
Self-adapting Numerical Software and Automatic Tuning of
Heuristics∗

Jack Dongarra, Victor Eijkhout†

Abstract

Self-Adapting Numerical Software (SANS) systems aim to bridge the knowledge gap that exists betweenthe
expertise of domain scientists, and the know-how that is needed to fulfill efficiently their computational de-
mands. This know-how extends to algorith choice, computational grid utilization, and use of properly opti-
mized kernels. ASANS system is a piece of meta software that mediates between the application program and
the computational platform so that application scientists– with disparate levels of knowledge of algorithmic
and programmatic complexities of the underlying numericalsoftware – can easily realize numerical solvers and
efficiently solve their problem.

The main component of aSANS system is an Intelligent Agent that automates method selection based on data,
algorithm and system attributes. The IA uses heuristics to make its decisions. In this paper we explain how the
heuristics of the IA can be tuned over time by redundant testing and using the nature of many applications.

1 Introduction

In numerous technologically important areas, such as aerodynamics (vehicle design), electrodynamics (semi-
conductor device design), magnetohydrodynamics (fusion energy device design), and porous media (petroleum
recovery), production runs on expensive, high-end systemslast for hours or days, and a major portion of the
execution time is usually spent inside of numerical routines, such as for the solution of large-scale nonlinear
and linear systems that derive from discretized systems of nonlinear partial differential equations. These
numerical parts of the code can contain a large number of tuning parameters, the choice of which greatly
influences the efficiency of the total code, or can even make the difference between obtaining a solution and
obtaining none.

Such numerical concerns, however, areartifactual from the perspective of the scientific and engineering
users, who are usually more concerned with modeling and discretization issues. The classic response to nu-
merics was to encode the requisite mathematical, algorithmic and programming expertise into libraries that
could be easily reused by a broad spectrum of domain scientists. However, in high-performance computing
this solution is no longer sufficient. There is typically more than one algorithm for the stated purpose, and
since several levels of algorithms are needed in a large-scale application; the different algorithms can have
interlocking parameter settings, and the availability of parallel computing platforms influences algorithmic
decisions. Since the difference in performance between an optimal choice of algorithm and hardware, and a
less than optimal one, can span orders of magnitude, it is unfortunate that selecting the right solution strategy
requires specialized knowledge of both numerical analysisand of computing platform characteristics. Our
SANS system aims to assist the application user to navigate this maze of computational possibilities.

∗ This work was funded in part by the Los Alamos Computer Science Institute through the subcontract # R71700J-29200099
from Rice University.
† Innovative Computing Laboratory, University of Tennessee, Knoxville TN 37996, USA

1



This discrepancy in expertises can of course be bridged withmanpower based solution: a large enough
project can afford to hire a post-doc from computational science, or have a post-doc of its own cross-train in
computational science. We believe, however, that it is possible have meta-software – software operating on
software – to deliver as good a solution, without the wasted manpower.Self-adapting Numerical Software
(SANS) systems have several levels on which they automate the computational choices for the application
scientist.

1.1 Components of a SANS system

We will now describe the various aspects of aSANSsystem; we will go into details in the following sections.
A SANS system comprises the following:

• An Intelligent Agentthat includes anautomated data analyzerto uncover necessary information about
logical and numerical structure of the user’s data,a data modelfor expressing this information as
structured metadata, and aself-adapting decision enginethat can combine this problem metadata with
other information (e.g. about past performance of the system) in order to choose the best library and
algorithmic strategy for solving the current problem at hand;

• A history databasethat not only records all the information that the intelligent component creates or
acquires, but also all the data (e.g., algorithm, hardware,or performance related) that each interaction
with a numerical routine produces;

• A system componentthat provides the interface to the available computationalresources (whether on
a desktop, in a cluster or on a Grid), combining the decision of the intelligent component with both
historical information and its own knowledge of available resources in order to schedule the given
problem for execution;

• A metadata vocabularythat expresses properties of the user data and of performance profiles, and
that will be used to build the performance history database.By considering this asbehavioural meta-
data, we are led tointelligent software componentsas an extension of the CCA [1, 11] framework.
The metadata associated with user input makes it possible for the user to pass various degrees of in-
formation about the problem to be solved. In the cases where the user passes little information, the
Intelligent Agent uses heuristics to uncover as much of thisinformation as is possible.

