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Abstract—

The frenetic development of the current architectures places a
strain on the current state-of-the-art programming environments.
Harnessing the full potential of such architectures has been a
tremendous task for the whole scientific computing community.

We present DAGuUE a generic framework for architecture
aware scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures. Applications we consider
can be represented as a Direct Acyclic Graph of tasks with labeled
edges designating data dependencies. DAGs are represented
in a compact, problem-size independent format that can be
queried on-demand to discover data dependencies, in a totally
distributed fashion. DAGuE assigns computation threads to the
cores, overlaps communications and computations and uses a
dynamic, fully-distributed scheduler based on cache awareness,
data-locality and task priority. We demonstrate the efficiency of
our approach, using several micro-benchmarks to analyze the
performance of different components of the framework, and a
Linear Algebra factorization as a use case.

I. INTRODUCTION AND MOTIVATION

The past few years have witnessed a persistent increase in
the number of cores per CPU and in the use of accelerators.
This trend can only be expected to continue, as hardware
vendors announce chips with as many as 80 cores, multi-GPU
capable compute nodes and potentially a tighter integration
between the accelerators and the processors. While, from a
pure performance viewpoint, this additional performance is
welcome, from a programming perspective it is difficult to
extract additional performance from the available hardware.

While alternative programming paradigms have been emerg-
ing, explicit message passing, using MPI, is currently the
dominant approach to creating parallel applications. However,
MPI alone does not provide mechanisms to fully harness the
potential performance of multi-core applications. To achieve
that, a hybrid programming model is a commonly proposed
solution, with MPI processes running across nodes and mul-
tiple threads running on each node.

Unfortunately, programming hybrid applications is difficult
and error prone. The application programmer is required to
address several low level problems, such as explicit com-
munications, mutual exclusion, load balancing, memory dis-
tribution, cache reuse and memory locality on non-uniform
memory access (NUMA) architectures. These issues are hard
to address and yet are orthogonal to the algorithm design and

are fundamental issues of the computational research domain
scientists and engineers are mostly interested in.

In this paper, we present DAGuE, a framework for parallel
application developers, that moves the task of addressing
the system specific performance issues from the application
developer to the DAGuE run-time system developer. DAGuUE
is a Direct Acyclic Graph (DAG) scheduling engine, where
the nodes of a DAG are sequential computation tasks and the
edges are data communications. Therefore, designing a parallel
application with this framework consists of encapsulating
computation tasks into sequential kernels and defining, through
a DAGUE specific language, how these kernels interact with
each other.

DAGUE schedules tasks in a fully distributed and dynamic
fashion. It enables local tasks to make progress waiting only on
data dependencies to other tasks, and no process has a global
knowledge of the execution progress of remote processes. Each
process runs its own instance of the scheduler using a repre-
sentation of the DAG that is problem size independent. The
DAGUE engine utilizes all cores of each node enabling work
stealing between cores of the same node. To reduce overhead,
work stealing is implemented in an architecture-aware fashion
and communications are made asynchonously to overlap them
with computation. Communications are implicit, thus they are
managed by the run-time rather than the application developer.
They follow data dependencies of the DAG and do not require
global synchronization, thus enabling scalability. A DAGuUE
user focuses on expressing the algorithm as a DAG of tasks,
and defining how the tasks should be distributed over the
computing resources. Tools of the framework help her in this
task.

The remainder of the paper is organized as follows. Sec-
tion II describes the related work, Section III contains a
detailed description of the DAGuE framework. Finally, Sec-
tion IV gives the experimental results and Section V provides
the conclusion and future work.

II. RELATED WORKS

DAGs have a long history [1] of expressing parallelism and
task dependencies in distributed systems. Previously, they have
often been used in grids and peer-to-peer systems to schedule
large grain tasks, mostly from a central coordinator organizing
the different task executions and data movements. [2], [3]



present a taxonomy of DAGs that have been used in grid
environments.

More recently, many projects have proposed to use them
as an approach to address the challenge of harnessing the
computing potential of multi-core computers, especially in the
Linear Algebra field. In [4], [5], the authors demonstrate that
DAGs enable the scheduling of tasks for tile algorithms on
multi-core CPUs, reaching performances inaccessible to tradi-
tional approaches for the same problem sizes. [6] demonstrates
how such an approach can also be used to address hybrid
architectures, with computers augmented with accelerators like
GPUs. [7] defines codelets, a task description language to
enable the execution of same tasks on different hardware, and
[8] uses DAGs to schedule tasks on heterogeneous computers.

We distinguish three approaches to build and manage the
DAG during the execution: [3] reads a concise representation
of the DAG (in XML), and unrolls it in memory before
scheduling it. [9], [6], [10] modify the sequential code with
pragmas, to isolate tasks that will be run as an atomic entity,
and run the sequential code to discover the DAG. Optionally,
these engines use bounded buffers of tasks to limit the impact
of the unrolling operation in memory. The third approach
consists of using the concise representation of the DAG in
memory, to avoid most of the impact of unrolling it at run-
time. Using structures like Parameterized Task Graph (PTG)
proposed in [ 1], the memory used for DAG representation is
linear in the number of task types and totally independent of
the total number of tasks.

