in a different way at the sending
end, We create a dataype that causes the correct striding at the sending end so
that that we read a column of a C array. A similar thing was done in Example 3.32,
Section 3.12.7,

HPI_Conn oomm;

int guize,sendarray[100] [150] , +spir;

int reet, =rtuf, stride, nyrank, displ[Z], blocklen(2];
HPI_Datatype stype,typel2];

int *displs,1,*rcounts;

ED B

445 ‘h'i-;'. .".":'.ﬁ'

b ek

Example 4.9 Same as Example 4

Ji | Rt I] I all processes

:| & .-'"-.
'Im - — w - - ']
B OE W -

sl 1]

rhif

WPI_Conno_sizel ccam, dgsizel;
HPI_Comm_rank{ ccam, koyrank);
rbuf = (int +inallec{geizesatridassizact (int]);
dizpls = (int #)mallocigsizessizeci{intl};
reounts = (int *)mallscigeizesaimect (intd);
for {i=0; idgsizme; ++i) {
displs(i] = i=atride;
recuntali]l = 100-i;
1
/= Oreate datatype for one int, with extent «f entire row
o
disp[i] = 0; disp[1] = i1S50+zizeci{intl;
typal0] = MPI_INT: typel1] = MPI_UB;
wlacklan[d] = 1; blocklenli] = 1:
MPI_Type_struct{ 2, blecklan, disp, type, &stype };
MFI_Type_camnit{ Estype };
sptr = Eeendarray [3] [oyrank] ;
MFI_Gatherwvd sptr, 100=-myrank, atyps, rbuf, roounts, displ

MPI_Coon comm;

int geize,sendarray[100] [1E3] ,=sptic;

int raot, *rbuaf, *etride, myrank, batsize;
HPI_Z:*-EI-ET-H?E ﬂtﬂ:'ll:li

int *disple,i,*roountsolffaet;

Fig. 8.6 The root procass gathara 100-i ints from column i of a 100150 C
array, And aach sot is placed strids(il inte apart (a varying stride).

=, MPI_INT,
root, comm);

T at sending side, but ar receiving side we make
the stride between received blacks vary from block o block. See figure 4.6,

HPI_Conn_size{ comm, kgsizeld;
HPI_Comn_rank{ coom, Bmyrank };

stride = (int #)palloc{gsizesgizeal(inc});
f= perida(i] for i = O to geize-1 ig pet sooehow
=/

#= sat ap displs and rocounts wectors first
wf
displs = (int *]uallnc[gﬁiznrsiznuflint}];
reounts = (int +lpallec{gsizesaizaof (inc});
affsat = 0;
for (i=0; S<peize; s+i} |
displsli]l = offset;
oifset »= gerideli];
roounts[i] = 100-1;
¥
f* the rwqparnd tuffar size for rbuf is now casily abtained
+/
tufsize = displslgsize-1]+rcounts[gsize-1];
rhuf = {int =imalloc(beleizessimest (int));
f* Craate datatype for the column we are sendiog
.f
ﬂPI_fypn_uqctnr[100-oyrank, 1, 183, MPI_INT, &stypa):
¥PI_Type_connitl Zetype };
spir = ksandarray[Q] [nyrank] ;
WFI_Gatherw{ sptr, 1, stvype, rbui, roounts, displs, MPI_IKT,
root, CoEnd;

Example 4.10 Process 1 sends sun ints from the ith column of a 100 = 150 int
array, in G, The complicating factor is that the various values of nuw are not
known to rest, so a separate gather must first be run w And these out, The data
is placed contiguously at the receiving end.