• One or moreprototype libraries, for instance for sparse matrix computations, that accept informa-
tion about the structure of the user’s data in order to optimize for execution on different hardware
platforms.

One of the more interesting aspects of aSANS system is that it will gradually increase its intelligence.To
this end, the IA needs to tune its heuristics, and build new ones over time. In this article we will outline
various approaches that can be taken to this end.

1.2 Further outline of this paper

We start off with a brief inventory of earlier research into adaptive systems in section 2. Section 3 further
describes the metadata that is used internally and externally to store information about problems and al-
gorithms. In section 4 we will go into further details on the Intelligent Agent, in particular describing the
heuristic building process. Finally, in section 5 we brieflydescribe the system components of aSANSsystem.

2 Related Work

We note the following examples of earlier research into numerical poly-algorithms [22] and adaptive nu-
merical software, focusing mainly on how our proposed research differs from, or often goes beyond, earlier
approaches.

2



• Brewer [6] and Sussman [24] find ana priori model, accurately predicting runtime of their algorithms,
for which they tune the parameters by measuring specific runs. By contrast, in our application no
actual prediction of runtime is possible; we can only weightoptions against each other as more or less
likely to solve the problem faster. Also, they have only a very finite number of algorithms to choose
from, whereas our search space is for all practical purposesinfinite.

• ATLAS [26] and Sparsity [18] optimize the dense and sparse BLAS [19], respectively. ATLAS relies
on a one-time expensive installation, after which its use atruntime engenders no overhead. Sparsity
has a runtime component that needs to be amortized, for instance over multiple systems with identical
structure. These packages, and in particular ATLAS, are to alarge extent independent of the nature of
the user data, so no runtime decisions are needed.

• The LINSOL package of Weiss et al. [25] includes a poly-algorithm that picks one among a small
number of iterative solvers through backtracking. No analysis of the linear system is performed prior
to the iteration process; all decision making is done duringthe iteration and based on tracking the
error norm. Also, any backtracking is only through the spaceof iterative methods; no ordering of
preconditioners is attempted.

• LSA [14, 20] is a project for componentizing linear solver software into a problem solving environ-
ment. Its stated goal is a visually programmed testbed, rather than an adaptive, intelligent, solver,
although there is mention of integrating Case-Based Reasoning for some intelligent assistance.

• Houstis et al. [15] consider the problem of building a ‘recommender system’ out of a database of
performance results. As a case study of their PYTHIA II system they consider solving PDEs with
PELLPACK. However, their choices in linear system solvers are extremely limited.

• Some compilers already make use of trace data about previousexecutions in making decisions about
compile-time optimization for code generation. Our approach extends this to both algorithmic choices
and to runtime optimizations.

3 Metadata and user interaction

The operations typically performed by traditional libraries are on data that has been abstracted from the
original problem. For instance, one may solve a linear system in order to solve a system of ODEs. However,
the fact that the linear system comes from ODEs is lost once the library receives the matrix and right hand
side. By introducing metadata, we gain the facility of annotating problem data with information that is
typically lost, but which may inform a decision making process. A SANS system will have the facility for
the user to pass such metadata explicitly in order to guide the intelligent library. However, one needs to
design heuristics for uncovering such lost data, taking theburden completely off the user.

3.1 Types of metadata

The metadata passed by the user can not only be of varying levels of detail and sophistication, it can also lie
on various points of a scale between purely numerical specification on the one extreme, and user application
terms on the other. The former corresponds to the traditional parameter-passing approach of numerical
libraries: users who are well-versed in numerics can express guidelines regarding the method to be used.
However, most users are not knowledgeable about numerics; they can at most be expected to have expert
knowledge of their application area. By building in a – heuristic – translation from application domain
concepts to numerical concepts we allow the user to annotatethe data in problem-native terms, while still
assisting theSANS system in decision making.

3



3.2 Usage modes of a SANS system

SANS systems can be employed in various ways, depending for instance on the level of expertise of the
application user, and on the way the system is called from theapplication code.