Only a few projects have tried to use DAG scheduling
in distributed memory environments. Scheduling DAGs on
clusters of multi-cores introduces new challenges the scheduler
should be dynamic to address the non determinism introduced
by communications and in addition to the dependencies them-
selves, data movements must be tracked. In the context of
Linear Algebra, three projects are prominent: in [12], [13],
the authors propose a first centralized approach to schedule
computational tasks on clusters of SMPs using a PTG rep-
resentation and RPC calls based on the pm2 project. [14]
proposes an implementation of a tiled algorithm based on
dynamic scheduling for the LU factorization on top of UPC.
[15] uses a static scheduling of the Cholesky factorization
on top of MPI to evaluate the impact of data representation
structures. All of these projects address a single problem and
propose ad-hoc solutions.

The framework described in this paper, DAGuE, takes
advantage of a concise representation of the DAG; it is
fully distributed, i.e. no centralized components, and avoids
unrolling the DAG in memory at any given moment. Moreover,
as shown in the rest of this paper, it is a general tool not
dedicated to a single application.

III. THE DIRECT ACYCLIC GRAPH ENVIRONMENT

DAGUE consists of a runtime engine and a set of tools to
build, analyze, and pre-compile a compact representation of
a DAG. The internal representation of Direct Acyclic Graphs

used by DAGuE is called JDF. It expresses the different types
of tasks of an application and their data dependencies.

Applications may be expressed directly as a JDF. Alterna-
tively, most applications can also be described as a sequential
SMPSS-like code, as shown in Figure 7. This sequential
representation can be automatically translated in the JDF
representation (described below) using our tool, H2J, which
is based on the integer programming framework Omega-
Test [16]. The JDF representation of a DAG is then pre-
compiled as C-code by our framework and linked in the final
binary program, with the DAGuE library.

The DAGuUE library includes the runtime environment that
consists of a distributed multi-level dynamic scheduler, an
asynchronous communication engine and a data dependen-
cies engine. The user is responsible for expressing the task
distribution in the JDF (helping the H2J tool to translate the
original sequential code in a distributed version), and distribut-
ing and initializing the original input data accordingly. The
runtime environment is then responsible for finding an efficient
scheduling of the tasks, detecting remote dependencies and au-
tomatically moving data between distributed resources. Below,
we present in detail the input JDF format and the mechanisms
involved in the scheduler as well as the communication engine
to unleash the maximum amount of parallelism with dynamic
and asynchronous distributed scheduling.

A. The JDF Format

The JDF is the compact representation of DAGs in DAGuE;
a language used to describe the DAGs of tasks in a synthetic
and concise way. A realistic example of JDF, for the Cholesky
factorization that we use to evaluate the engine in Section IV,
is given in Figure 1. The Cholesky Factorization consists of
four basic task types: DPOTRF, DTRSM, DSYRK, DGEMM.
For each operation, we define a function (lines 1 to 9 for
DPOTREF) that consists of 1) a definition space (DPOTRF is
parametrized by & that takes values between 0 and STZFE —1);
2) a task distribution in the process space (DPOTRF(k)) runs
on the process that verifies the predicates of lines 5 and 6);
3) a set of data dependencies (lines 7 to 9 for DPOTRF(k):
single data element); and 4) a body that holds the effective
C-code that is going to be executed when this task is selected
by the scheduling engine for execution (this code is omitted
in the Figure 1 due to space constraints).

Dependencies beginning with a left arrow are IN dependen-
cies for this data element; they describe how this data has been
produced or how it can be found. Dependencies beginning
with a right arrow are OUT dependencies for this data; when
the body of this task will be completed, this data has to be
transmitted to the specified task or memory location. The main
goal of the scheduling engine is to select a task for which all
the IN dependencies are satisfied and selects a core to run the
body of the task when it is scheduled, which will enable all
the OUT dependencies of this task, thus making more tasks
ready to be scheduled.

Dependencies apply on data that is necessary for the execu-
tion of the task, or that is produced by the task. For example,



1 DPOTRF(k) (high_priority)
2 // Execution space

3 k = 0..SIZE-1

4 // Parallel partitioning

5 : (k / rtileSIZE) % GRIDrows == rowRANK
6 ¢ (k / ctileSIZE) % GRIDcols == colRANK
7 T <— (k == 0) ? A(k, k) : T DSYRK(k—1, k)
8 k+1..SIZE—1)

9

10

[TILE]
—> T DIRSM(k, [TILE]
— Ak, k)

11 DIRSM(k,n) (high_priority)

12 // Execution space

13 k = 0..SIZE-1

14 n = k+1..SIZE—1

15 // Parallel partitioning

16 : (n / rtileSIZE) % GRIDrows == rowRANK
17 : (k / ctileSIZE) % GRIDcols == colRANK

18 T <— T DPOTRF(k)

19 C<— (k == 0) ? A(n, k) : C DGEMM(k—1, n, k)

20 —> A DSYRK(k, n)
21 —> A DGEMM(k, n+1..SIZE—1, n)
2 —> B DGEMM(k, n, k+1..n—1)
23 — A(n, k)

Fig. 1.

the task DPOTREF uses a single data element as input: T; the
execution of the task modifies it, and it is also output data
for this task. How the data is retrieved is described by the
lines after the left arrow, while where they should be sent is
described by the lines after the right arrows (there may be
one left arrow and multiple right arrows per data). The input
T can come either from an input memory (local to the node on
which the task executes or located in a remote node), or from
the output of another task (that executed locally or remotely).
For example, when k=0, T of DPOTRF(k) comes from the
memory in the input array A(0, 0) otherwise, T comes from the
output of the task DSYRK(k-1, k). Even though the POTRF
operation works in-place and overwrites A(0,0), this tile is
never referenced as an input matrix. Instead, any subsequent
dependent tasks refers to it as the output T from DPOTRF(0).