MPI_Comm comm;

int geize sendarcey [100] [150] ,=apir;

int root, *rhaf, stride, oyrank, disp[2], blscklen[Z];
WFI_Datatype stype, typaal2];

int *displs,i,*rcounts,oun;

MFI_Conn_size{ comm, Egsize);

MPI_Conn_rank{ comm, &nyrank J;

fe Firat, gal:her nums to est
w
regunts = (int =malloc(gaize=aimesd (int)]);
MPI_Gather!{ koun, 1, MPI_INT, rcounts, 1, MPI_INT, raot, caom};
J+ root mow has cerrect roeunts, using these we set displall so
+ that data is placed contiguously {or concatenated) at receive end
LTy
displs = (int =)oallas(geizessizesf{intl);
digplal0] = O
for (i=1; icgmize; ++i) {
ﬂ:usp_l.s[j] = displsli-1]l+rcoumtsli-1];
¥
Fe And, creata receiva buffar
W
rhuf = (int *lmalloci{gsizex{displs[gniza-1]+rcoonts [geize=-1])
saizaaf (incl}];
f* Create datatype for one int, with extent of entire row
=/
disp[d] = O; disp[1] = 160*sizeaf (int);
type[0] = HPI_INT; typell] = NPI_UE;
blecklenf0]l = 1; blacklern[l] = 1;
HPI_Type_struct(2, blocklem, disp, Type, kstype };
MPI_Type_coamitl &stypa 1;
gptr = ksendarray[0] [myrank] ;
MPI_Gathery{ sptr, num, stype, rbuf, rcounte, disple, MPI_IKT,

root, comm);

4.6 Scatter

MPILSCATTER sendbuf, sendcount, sendivpe, recvbuf, recvoount, recvtype,
raot, comm)

I sendbuf address of send buffer (choice, significant only at
ront)

[sendoount nuiber of clements sent w cach process (inceger,
sipnificant only at root)

[sendivpe daca tvpe ef send buller elements (signihcant only
it ront) (hancle)

OuT recvibuf address of receive buller (choice)

™ recywcount number of elemaenis in recenve buiier (integer)

L racvivpe dta type of receive bufler elements [handie)
It 1ot rnk of sending process {integer)
[COMmim communicator lsudle)

int MPL.Scatzerivoids sendbuf, int sendcount, MPI_ Datatype sendtvpe,
vaid= recvbuf, int recvogunt, MPI Datatype recviype,
int rest, MPI Coon comm)

HPI_ZCATTER(SENDBUF, SENDCOUKT, SEHDTYPE, RECVRUF, RECVCOUNT, RECWTYFE,
ROOT, OOMM, TERRORD
typas SEKDEUF (=), RECVBUF{+)
INTEGER SENDCOUNT, SENDTYFE, RECWOINT, RECVTYPE, ROQT, COMM, IERROR

MPI_SCATTER is the inverse aperation 1o MPILGATHER.

The outcome is ay if the root executed o send aperations,

MPI_Zendisendbuf + 1 - sendoount - extentsendtypel, sendcount,

gandiype, L. ...},
and each process executed a receive,

MPI Recvirecvbaf, recveount, recviypa, i, .. .0,

An alternative descripnion is that the root sends a message with MP| Send
(sendbuf, sendcountn, sendtype, ...). This message is split into o equal seg-
ments, the ith segment is sent 1o the ith process in the group, and each process
receives this messaze az almwe,

The send buffer 1s ignored for all non-root processes,

The type signalre associated with sendeount, sendtype at the rool must be
edual to the type signature associated with recvcount, recvtype at all processes
thowever, the type maps may be different). This implies that the amount of
data senl must be ::{lual i the amownt of darn received, [_‘l'g'li]".".'i_Sl’_' between each
process and the root, Distinct tvpe maps between sender and receiver are sill
allowed,

All argumenis to the lunction are significant on process root, while on other
processes, only arguments recvbuf, recvcount, recvtype, root, comim are sigmifi-
cant. The arguments raot and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the
rect to be read more than onee.

fatisnale. Though not needed, the last restriction is imposcd 50 as 1o
achieve symmetry with MPLGATHER, where the corresponding restriction
{a multiple-write restriction) is necessary, {Frd of ratienale.)