• For a non-expert user, aSANS system acts like an expert system, fully taking the burden offinding the
best solver off the user’s hands. In this scenario, the user knows little or nothing about the problem
– or is perhaps unable to formulate and pass on such information – and leaves it up to the intelligent
software to analyze structural and numerical properties ofthe problem data.

• Users willing and able to supply information about their problem data can benefit from aSANSsystem
in two ways. Firstly, decisions that are made heuristicallyby the system in expert mode can now be
put on firmer ground by the system interrogating the user or the user passing on the information in the
call. Secondly, users themselves can search for appropriate solution methods by using the system in
‘testbed’ mode.

• Finally, expert users, who know by what method they want to solve their problem, can benefit from
a SANS system in that it offers a simplified and unified interface to the underlying libraries. Even
then, the system offer advantages over the straightforwarduse of existing libraries in that it can sup-
ply primitives that are optimized for the available hardware, and indeed, choose the best available
hardware.

4 The SaNS Agent

4.1 The Intelligent Component

The Intelligent Component of aSANS system is the software that accepts the user data and performs a
numerical and structural analysis on it to determine what feasible algorithms and data structures for the
user problem are. We allow the users to annotate their problem data with ‘metadata’ (section 3), but in the
most general case the Intelligent Component will do this by means of automated analysis (section 4.2).
Moreover, any rules used in analyzing the user data and determining solution strategies are subject to tuning
(section 4.3) based on performance data (section 4.4) gained from solving the problems. Below we present
each of these aspects of theSANS agent in turn.

4.2 Automated analysis of problem data

Users making a request of aSANS system pass to it both data and an operation to be performed onthe
data. The data can be stored in any of a number of formats, and the intended operation can be expressed
in a very global sense (‘solve this linear system’) or with more detail (‘solve this system by an iterative
method, using an additive Schwarz preconditioner’). The fewer such details the user specifies, the more the
SANS will have to determine the appropriate algorithm, computational kernels, and computing platform.
This determination can be done with user guidance, or fully automated. Thus, a major component of aSANS

system is an intelligence component that performs various tests to determine the nature of the input data,
and makes choices accordingly.

Some of these tests are simple and give an unambiguous answer(‘is this matrix symmetric’), others are
simple but have an answer that involves a tuning parameter (‘is this matrix sparse’); still others are not
simple at all but may involve considerable computation (‘isthis matrix positive definite’). For the tests with
an answer on a continuous scale, the appropriateness of certain algorithms as a function of the tested value
can only be preprogrammed to a limited extent. Here the self-adaptivity of the system comes into play:
the intelligence component will consult the history database of previous runs in judging the match between
algorithms and test values, and after the problem has been solved, data reflecting this run will be added to
the database.

4



4.3 Self-Tuning Rules for Software Adaptation

The Intelligent Component can be characterized as self-tuning in the following sense: The automated anal-
ysis of problem data concerns both questions that can be settled quickly and decisively, and ones that can
not be settled decisively, or only at prohibitive cost. For the latter category we will use heuristic algorithms.
Such algorithms typically involve a weighing of options, that is, parameters that need to be tuned over time
by the experience gained from problem runs. Since we record performance data in the history database (sec-
tion 4.4) of theSANS Agent, we have a mechanism to provide feedback for the adaptation of the analysis
rules used by the Intelligent Component, thus leading to a gradual increase in its intelligence.

4.4 History database

We can gather statistics during the actual problem solving process on a number of levels. There are tools for
gathering hardware statistics, such as PAPI [7]. The vocabulary of statistics is also relatively well established
in this case.

For the algorithmic level there is no standardization of this vocabulary. In the case of systems solving the
obvious measure is the time to solution. However, this time is obviously influenced by hardware considera-
tions (did the problem fit in memory or was page swapping a substantial part of the solution time) so these
may need to be recorded too. In iterative methods there is thenumber of iterations to record, but more detail
is obtained if we store the full convergence history. In fact, even more informative is storing the convergence
history of the individual Ritz values. This of course requires a solver package (such as Petsc [2]) that allows
such sophisticated iteration monitors to be installed.