Output dependencies, following the right arrow, work sim-
ilarly. One might notice that for output dependencies the
language supports ranges of tasks as targets for a data. In
this example, T is sent to the input T of DTRSM(k, k+1), and
to the input T of DTRSM(k, k+2), and so on until DTRSM(k,
SIZE-1). A dependency can also be a final output, meaning
that no other task will modify its value before the end of
this DAG. However, subsequent tasks are allowed to use this
data read-only. Explicit marking of initial and final data is a
desirable feature, enabling the composition of several JDFs to
build complex algorithm.

The DAGuE engine is responsible for moving data from one
processor to another when necessary; tasks are enabled only
when all data marked as IN is locally available. Dependencies
of the JDF may be marked with a modifier at their end (like
[TILE] at the end of a dependency line). This modifier is
a type qualifier it tells the communication engine how to
transfer data from a remote location to another. By default,
the communication engine uses a default data type, defined by
the user to fit the basic data bloc unit (for the tiled Cholesky,
this default datatype describes a single tile). Sometimes, the
algorithm manipulates several different data; the user can

36 DSYRK(k,n) (high_priority)
37 // Execution space

38 k = 0..SIZE-1

39 n = k+1..SIZE—1

40 // Parallel partitioning

41 : (k / rtileSIZE) % GRIDrows == rowRANK
42 : (n / ctileSIZE) % GRIDcols == colRANK

43 A <— C DIRSM(k, n)
4 T<— (k == 0) ? A(n,n) : T DSYRK(k—1, n)
45 —> (n == k+1) ? T DPOTRF(k+1) : T DSYRK(k+1,n)

47 DGEMM(k, m, n)
48 // Execution space

49 k=0 .. SIZE-2

50 m = k+2 .. SIZE-1

51 n = k+1 .. m—1

52 // Parallel partitioning

53 : (m / rtileSIZE) % GRIDrows == rowRANK
54 : (n / ctileSIZE) % GRIDcols == colRANK

55 A <— C DIRSM(k, n)

56 B <— C DTRSM(k, m)

57 C<— (k = 0) ? A(m, n) : C DGEMM(k—1, m, n)

58 —> (n == k+1) ? C DIRSM(k+1, m) : C DGEMM(k+1, m, n)

JDF representation of Cholesky

Fig. 2. DAG of Cholesky for a 4x4 tile matrix on a 2x2 grid of processors.

specify different datatypes for each in and out dependencies.
For special cases, the language is flexible enough to let the
user transfer the same data with different types for several
tasks. This is useful to spare communication bandwidth in
some Linear Algebra kernels, where typically a tile is divided
in a lower and a upper triangle that flows to different tasks
independently.

The internal representation of the JDF used by the DAGuE
engine maps this language. The representation of Figure 2
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Fig. 3. Illustration of the multi-core scheduling

describes the conceptual representation of the unrolling of the
JDF as a DAG. The size of the fully unrolled DAG is a function
of the global parameters of the JDF representation (SIZE,
GRIDrows, etc...), and its memory requirements will explode
with the combination of all possible tasks. However, this is not
a concern for DAGuUE, as the engine never unfolds the DAG,
but instead uses a symbolic interpretation to schedule tasks.
The JDF is never unrolled in memory at any given time, and
thus spares computation cycles to walk the DAG and memory
to keep a global representation.

The IN and OUT dependencies, accessible from any task to
any task, ascendant or descendant, are sufficient to implement
a fully distributed scheduling engine for the underlying DAG,
based only on local knowledge. When a node learns that some
task has been completed remotely, it can locally compute in
O(1) operations what local tasks are enabled by this comple-
tion (using the global knowledge of the JDF, descending links,
and process distribution predicates). To simplify scheduling
operations, the JDF compiler transforms the IN dependencies
into a prologue function, and the OUT dependencies into an
epilogue function, around the body of the task.

B. The DAGUE engine: a fast, distributed, architecture-aware
dynamic scheduler of DAG

In DAGuE, the scheduler is partly in the library and partly
in the file compiled from the JDF representation. DAGuUE
creates one thread per core on the local machine and binds
them on each core. Each thread runs its own version of the
scheduler. Figure 3 represents critical structures used to do
this scheduling; each thread owns a waiting queue and a
bounded buffer of tasks called placeholder. When a thread
completes a task, it executes the epilogue derived from the
JDF, that determines which tasks may have been enabled by
the execution of the completed task. Iterating on the outgoing
dependencies of the task, the thread atomically marks in a
shared structure which incoming dependencies are enabled. If
some tasks become marked as enabled, the thread schedules
them.

To improve locality and data reuse on NUMA architectures,
the schedule function (part of the DAGuE library) favors the

queuing of the new enabled tasks in the placeholder of the
calling thread. A task that is enqueued in the placeholder
always executes on the same thread, maximizing cache and
memory locality. If the placeholder is full, the tasks are put
at the beginning (for high priority tasks) or at the end (for
other tasks) of the thread waiting-queue. When this epilogue
is done, the thread looks up for the next task to run. The first
task in the placeholder is chosen; if no task is found in the
placeholder, the thread tries to pop from the beginning of its
own queue. If this queue is also empty, it tries to pop from
the end of the other threads’ waiting-queues. The order in
which the queues are considered for job stealing depends on
the distance between cores. The DAGUE environment uses the
HWLOC library [17] to discover the NUMA architecture of
the machine at run time and adapts the stealing strategy.