MPI SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvoount,
recylype, raot, comm)

™ sendbuf address of send buffer {choice, significant only at
rosal]

1™ sendoounts integer arcay (oflength group size) specifying the
number of elements o send o each processo

m displs integer array {of leng group size). Entry & spec-

thies the displacement (relative o zendbuf from
which o ticke the oulgoing data o process 1

[sendtype data rype of send buffer elements {handle]
OuUT recyvhbuf wdelress af receive buller (choice)

[recvoount number of clemenis in receee buffer {integer)
M rachy iy e et gypee of vecelve bulfer clements (hancdle)
[root rank of sending process (inbeger)

™ CAmIm romemunteatar (andle)

int. HPI Scattarv(void+ mendbuf, ist *ssndcounts, int +diepls,
HMFI Datatype seodtype, wvold+s recvbuf, int raecvoount,
MPI Datatype reoviype, int root, MPI Cozm comnl

MPI_SCATTERY (SENDRUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECWCOWNT,
HECVTYPE, ROOT, COMM, IERAOR)
<type> SENDEUF{+), RECVEUF(=)
INTEGER SENDCOUNTS(=), DISPLE(+}, SEHDTYFE, RECVCOURT, RECVTYPE, RDOT,
COMH, TERROR

MPI_SCATTERV is the inverse operation to MPLLGATHERV.

MPILSCATTERY extends the functionality of MPLSCATTER by allowing a
varying count of data to be sent 1o each process, since sendcounts is now an
array. It also allows more flexibility as 1o where the data is taken from on the
root, by providing the new argument, displs.

The outcome is as il the root executed o send operations,

MPT Zond{serdbuf 4 disple(i] » extent{sendtype), sendeounta[i],
gendtype, 1, ...,
andl each process executed a receve,

MPT Recvirecvbul, recvoount, recvtypa, i, .. .).

The send huffer is ignored for all non-root processes.

The type signature implied by sendeount[i], sendtype at the root must e
equal 1o the tvpe signature implied by recvoount, recviype at process 1 (however,
the type maps may be different). This implies that the amount of data sent must
be equal to the amount of data received, pairwise between each process and the
root. Distinet type maps between sender and receiver are still allowed.

S e e

—~
it
.H"\.

| f Faor

sencbuf

Fig. 4.¥ Tho root procoss scattors sats of 100 ints to each process in the
group.

All arguments to the function are significant on process root, while on other
processes, only arguments recviouf, recvoount, recvtype, roat, comm are signifi-
cant. The arguments rootand comm must have identical values on all processes.

The specification of counts, tvpes, and displacemenis should not cause any
lacation on the root 1o be read more than once,

4.6.1 EXADMPLES USING MPISCATTER, MFI SCATTERWY

Example 4.11 The reverse of Example 4.2, Scatter sets of LW ints from the root
to each process in the group. See hgore 4,7,

HPI_Comn comm;

iot gsize,+sendbaf;

imt raot, rhof [100];

HPI_Cooo_size{ comm, .’tgs:uzn_':l:

sendbufl = (int =)malloc(geizesl00egizeaf(ine}];

HEI_Seatter{ sendbufl, 100, MPI_INT, rbaf, 100, HPI_IKT, root, comm);

Example 4.12 The reverse of Example 4.5, The root process scatters sets of 100
ints to the other processes, but the seis of 100 are stdde ints apart in the sending
buffer, Requires use of MPILSCATTERV. Assume siride = 100, See figure 4.8,

MFI_Comm Ccofn;
int gsize,+sandbef;
int root, rhaf(100], i, sdiapls, +ecounts;

MFI_Comm_sizel come, Egeize);
sandbuef = {iot 1'}:La'.l.:l.m:[55iznxstridaxsaze:ﬂﬂnt}};

digple = {int *}mallocigsize=sizeaf (int});

i iixd Ja
B B aproceses
, \ ‘
h LY |

& 1
%, 1
i, 1

. I
H Ji

abricle

|
H O
e |
| I i

sendbuf

Fig. 4.8 Tho root process scatters 5ats of 100 ints, moving by stride ints
from sand to sand In tho scattoer.