4.5 Heuristic building

We may view heuristics as a mapping from the space of problem properties to the space of possible algo-
rithms and algorithm parameters. For each input, this mapping can yield either a specific output, or several
outputs with a plausibility ranking; if one method fails, one can fall back one the next ranked.

Heuristics can be based on a single problem parameter, wherereaching a certain value triggers a switch
over from method to another, or a related variant of it. Such aheuristic can be discovered by performing
statistical analysis, correlating a range of the parameteragainst a range of performance results. For this to
be possible, preferably we need performance results on a sequence of problems where only the parameter
under investigation varies. There are several ways in whichuch an analysis is possible.

• We can, given enough time, for instance during a setup phase of the system, run exhaustive tests,
where a collection of test matrices is subjected to every available method.

• In a production system with only modest time criticality we can occasionally let a system be solved by
two methods that only differ in one variable. Note that, given the right software setup, such redundant
solving need not come at a 100% overhead cost. For instance, it was shown in [3] how many iterative
methods have the same structure, so in running two methods side-by-side their communication stages
can be combined, largely eliminating the communication cost of the second method. Even on a single
processor, combining two methods can be efficient due to cache effects when a matrix that is operating
on two vectors need not be reloaded for the second vector.

• In time-dependent problems and nonlinear solvers linear system occur that are of a gradually evolving
nature. This also gives data from which statistical correlations can be harvested.

Heuristics based on multiple problem parameters are not so intuitively straightforward to construct, but the
statistical techniques sketched above will still hold. However, since the method parameters usually vary
discretely rather than continuously, the performance datastored will likewise be coarse grained. Finding

5



correlations in a multi-dimensional space then requires more confirmation before we trust a thusly tuned
heuristic.

5 System components

5.1 Scheduler

The System Component of theSANS agent manages the different available computation resources (hard-
ware and software), which in today’s environment can range from a single workstation, to a cluster, to a
Computational Grid. This means that after the intelligent component has analyzed the user’s data regarding
its structural and numerical properties the system component will take the user data, the metadata generated
by the intelligent component, and the recommendations regarding algorithms it has made, and based on its
knowledge of available resources farm the problem out to a chosen computational server and a software
library implemented on that server. Eventually the resultsare returned to the user. Empirical data is also
extracted from the run and inserted into the database; see section 4.4.

However, this process is not a one-way street. The intelligent component and system component can actually
engage in a dialogue as they weigh preferred algorithms against, for instance, network conditions that would
make the available implementation of the preferred algorithm less computationally feasible.

Part of the System Component is scheduling operations and querying network resources. Software for this
part of aSANS system already exists, in the Netsolve [8, 10, 9], GrADS [4, 21], and LFC [23] packages.

5.2 Libraries

Automation of the process of architecture-dependent tuning of numerical kernels can replace the current
hand-tuning process with a semiautomated search procedure. Current limited prototypes for dense matrix-
multiplication (ATLAS [26] and PHIPAC [5]) sparse matrix-vector-multiplication (Sparsity [17, 16], and
FFTs (FFTW [13, 12]) show that we can frequently do as well as or even better than hand-tuned vendor
code on the kernels attempted.

Current projects use a hand-writtensearch-directed code generator(SDCG) to produce many different C
implementations of, say, matrix-multiplication, which are all run on each architecture, and the fastest one
selected. Simple performance models are used to limit the search space of implementations to generate and
time. Since C is generated very machine specific optimizations like instruction selection can be left to the
compiler. This approach can be extended to a much wider rangeof computational kernels by using compiler
technology to automate the production of these SDCGs.

References

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. C. McInnes, S. Parker, and B. Smolinski.
Toward a common component architecture for high-performance scientific computing. InProceedings
of High Performance Distributed Computing, pages 115–124, 1999.

[2] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of
parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Lang-
tangen, editors,Modern Software Tools in Scientific Computing, pages 163–202. Birkhauser Press,
1997.

[3] Richard Barrett, Michael Berry, Jack Dongarra, Victor Eijkhout, and Charles Romine. Algorithmic
bombardment for the iterative solution of linear systems: apoly-iterative approach.J. Comp. Appl.
Math., 74:91–109, 1996.