In addition to dependencies tracking, DAGuE tracks data
flows between tasks. When a task is completed, the epilogue
stores pointers to each of the data produced by the task in a
structure shared between the threads. When a new task starts,
the prologue of the task uses the IN dependencies and this
shared structure to retrieve each of the IN data. When all tasks
depending on a particular output have completed, the engine
stops tracking this data, and releases all internal resources
associated with.

At the end of the epilogue, the thread has noted, using
the parallel partitioning of the JDF, which tasks, if any, will
execute remotely, and which data from the completed task they
require. The epilogue ends with a call to the Asynchronous
Communication Engine to trigger the movement of the output
data to the requesting nodes. A producer/consumer approach
is taken here, the orders are pushed into a queue, and the
communication thread will serve them as soon as possible.

The JDF language and its internal representation at runtime,
including both the generated code and the dynamic data
structures, are specifically tailored to handle DAGs that enable
simultaneously a large number of dependencies, called ranges.
The internal dynamic structures are designed for memory
efficiency and can support millions of activations with very
small overheads, as we will demonstrate in Section IV.

The scheduling is fully distributed; all nodes run the
scheduling engine. If necessary, each process can parse the
concise JDF representation to find information about any tasks
in a memory constrained space. Each computing thread runs
for itself the scheduling functions, thus alleviating the need
for a centralized approach of scheduling. To handle load
imbalance between threads, the scheduling is dynamic and
threads are allowed to steal work from one another on the same
process, in a NUMA-aware way. The work-stealing approach
is, however, controlled using placeholders that hold tasks that
cannot be stolen from a thread, to increase data reuse.

C. Asynchronous Communication Engine

In DAGuE, communications are implicitly inferred from the
data dependencies between tasks, according to the predicates
defining the parallel partitioning. Asynchrony and dynamic
scheduling are the key concepts of DAGuUE, meaning that



the communication engine has to also exhibit those same
advantages in order to effectively achieve communication/-
computation overlap and asynchronous progress of tasks in
a distributed environment. As a consequence, in DAGuE,
communications are handled by a separate thread, which takes
commands from all the computing threads and issues the
corresponding network operations. Upon completion of a task,
the dependency resolution function is executed on the same
core that handled that computation. The distribution predicates
of the downstream tasks are evaluated, and if the predicates
are verified, the dependency is satisfied by the local scheduler.
Otherwise, an activate message is sent to the process that
verifies the predicate. From the compute thread perspective,
this is a fire and forget operation. Regardless of the network
congestion status, the compute threads are able to focus on the
next available compute task as soon as possible to maximize
communication overlap.

An activate message contains information about the task that
completed (the task identifier and the values of the parameters)
and the index of the output data variables needed by all
the dependent tasks on the destination expressed as a single
integer bit mask. During the epilogue of the task, activate
messages targeting the same processor are coalesced and a
single command is sent to every destination process. Only
processes that will run tasks depending on the completed
task are notified. As an example, on the ping-pong program
presented in figure 5, when finishing PING(2), the activate
message from rank 0 to rank 1 contains {PING, 2, 1}, because
T is the first output of PING.

Upon the reception of an activate message, the destination
process schedules the reception of the relevant output data
from the parent task according to the variable mask. A single
control message is sent to the originating process to initiate
the data transfers; all output data needed by the destination are
received by different rendezvous messages. When one of the
data transfers completes, the receiver invokes locally the de-
pendency resolution function associated with the parent, inside
the communication thread, with a specific restricted mask to
satisfy only the dependencies related to that particular variable.
Remote dependencies resolutions are variables specific, not
tasks specific, in order to maximize asynchrony. In the case
of tasks enabling different tasks with different data, tasks that
have received their inputs can run, regardless of the status
of other outputs of the parent task. The remote dependency
resolution function queues all released tasks in the ready queue
of the first compute thread. As those can be stolen by any other
thread, and are not already loaded into any cache, this is not
detrimental to load balancing or data reuse strategies of the
scheduling.

In the current version, the communications are performed
using MPIL. To increase asynchrony, data messages are using
non-blocking, point-to-point operations to allow for several
tasks to concurrently release remote dependencies. However,
an uncontrolled number of concurrent messages simultane-
ously progressing into the MPI library leads to various issues,
ranging from catastrophic aggregate bandwidth to exhaustion

of the available requests of the MPI library. As a consequence,
only three concurrent remote dependencies are allowed to
progress at any given time, a value that was tuned to preserve
the aggregate bandwidth on major MPI implementations. The
MPI thread pre-posts enough persistent receives to handle the
control messages for the maximum number of concurrent tasks
completion. There is no limit to the number of control mes-
sages that can be sent, to avoid deadlocks. This can generate
unexpected messages, but only for small size messages, and
does not consume requests. Due to the rendezvous protocol
described in the previous paragraph, the data payload of the
variables are never unexpected, thus reducing memory con-
sumption from the network engine and ensuring flow control.
The MPI thread is not intended to be running on its
own physical core. Therefore, in order to decrease the level
of noise it generates on the computing threads, the MPI
thread periodically invokes nanosleep in order to yield the
processor to real computation. The trade-off for this lower
overhead on computation lies in the inability of this approach
to benefit from the smallest possible latency. The rationale
of this choice comes from the granularity of the tasks in the
target applications, whose performance are more bandwidth
rather than latency constrained. While MPI is a portable
communication environment, it doesn’t fit well with totally
asynchronous progressions, where a model such as Active
Messages fits better. This will be addressed in future work.