15 30 156

Ly Ll I Jog I all provesses

—_— _ -

1 / -
."..

"

i

1, T pe”

sirede| 1]

o Aol

-

semidbed

Fig. 4.8 Tha root scottars blocks of 100 ints into column i of & 100150 C
array. AL the sending side, the blacks are stride[i] ints apar.

gogunts = [int =imallac(geizesaizect (intdl;
for {i=0; i<gaime; ++i) {
displs[i] = i=seride;
geauntas[1] = 100,
1
MPI_Seattery(sendbnif, scounts, disple, HPI_INT, rbuf, 100, MPI_TKT,
roet, comm);

Example 4.13 The reverse of Example 4.9, We have a varving stride between
blocks at sending (root) side, at the receiving side we recelve Into the ith eolumn
al a 1002150 C array. See fAgure 4.9.

MPI_Comm Comm;

int gsize,recvarcay [100] [150],=rper;

int root, *gandbnf, myrack, bafsize, =ztrida;
HMPI_Datatype rhype;

it i, =displs, =scounts, cifsat;
HPI_Comn_gize!{ comm, &gsizel;

HPI_Comn_rack{ comm, Mmyrank };

stride = [int =)mallocigsizessizect{int));

A mtride[i]l for i = 0 to gaige-1 iz set somehow
¥ gandbul comse froom elsewherc

L

disple = (int *}ralloclgsize=gizesf (int)};
seountd = (int #lpalloc{gsizessizoof(int));
sIfEet = 0;
far [i=0; i<gsize; ++i)} o
displs(i] = off=et;
pffsat += atridelil;
gegunte[i] = 100 - i:
'
f= Create datatype for the colunn ve are receivimg
=
HPI_Type_wectorl 100-myrank, 1, 180, MPI_IKT, .;:r'l;.:,r_pe]:
HPI_Type_commit(krtype 1)
rpir = Ekrecvarray (0] [myrank] ;
HPI_Scatzerv(sendbaf, sceunts, displs, MPI_INT, cptr, i, rtype,
redt, Goam);

4.7 Gather-to-All

MPILALLGATHER] sendbuf, sendcount, sendiype, recvbul, recveount, recvtype,
cormin)

1 sendbuf starning ackilrcss of send buffer {chnice)

I sendcaunt muamber of elemenis in send Bualle |;i1|_|_|_-;.;.:-r]

I sendiype daca tvpe of send buller elements (handie)

QT recviuf acldress of receive buller (choice]

I recyCoLnt number of elements received from any process
fintegrer]

IN racwivpe daa type ol receive buller elemenis (anedle)

Ix COMmm cormrmunicaior {handle)

int MPI_Allgathec{void® sendbuf, int sendcount, MPI Datatype sendtyvpe,
weid+ recybafl, int recvcount, HPI |:|.'!|1‘..'I.::|l'|'.\a TECYLYPE .

MPT Comre comm)}

MPI_ALLGATHER{ZENDEUF, SENDCOUNT, SERDTYFE, RECVEUF. RECWCOUNT, LECVTYFE,
CUHH, IERRORD

“iype> SENDBUF(=), NECVEUF(+]
INTEGER SERDSOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER can he thought of as MPILGATHER, but where all processes
receive the result, instead of just the root, The jth black of data sent from each
process s received by every process and placed in the jth block of the bulter
recwiuf.

The type signature associated with sendoount, sendiype, ala process mest
he equal 1o the iype signature associated with recveount, reeviype at any other
Process,

The ontcome of a call 1o MPLALLGATHER. ..} is as if all processes executed
n calls 1o

MPI_GATHER{ sendbuef , sendeount , sendtypa, recvbuf rocvoount,
FeLviype, Foot comnl ,

for reot = @ , ..., n-1. The rules for correct usage of MPI ALLGATHER are
easily found from the corresponding rules for MPILGATHER.