6



[4] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.Gannon, L. Johnsson, K. Kennedy,
C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R.Wolski. The GrADS Project: Software
Support for High-Level Grid Application Development.International Journal of High Performance
Applications and Supercomputing, 15(4):327–344, Winter 2001.

[5] J. Bilmes, K. Asanović, C.W. Chin, and J. Demmel. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings of the
International Conference on Supercomputing, Vienna, Austria, July 1997. ACM SIGARC. see
http://www.icsi.berkeley.edu/˜bilmes/phipac .

[6] E.A. Brewer. High-level optimization via automated statistical modeling. InProceedings of Principles
and Practice of Parallel Programming, pages 80–91, 1995.

[7] S. Browne, J Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming interface for per-
formance evaluation on modern processors.International Journal of High Performance Computing
Applications, 14:189–204, Fall 2000.

[8] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Prob-
lems. The International Journal of Supercomputer Applications and High Performance Computing,
1997.

[9] H. Casanova and J. Dongarra. Applying netsolve’s network enabled server.IEEE Computational
Science & Engineering, 5:57–66, 1998.

[10] H. Casanova, MyungHo Kim, James S. Plank, and Jack Dongarra. Adaptive scheduling for task farm-
ing with grid middleware.International Journal of High Performance Computing, 13:231–240, 1999.

[11] Common Component Architecture Forum. seewww.cca-forum.org .
[12] Matteo Frigo. A fast fourier transform compiler. InProceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, Atlanta, Georgia, May 1999.
[13] Matteo Frigo and Stephen Johnson. Fftw: An adaptive software architecture for the fft. InProceedings

of the International Conference on Acoustics, Speech, and Signal Processing, Seattle, Washington,
May 1998.

[14] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman, F. Breg, S. Diwan,
and M. Govindaraju. Component architectures for distributed scientific problem solving.IEEE CS&E
Magazine on Languages for Computational Science and Engineering. to appear.

[15] E.N. Houstis, V.S. Verykios, A.C. Catlin, N. Ramakrishnan, and J.R. Rice. PYTHIA II: A knowl-
edge/database system for testing and recommending scientific software, 2000. to appear.

[16] Eun-Jin Im.Automatic Optimization of Sparse Matrix - Vector Multiplication. PhD thesis, University
of California at Berkeley, May 2000. To Appear.

[17] Eun-Jin Im and Katherine Yelick. Optimizing sparse matrix vector multiplication on SMPs. InNinth
SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, TX, March 1999.

[18] Eun-Jin Im and Katherine Yelick. Optimizing sparse matrix computations for register reuse in SPAR-
SITY. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S. Renner, and C.J. Kenneth
Tan, editors,Computational Science – ICCS 2001. International Conference, San Francisco, CA, USA,
May 2001, Proceedings, Part I., pages 127–136. Springer Verlag, 2001.

[19] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for FORTRAN
usage.Transactions on Mathematical Software, 5:308–323, 1979.

[20] http://www.extreme.indiana.edu/pseware/LSA/LSAhome.html.
[21] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhiyar. Numerical libraries

and the grid: The GrADS experiments with scalapack. Technical Report ut-cs-01-460, University of
Tennessee, Computer Science Department, 2001.

[22] J.R. Rice. On the construction of poly-algorithms for automatic numerical analysis. InInteractive
Systems for Experimental Applied Mathematics. M. Klerer and J.Reinfelds, pages 301–313. Academic
Press, 1968.

7



[23] Kenneth J. Roche and Jack J. Dongarra. Deploying parallel numerical library routines to cluster com-
puting in a self adapting fashion, 2002. Submitted.

[24] A. Sussman. Model-driven mapping onto distributed memory parallel computers. InSupercomputing
’92, Minneapolis, MN, pages 818–829. IEEE Computer Society Press, 1992.

[25] Rüdiger Weiss, Hartmut Höfner, and Willi Schönauer. LINSOL (LINear SOLver) – description and
user’s guide for the parallelized version. Technical Report 61-95, University of Karlsruhe, 1995.

[26] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.Automated empirical optimizations of software
and the ATLAS project.Parallel Computing, 27(1–2):3–35, January 2001.

8