IV. PERFORMANCE EVALUATION
A. Experimental conditions

The Griffon cluster is one of the clusters of the Grid’5000
experimental grid [18]. It is a 648 core machine composed
of 81 dual socket Intel Xeon L5420 quad core processors at
2.5GHz with 16GB of memory, interconnected by a 20Gbs
Infiniband network. Linux 2.6.24 (Debian Sid) is deployed.

The Dancer cluster is a small 8 quad core node cluster,
based on a Intel Q9400 2.5Ghz processor, each node with
4GB of memory. All nodes are connected using a dual Gigabit
Ethernet links, and four additionally sports Myricom MX10G.
Linux 2.6.31.2 (CAoS NSA) is deployed.

On Dancer and Griffon, the software is compiled using gcc
and gfortran 4.4 with -O3 flags, and uses the OpenMPI 1.4.1,
Plasma 2.1.0 and Inte]l MKL-10.1.0.015 libraries.

B. Micro benchmarking

1) Scheduling Performance: The first results evaluate the
overheads of the scheduling engine of DAGuUE on a single
node architecture. Two different simple benchmarks compute
Nb repetitions of a simple task, consisting of a N x N double
precision matrix-matrix multiply. The first benchmark is a
sequential program composed of four nested loops (one loop
around Nb, then the three loops of the matrix-matrix multiply).
The second benchmark is a simple JDF file that generates Nb
parallel tasks consisting of the three inner loops of the matrix
multiplication.

The Figure 4 plots the ratio between the time taken by
the sequential program with ideal scaling (hence 1/p of the
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Fig. 4. Ratio between the time taken by the DAGUE engine to schedule
Nb matrix-matrix multiply of size N X N and the time taken by the similar
sequential code divided by the number of cores (ideal parallelization)

time measured, where p is the number of cores), and the
time taken by the DAGuUE engine for the same number of
tasks Nb and matrix size N. We did all measures on the
dancer platform, five times, and divided each measurement
of the DAGUE engine by the fastest sequential run for the
same parameters. A similar benchmark using a simple Posix
threads parallelization, not presented here due to lack of space,
supports the same conclusions.

The embarrassingly parallel matrix-matrix multiply is a
stress test for the scheduling engine of DAGuUE. An extremely
large number of tasks (up to 220) can be scheduled at the
same time. Thus, the waiting queue of the engine is rapidly
filled with ready tasks that have to be scheduled. Thanks
to not unfolding the complete graph, the engine is able to
manage millions of simultaneous tasks without impacting the
memory consumption or the computation time. For very small
task (in the order of microseconds), the overheads due to
dynamic scheduling can take up to twice the ideal execution
time, suggesting that DAGuE is best fitted for tasks of a
coarser grain. However, the overheads due to the scheduling
infrastructure become rapidly negligible; for a relatively small
work size (a matrix-matrix multiply of 30 x 30 doubles takes
44us on the dancer platform), DAGuE reaches the ideal
parallelization performance projection.

2) Communication Performances: The second benchmark
aims at evaluating the communication performance of the
DAGUE engine. We have designed a very simple ping pong
benchmark where a message of variable size is sent from one
node to another node, a variable number of times. The JDF
representation of this ping pong is located in Figure 5. Node
0 (identified by the predicate 0 == rowRANK) is the only
one to execute the PING (k) task, transmitting a data to the
PONG (k) task that can execute on node 1 only. This data
is typed with the non-default type ATYPE, that is allocated
to the desired size by the main program. PING (0) reads its
data locally while PING (k) (k > 0) uses the data sent by
PONG (k-1).

We measure the total time ¢ taken to execute this JDF on

1 PING(k)

2 // Definition domain of the parameters

3 k=0 .. NT

4

5 // Parallel partitionning

6 : 0 == rowRANK

7

8 T <— (k==0) ? A(0) : I PONG(k—1) [ATYPE]
9 —> (k==NT) ? A(0) : I PONG(k) [ATYPE]
10

11 PONG(k)

12 // Definition domain of the parameters

13 k =0 .. NI-1

14

15 // Parallel partitionning

16 : 1 == rowRANK

17

18 I <— T PING(k) [ATYPE]
19 —> T PING(k+1) [ATYPE]
20

Fig. 5. JDF representation of the ping pong

two machines, interconnected with 2 Gb/s ethernet cards, then
with the Myricom MX-10G high-speed network, and finally on
the Griffon platform with two machines interconnected with
Infiniband 20 Gb/s. From this time ¢ we compute the latency
(t/(2 - NT)) and the bandwidth (2 x 8 - NT - S/t) of the
DAGUE engine, where N7 is the number of iterations and
S is the size of the data in bytes. In Figure 6 we compare
these measurements with the NetPIPE [19] benchmark using
directly the same MPI library as DAGuE.