MPI_ALLGATHERVY sendhuf, sendoount, sendtype, recvbuf, recvoounts, displs,
recviyvpe, Cormim)

[y sendbuf stivrting: ackdress of send bulTer (choice)

I sendoount number of elements in send buifer {iteger)

I sendivpe clata tvpe of send buffer clements (handle)
OUT recwvhbuf address of receive bufler (chobee)

Im FECVCOUNtS integrer arcay (ol length group size) concaining

the number of elements that are receved Teon
citeh process

It displs integerarray (ol lengih groupsiee). Eney £ speci-
fies the daplacement {relative to recvbuf) atwhick
1 p-'l;u:q_' the "||1-:'n|1'.-i1:||; clata Trann process 1

[recyivpe ity type el receive boffer clemenis (handle)

I COMmIm commumnicator (handle)

int MPI_Allgatherv{void= sendbuf, int secdesunt, MFI Datatyps sendtypa,
voide recvbul, int *regvoounts, int +displs,
HPI Datatype Tocviyps, HPI_ Comm comm)

MPI_ALLGATHERYCSENDRUF, SENDOOUNT, SENDTYPE, RECVEUF, RECVCOUNTE, DISPLE,
RECYTYFE, COMH¥, IEREOR)
<rype> SENDBUF (=), RECVEDF (#}
INTEGER SENDOIUNT, SENDTYPE, RECVCOUNTS(=), DISPLE{+), RECVTYPE, COHH,
IERRUR
MPI_ALLGATHERY can be thought of as MPILGATHERV, but where all pro-
cesses receive the result, instead of just the root. The jth block of data sent

trom each process is received by every process and placed in the jth block of the
bulfer recvbuf, These blocks necd not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be
equal to the ype signature associated with recveounts(j), recvtype at any ather
process.

The outcome iz as if all processes executed calls 1o

HPI_GATHERV{sandbuf , sendecunt , sspdtype , recvbuf , recrocounts displs,
TRCYEYEE, rost, sann)

for reet = 0, ..., a-1. The rules for correct usayge of MPILALLGATHERY arc
easily found from the corresponding rules for MPILLGATHERV.

4.7.1 EXAMPLES USING MPILALLGATHER, MPILALLGATHERY
Example 4.14 The all-gather version of Example 4.2, Using MPILALLGATHER,

we will gather 100 inis from every process in the group to every process.

MPI_Comm comm;

int geize,sendarray[100] ;

int *rbaf;

MPI_Coon_size{ comnm, Eﬁﬂlﬂ:ﬁ}:

riouf = (int +lpallocigsize=i00enizect {int));

MPI_Allgather{ sendarray, 100, WPI_IKT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of
ETHS

4.8 All-to-All Scatter/Gather

MPILALLTOALL [sendbuf, sendeount, sendiype, recvbuf, recvcount, recvtype,
cammy

I sendbuf starting adeiress of send bulTer (choice)

M sendcount number of clemens sent w each process
[mbeger)

[sendtypea cara rype of send buffer elemens (handle)

LT recvhuf addcliess of receive butfer (rhoice)

[reswiount numbrer of elements received Trom any process
Lanleger)

I recwlype data vpe of receive huffer elements {handle)

1 comm coanmanicator (fundle)

int HPI_Alltoalliveid* seodbuf, int sendcount, MPI Datatype sendiype,
wolds ragvbul, int recveount, MPI Datatype recvtype,
HFI Comn comm)

MPT_ALLTOALL(SENDDUF, SENDCOUNT, SENDTYPE, RECVAUF, RECVCOUNT, RECVTYPE,
COMM, IEHROR)
ctyper SENDEUF(+), RECVBUF(=)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, EECVTYPE, COMM, IERROR

MPLALLTOALL is an extension of MPLALLGATHER 1o the case where cach
process sends distince data wo each of the receivers, The jth block sent rom
process 1is received by process 3 and is placed in the ith block of recvbul.

The tvpe signature associated with sendeount, sendiype, al a process must
be equal to the type signature associated with recveount, recvliype at any other
process. This implies that the amount of data sent must be equal 1o the amount
of data received, pairwise between every pair of processes. As usual, however,
the type maps may be different.

The oucome is as il each process executed a send to cach process (iself
included) with a call o,

HPI_Send(eendsuf 4 i sendsount - extent{sendtyps), sendsount,

sendtypa, 1, .. .),
ancd o receive from every other process with a call o,

MPI_Raov(recvraf + i - recrcount - extont{recviypel. recyeount, i, .. .0

All arguments on all processes are significant. The argument comm must
have dentical values on all processes.

P ALLTOALLY sendbuf, sendeounts, sdispls, sendtype, recvbuf, recveounts,
rdispls, Fecutype, camm)

N sendbuf startng address of send bolfer (chaice)

1M sendeounts integer array equal o the group sioe specilbying
thee pournber of clemens vosend o each processor

I 5-:'_|i5|;:||5 i.|'|1g'|_r.|_=r:|r.r:|:.' [-::-‘l'!l'nglh grioug s Entry j spiec-
thies the displacement {relative o sendbut from

wihich o iake the owgodngs ddatie destined for pro-

Orss
™ ser‘ldt','[_le el Ty ol sened BaelTer elements [fandle)
U recvbuf address of receive bulfer (choice]
[recvoaunts nieger ATy -e:n:|z|.'.|l o Lhe grougs s L]E-u{if:.i.l'l:.;

U nurber of elemenis that can be received from
ech |I:I'II|.'E!5-E'P'|:II'

1™ rdispls integer array (of length groupsize). Entry i spaci-
fies the displacenent frelaive o racvbuf acshich
1o place the incoming data from process i

[y recyivpe iz Ty ol receive buffer elements {handle)

[COMmIm communicater (handle)

int HPI_Alltoallw(veids sendbuf, int *sandcounta, int sadippls,
HPI Datatyps sendoyps, voids recvbuf, int sregveounts,
int #rdisple, MPI Datatype recviype, HPI Coon comm)

YPI_ALLTDALLV (SENDBUF, SENDCOUNTS, 3DISPLE, SENDTYFE, RECYEUF, EECWCINTS,
MDISPLE, RECVTYPE, UMM, IERROE)
ttyper SENDEUF{+), RECVEUF(=)
INTEGER SENDODUNTS (=), SDISPLS(s), SEKDTYPE. RECWCOUNTS(+), RDISFLS(=),
EECVTYRE, ClM, IERRDRA

MPLALLTOALLY adds Aexibility to MPLALLTQALL in that the location of
data foer the send is specified by sdispls and the location of the placement of the
data on the receive side 1= specified by rdispls.

The jth black sent from process 1 is received by process 3 and is placed in
the ith block of recvbuf, These blocks need non all have the same size.

The wype signature associated with sendcount[j], sendtyps ar process 1 must
Ty equal o the ype signature associaced with resveount[i], Fecwlype al prooess
- This implies that the amount of daa sent must be equal to the amount of data
received, pairwise hetween every pair of processes. Distinel tvpe maps berween
sender and receiver are still allowed.

The outcome is as if each process sent a message 1o every other process with,

HPI Sendisendbufl <+ diepls(i] - extent{sendcype), sendeounts(i].

sendtype, i, ,,.)

and received a message from every other process with a call 1o

MFI Recvirecvbuf + displa[i] - extentirecvtype). recrosuntal1],

racetya, 1, .. HE

All arguments on all processes are significant. The argument comm must
have identical values on all processes,

fitionale. The definitions of MPLALLTOALL and MPLALLTOALLY give as
much flexibility as one would achieve by specilying » independent, point-
trpoint eommunications, with two exceptions: all messages use the same
datatype, and messages are scatterce from (or gathered o) sequential
storage, (End of rationale)