Figure 6(a) demonstrates a high overhead on latency for the
DAGuE benchmark, for all kinds of networks: from a factor of
10 on the double-1G Ethernet network to a factor of 90 on the
MX-10G network. The implementation of the RTT benchmark
in DAGUE consists of placing a string of tasks alternatively
between two nodes, and allowing the DAGuE engine to move
the data for the tasks. The current implementation of DAGuUE
uses a 3-way rendezvous protocol to move all data; the emitter
first signals the completion of the task to the nodes that will
run a task depending on this completion. The receiver node,
when notified of a completion, allocates resources to receive
the actual data, then requests the data from the emitter, that
finally sends the data. For very small messages, this multiplies
the latency by at least a factor of 3. Moreover, the goal of
the DAGUE engine is to resolve data dependencies and move
data for the upper layer application. To do this, the engine
introduces an accounting of data and allocates memory to
receive the new data. So, all network data are received in a
newly allocated buffer that will be garbage collected by the
system. Furthermore, the communications and the treatment
of the tasks are done on different threads, addingfour4 to
six thread context switches to the latency. This is a different
behavior than the NetPIPE benchmark, which receives and
sends data “in-place” and does not use threads. For high-speed
networks this introduces a significant overhead that explains
the observed difference.

However, the DAGUE system is not designed to move small
data, but data of the order of magnitude of a matrix tile.

Figures 6(a) and 6(b) also show that for medium-size messages
(64KB), the difference between NetPIPE and DAGUE is small



FOR k = 0..TILES-1
AlKkI[k] « DPOTRF(A[KI[K])
FOR m = k+1..TILES-1
Alm][k] « DTRSM(A[kI[K], A[mI[K])
FOR n = k+1..TILES-1
Aln][n] « DSYRK(A[nI[k], A[n][n])
FOR m = n+1..TILES-1
A[lm][n] « DGEMM(A[m]I[k], A[n][k], Alm][n])

Fig. 7. Pseudocode of the tile Cholesky factorization (right-looking version).

for the Ethernet network, and it becomes small at 512KB
for high-speed networks. For the tested applications, the tile
size resulting from tuning varies from 200 x 200 (320KB) to
350 x 350 (=1MB), which is in the high network efficiency
range.

C. Application Benchmarking

Cholesky Factorization: The Cholesky factorization (or
Cholesky decomposition) is mainly used for the numerical
solution of linear equations Az = b, where A is symmetric and
positive definite. This factorization of an n x n real symmetric
positive definite matrix A has the form

A=LLT,

where L is an n x n real lower triangular matrix with positive
diagonal elements. Due to its large recognition, we used this
factorization as a first use case for the environment. We
have implemented a tiled algorithm version of the Cholesky
factorization. As described in [20], a single step of the algo-
rithm is implemented by a sequence of calls to the LAPACK
and BLAS routines: DSYRK, DPOTF2, DGEMM, DTRSM.
Due to the symmetry, the matrix can be factorized either as
upper triangular matrix or as lower triangular matrix. The
tile Cholesky algorithm is identical to the block Cholesky
algorithm implemented in LAPACK, except for processing
the matrix by tiles. Otherwise, the exact same operations
are applied. The algorithm relies on four basic operations
implemented by four computational kernels:

DPOTREF: The kernel performs the Cholesky factorization
of a diagonal (triangular) tile 7" and overrides it with
the final elements of the output matrix.

DTRSM: The operation applies an update to a tile A below
the diagonal tile 7', and overrides the tile A with the
final elements of the output matrix. The operation is
a triangular solve.

DSYRK: The kernel applies an update to a diagonal
(triangular) tile B, resulting from factorization of the
tile A to the left of it. The operation is a symmetric
rank-k update.

DGEMM: The operation applies an update to an
off-diagonal tile C, resulting from factorization of
two tiles A to the left of it. The operation is a matrix
multiplication.

Figure 7 shows the pseudocode of the Cholesky factoriza-
tion (the right-looking variant).

A parallel Cholesky factorization implementation is con-
trolled by several parameters: N defines the size of the input
matrix (N x N doubles), while NB defines the size of the
tiling (or blocking). A N x N matrix is divided in NT' x NT
tiles (or blocks) where NT' x NB = N. When NB does
not divide N, the last tile of each row or column is padded
with zeroes. No computation happens on the padding but
complete tiles are transferred over the network nonetheless.
Two other parameters, P and (), control the process grid
used to map the block cyclic distribution of the tiles (or
blocks) on the computing resources. According to [21] and
to our experiments, the best performance is achieved when
using a process grid that is square or closest to square with
P < Q. Consequently, for all the results presented in this
paper, the process grid follows this rule. NB has been tuned
experimentally for each software, the results are generated
using the best overall performing NB.

In the rest of the paper, for all figures that present perfor-
mances in GFLOP/s, we provide the theoretical performance
of the platform computed as the frequency of a core, times
the depth of the pipeline of the core, times the number of
cores. We also provide the GEMM peak performance of the
platform. GEMM peak is measured as the best performance
obtained by a single core to compute a double precision
matrix-matrix multiply using the same numerical library as
the Cholesky factorization (BLAS), while the other cores are
computing independent, identical, GEMMs. This is considered
as the practical peak performance of the platform, and this
is the operation that dominates the Cholesky factorization.
All benchmarks that follow only consider double precision
operations.

ScalAPACK and DSBP: We compare the performances
of the Cholesky factorization with two other implementations.
ScaLAPACK [22] is the reference implementation for dis-
tributed parallel machines of some of the LAPACK routines.
Like LAPACK, ScaLAPACK routines are based on block
partitioned algorithms to improve cache reuse and reduce
data movement. We used the vendor ScaLAPACK and BLAS
implementations (from MKL).DSBP [15] is a tailored im-
plementation of the Cholesky factorization using 1) a tiled
algorithm, 2) a specific data representation suited for Cholesky,
and 3) a static scheduling engine. We used DSBP version
2008-10-28".

1) Impact of task granularity: In In Figure 8, we investigate
the effect of task granularity on the performance of the
DAGuUE Cholesky Factorization at different node scales and
input matrix sizes. For each run, we took the smallest matrix
size that is bigger than a target 7' and still divisible by the
block size. For one node, the target 7} is 13,600; for four
nodes, the target Ty is 26,880; for 81 nodes, the target Ty
is 120, 000. Each of these sizes is chosen to exhibit the peak
performance of the DAGuUE Cholesky implementation on the
different setups. To compare all runs in a normalized way,
the figure represents the efficiency as a percentage of the
theoretical peak for each setup.

lavailable online at http://www8.cs.umu.se/~larsk/index.html
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All curves present the same general shape: the performance
first increases with the block size until a peak, then decreases
slowly when the block size increases. For a single node, this
is the effect of the optimization of cache effects in the BLAS
kernel. For a distributed run, the optimal block size is the
result of a trade-off between an ideal size for optimizing the
cache effects in the kernel, and network efficiency. As seen in
Figure 6, starting at IMB, the DAGuE engine reaches network
saturation. Thus, for blocks of 360 x 360 elements and larger,
the transfer time increases linearly with the amount of data
(thus as the square of the block size). Smaller block sizes
experience a lower network efficiency. However, when the
size of the matrix is large, there are enough tasks ready to
be scheduled at all times to overlap communication costs with
computation, and as a consequence, block size tuning mostly
depends on the BLAS kernels.

One can see however that for 81 nodes, the best N B value
is 340, while it is 460 for one node. A distributed runs require
communications which themselves introduce memory copies,
that pollute parts of the cache. Since the cache is not used
exclusively by the BLAS kernels, the best block size decreases
slightly and thus increases the probability that a tile will fit in
some cache of the computing nodes, even if the MPI thread
is using part of this to handle communications.

2) Problem Scaling: Figure 10 presents the performance
of the Cholesky Factorization when scaling the problem size.
We ran the different Cholesky Factorizations on the Griffon
platform, with 81 nodes (648 cores), and for a varying problem
size (from 13,600 x 13,600 to 130,000 x 130, 000). We took
the best block value for each of the implementations; block
sizes were tuned as demonstrated in Figure 8 for the DAGuUE
implementation. We kept the best value of the runs for each
plot in the figure.

When the problem size increases, the total amount of
computation increases as the cube of the size, while the total
amount of data increases as the square of the size. For a
fixed block size, this also means that the number of tiles
in the matrix increases with the square of the size, and so
does the number of tasks to schedule. Therefore, the global
performance of each benchmark increases until a plateau is
reached. On the Griffon platform, the amount of available
memory was not sufficient to reach the plateau with neither
of the implementations.

The figure shows that for small size problems, DSBP
obtains a better performance than DAGuE. DSBP is using a
data format specifically tailored for the Cholesky factorization
(exploiting the symmetry of the matrix). As a consequence,
DSBP does not require as much parallelism as DAGuE to
overlap the communications with computation. When DAGuUE
has enough data per node to overlap all communication with
computation, the dynamic scheduling of DAGuE utilizes the
computing resources and the network better, up to 70% of the
theoretical peak (75% of GEMM-peak).

3) Impact of intra-node versus inter-node communication:
Figure 9 presents the performance per core, for a fixed
total number of cores, when varying the repartition between
distributed memory and shared memory accesses. Even using
the inefficient Ethernet network, the performance per core
decreases only slightly when replacing shared memory com-
putation by MPI distributed messaging, outlining the nearly
perfect overlap achieved by the communication engine.
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4) Weak Scalability: Figure 11 presents the weak scalability
study of the Cholesky Factorization. The initial workload for a
single node (8 cores) experiment is a 13, 600 x 13, 600 matrix.
This matrix size is scaled up accordingly to the number of
nodes to keep the per core workload constant, up to N =
120,000 for an 81 node (648 cores) deployment.

As one can see, all benchmarks scale almost perfectly,
attaining 49% of the GEMM peak for ScaLAPACK, 66% for
DSBP, and up to 78% for the DAGUE engine. All runs in the
figure are done with a square process grid, which is the best
process grid for Cholesky factorization. The only exception is
the point at 384 cores (48 nodes, 8 cores per node). In this
case, we used a process grid of 6 x 8 for the DAGUE engine,
and 16 x 24 for DSBP and ScaLAPACK. This measurement
was added to demonstrate that all benchmarks suffer from
a similar downgrade of performance when the grid is not
perfectly square.

5) Strong Scalability: Figure 12 presents the strong scala-
bility study for the Cholesky factorization (i.e., evolution of
the performance for a given matrix size, when increasing the
number of computing resources participating in the factoriza-
tion). For Figure 12(a), we used the largest available matrix
size for the smallest number of nodes (93, 500 x 93, 500) and
the most efficient block size after tuning (340 x 340). For
Figure 12(b), we always used the same number of nodes (81),
but varied only the number of cores, so we chose the smallest
matrix size for which benchmarks were able to obtain the best
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Fig. 11.  Weak Scalability of the Cholesky Factorization, starting from

N=13,600 for 8 cores (Griffon platform).

performances (120,020 x 120, 020).

The figure shows that, for a fixed matrix size, the perfor-
mances of both tiled factorization implementation (DAGuUE
and DSBP) scale almost linearly. Because the same matrix
is distributed on an increasing number of nodes, the ratio
between computations and communications decreases with the
number of nodes. As a consequence, the efficiency of the
benchmark decreases when the number of cores increases.
ScaLAPACK seems to suffer more from this effect, and is
consequently unable to continue scaling after 512 cores for
this matrix size.

Figure 12(b) illustrates that the DAGuUE and DSBP ap-
proaches are best fitted for clusters with many cores. We were
able to run on a larger matrix because even at 2 cores per node,
the whole memory of the 81 nodes is available. As shown
in [15], DSBP data representation enables it to outperform
ScalLAPACK. Because DAGUE is designed as a hybrid system,
it scales linearly with the number of cores, as long as enough
parallelism enables to feed all the threads. At 2 cores per node,
the ad-hoc data representation of DSBP is more beneficial than
the scaling provided by the hybrid and more generic approach
of DAGuE. However, for larger core counts per node, the
dynamic scheduling of DAGuE exhibits a better use of the
local computing resources, allowing it to surpass DSBP.

6) Generality of DAGuE: Because the existence of DSBP
gives a comparison point against a similar tiled factoriza-
tion algorithm, but using a static scheduling, we mostly
focused our results on the Cholesky factorization. However,
the DAGuE framework has also been used to implement two
other well known Linear Algebra factorization algorithms: the
tiled version of QR [23] and the tiled version of LU [24].
To demonstrate the generality and applicability of the DAGUE
framework, the Table I presents early results obtained with
those different algorithms at large scale on the Kraken XTS5
machine of the University of Tennessee and Oak Ridge Na-
tional Laboratory. Studying these algorithms is outside the
scope of this paper, however the full study may be found
in [25].

Zhttp://www.nics.tennessee.edu/computing-resources/kraken
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Fig. 12.

QR LU Cholesky
Number of cores 5,808 3,072 3,072
Size of the problem 633,6002 | 454,000% | 454,0002
Time of execution 8,039s 3,348s 2,013s
Efficiency 69.8% 58.3% 48.5%
(% theoretical peak)

TABLE I

LARGEST RUN AND EFFICIENCY OF OTHER APPLICATIONS WRITTEN
USING THE DAGUE FRAMEWORK (KRAKEN XT5)

V. CONCLUSION

With the emergence of massively multicore architectures,
the classical approach based on MPI SPMD programming
model tends to become inefficient. Problems with memory
bandwidth, latency and cache fragmentation will, therefore,
tend to become more severe, resulting in communication
imbalance. Furthermore, network bandwidth (between parallel
processors) and latency are improving, but at significantly
different rates than the increase of operations per second
performed by the CPU. Specificaly, network bandwidth and
latency improve by 26%/year and 15%/year respectively,
while processing speed increases by 59%/year. Therefore,
the shift in algorithm properties, from computation-bound
toward communication-bound is expected to become even
more evident in the near future. This is demonstrated by our
experiments by the fact that ScaLAPACK, a very efficient,
but 20 year old software package, underperforms on modern
architectures. The DAGuE engine proposed in this paper
tackles this problem by proposing a generic DAG engine to
express task dependencies at a finer granularity. By specificaly
targeting clusters of multi-cores, with a hybrid programming
model mixing explicit message passing and multi-threaded
parallelism DAGuE automatically extracts more asynchrony
from the algorithms, and therefore brings the application
performance closer to the physical peak. Moreover, algorithms
expressed as DAGs have the potential to alleviate the user
from focusing on the architectural issues, while allowing the
engine to extract the best performance from the underlying
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architecture.

In this paper, the DAGuE engine performance has been
investigated using synthetic benchmarks, underlining a very
good efficiency from a task granularity of a few microseconds.
The Cholesky factorization has been implemented using the
JDF representation to demonstrate the performance of the
system on a realistic workload. The performance of this
algorithm has been compared to the classical approach for
distributed systems programming, represented by the Cholesky
ScaLAPACK algorithm, and a similar optimized version of
the tiled Cholesky algorithm called DSBP. The DAG/Tiled
algorithm approach clearly outperforms ScaLAPACK, both in
terms of scalability and performance, with an efficiency almost
doubled in certain instances. Besides being generic, because
it benefits from more asynchrony from its dynamic and cache
aware scheduling, in most cases the DAGuE engine compares
favorably in terms of performance against the Cholesky spe-
cific DSBP tiled algorithm implementation.

Some of the experimental results suggest that even more
performance could be achieved with a better handling of col-
lective communications. Especially at small matrix sizes, the
ratio between the volume of communications from the source
of a broadcast and the amount of avaliable computations to
overlap it is not always sufficient. Expressing the collective
communication as a JDF task is a very elegant and promising
way of allowing asynchronous progress of the communica-
tions. Features such as this will be investigated in our future
work. While solving linear systems is of extreme importance
to the community, other families of important algorithms can
benefit from DAGuUE, such as stencil algorithms, sparse linear
algebra, FFT, etc. We are hopeful that the DAGuE engine can
provide similar performance improvement for those types of
problems as it did for dense linear algebra.
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