Advice to imiplemmenters, Alhough the discussion of collective communi-
cation in terms of point-to-point aperation implies that cach message is
transterred directlv from sender 1o receiver, implementalions may use a
tree communication pattern. Messages can be forwarded by intermediare
naddes where they arve split {for seatter) or concatenated (for gather), if this
is more efficient. ({nd of advice fo fmflemeiors,)

4.9 Global Reduction Operations

The functons in thiz 2ection perform a global reduce operaton (such as sum,
max, logical AND, etc.) across all the members of a group. The reduction
operation can be either ane of a predefined list of operations, or a user-defined
operation. The global reduction functions come in several flavors: a reduce
that returns the result of the reduction at one node, an all-reduce that returns
this result at all nodes, and a scan (parallel prefix) operation. In addition, a
reduce-scatter aperation combines the funcdonality of a reduce and of a scatter
OPETALIOL,

4.9.1 REDLCE

mMPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, cormim)

™ sendbuf ackdlress ol send buffer {choice)

OT recuhuf aeidress of receive hudfer {chuice, stgnificant only
al radal)

I caunt numher of elements in send boller (meger)

I clataly pe daa wpe of elements of send bulFer (handle)

M an reclice -::-|:l|.'|'.|.|i-:a-|:| { Il 1)

IN rool rank of roet process (integer)

I COrmm coanmmenicitbor | bandle)

int WPI Roducef{wvaids gendbaf, void= recvibuf, int count,
YFI Datatype datatype, MPIOp op, int root, HPI Comm conn)

MEL_REDUCECSERDEUT, RECVRUF, COUMT, DATATYPE, OF, ROOT, COHM, IERROA)
ctyper SENDBUF{+), RECVAUF (=}
INTEGER COUNT, DATATYPE, OF, ROOT, COMM, IERRDR

MPI_REDUCE combines the elements provided in the input buffer of each
process in the group, wsing the operation op, and returns the combined valuc
in the output bufTer of the process with rank root. The input buffer is defined
by the arguments sendbuf, count and datatype; the output buffer is defined
by the arguments recvbuf, count and datatype; both have the same number
of elements, with the same ype, The routine is called by all group members
wiing the same arguments for count, datatype, op, root and comm. Thus,
all processes provide input buflfers and ouiput buffers of the same length, with
elements ol the same type. Each process can provide one element, or a sequence
of clements, in which case the combine operation is execured element-wise on
each entrv of the sequence. For example, if the operation is MPI_LMAX and the
send buffer contains two elements that are floating point numbers (count = 2
and datatype = MPLFLOAT), then recvbufil) = global max(sendbuf(1)) and
recvbuf{Z) = global max(sendbuf(Z)].

Section 4.9.2, lists the set of predefined operations provided v MPIL That
section also enumerates the dalatypes each operation can be applied to. In
addition, wsers may define thelr own apcrations that can be overloaded o e
erate on several datarypes, either basic or derved. This is further explained in
Section 4.9.4,

The operation op i alwiays assumed to be associative. All predefined oper-
ations are also assumed to be commutative. Users may define operations that
are assumed to be asseciative, but notcommutative. The “canonical” evaluation
order of a reduction is determined by the ranks of the processes in the group.
However, the implementation can take advantage of associativity, or associativiey
and commutativity in order to change the order of evaluation. This may change
the result of the reduction for operations that are not stictly associative and
commutative, such as floating point addition.

Aduvice fo fmfdementors, 1L is strongly recommended thar MPILREDUCE
be implemented so that the same result will be obiained whenever the
function is applied on the same arguments, appearing in the same order.
Mote that this may prevent optimizations that take advantage of the physical
location of processors, (End of advice to implemenions.)

The datatype argument of MPI.REDUCE must be compaltible with op. Pre-
defined operators work only with the MPI tvpes listed in Section 4.9.2 and Sec-
ton 4.9.5. User-defined operators may operate on general, derved datatypes.
In this case, each argument that the reduce operation is applied o is one ele-
ment described by such a datanpe, which may contain several basic values. This
is further explained in Secten 4.9.4.

