
J. Parallel Distrib. Comput. 69 (2009) 410–416
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Algorithm-based fault tolerance applied to high performance computing
George Bosilca a, Rémi Delmas a, Jack Dongarra a,∗, Julien Langou b
a Department of Electrical Engineering and Computer Science, University of Tennessee, United States
b Department of Mathematical and Statistical Sciences, University of Colorado Denver, United States

a r t i c l e i n f o

Article history:
Received 20 June 2008
Accepted 11 December 2008
Available online 31 December 2008

Keywords:
Fault tolerance
Linear algebra
High performance computing

a b s t r a c t

We present a new approach to fault tolerance for High Performance Computing system. Our approach is
based on a careful adaptation of the Algorithm-Based Fault Tolerance technique [K. Huang, J. Abraham,
Algorithm-based fault tolerance for matrix operations, IEEE Transactions on Computers (Spec. Issue
Reliable & Fault-Tolerant Comp.) 33 (1984) 518–528] to the need of parallel distributed computation.
We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-
flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault-
tolerant matrix–matrix multiplication subroutine and we propose some models to predict its running
time. Our parallel fault-tolerant matrix–matrix multiplication scores 1.4 TFLOPS on 484 processors
(cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened.
This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest
failure-free implementation. We predict (and have observed) that, as we increase the processor count,
the overhead of the fault tolerance drops significantly.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Much research has been conducted into the checkpointing of
message passing applications [5]. The earlier project proposing
checkpoint/restart facilities for a parallel application based on MPI
was CoCheck [30] and some of the most current and widely used
systems are LAM/MPI [6], MPICH-V/V2/V3 [5], CHARM++ [8] and
Open MPI [4]. The foundation for all of these projects is that the
systemdoes not force theMPI application developers to handle the
failures themselves, i.e., the underlying system, be it the Operating
System or the MPI library itself, is responsible for failure detection
and application recovery. The user of the system is not directly
burdened with this at the MPI API layer.
System-level checkpointing in parallel and distributed comput-

ing settings has been studied extensively. The issue of coordinating
checkpoints to define a consistent recovery line has received the
attention of scores of papers, ably summarized in the survey paper
of Elnozahy et al. [12]. Nearly all implementations of checkpointing
(e.g. [1,7,11,13,19,20,23,25,27,29,30]) are based on globally coordi-
nated checkpoints, stored to a shared stable storage. The reason is
that system-level checkpointers are complex pieces of code, and
therefore real implementations typically keep the synchronization

∗ Corresponding address: Department of Electrical Engineering and Computer
Science, University of Tennessee 1122 Volunteer Blvd., Suite 203, 37996-3450
Knoxville, TN, United States.
E-mail address: dongarra@cs.utk.edu (J. Dongarra).

0743-7315/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2008.12.002
among checkpoints and processors simple [17]. While there are
various techniques to improve the performance of checkpointing
(again, see [12] for a summary), it is widely agreed upon that the
overhead of writing data to stable storage is the dominant cost.
Diskless Checkpointing has been studied in various guises

by a few researchers. As early as 1994, Silva et al. explored
the performance gains of storing complete checkpoints in the
memories of remote processors [28]. Kim et al. [24] presented
a similar idea of diskless checkpointing in 1994 as well. This
technique was subsequently revised for SIMD machines by
Chiueh [10]. More recently, diskless checkpointing of FFTs has
been studied in [15]. Evaluations of diskless and diskless/disk-
based hybrid systems have been performed by Vaidya [31]. Lu
presents a comparison between diskless checkpointing and disk
based checkpointing [21].
While these techniques can be effective in some specific cases,

overall, automatic application-oblivious checkpointing of message
passing applications do suffer fromscaling issues and in some cases
can incur considerable message passing performance penalties.
A relevant set-up of experimental conditions considers a

constant failure rate per processor. Therefore, as the number
of processors increases, the overall reliability of the system
decreases accordingly. Elnozahy and Plank [14] proved that, in
these conditions, checkpointing–restart is not a viable solution.
Since the failure rate of the system is increasing with the
number of processors, a scalable application requires its recovery
time to decrease as the number of processors increases. The
checkpoint–restart mechanism does not enjoy this property (at
best the cost for recovery is constant).

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:dongarra@cs.utk.edu
http://dx.doi.org/10.1016/j.jpdc.2008.12.002


G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416 411
Our contribution with respect to existing HPC fault-tolerant re-
search is to present amethodology to enrich existing linear algebra
kernels with fault tolerance capacity at a low computational cost.
We believe it is the first time that a technique is devised that en-
ables a fault-tolerant application to be able to reduce the fault tol-
erance overheadwhile the number of processors increases and the
problem size is kept constant. Moreover not only can our method
recover from process failures, it can also detect, locate and correct
‘‘bit-flip’’ errors in the output data. The cause of these errors (com-
munication error, software error, etc.) is not relevant to the overall
detection/location/correction process.
Algorithm-based fault tolerance (ABFT), originally developed by

Huang and Abraham [16], is a low-cost fault tolerance scheme to
detect and correct permanent and transient errors in certainmatrix
operations on systolic arrays. The key idea of the ABFT technique
is to encode the data at a higher level using checksum schemes
and redesign algorithms to operate on the encoded data. These
techniques and the flurry of papers that augmented them [2,3,
22,26] opened the door for jettisoning system-level techniques
and instead focused on high-performance fault tolerance of matrix
operations.
The present manuscript focuses on exposing a new technique

specific to linear algebra based on the ABFT approach from Huang
and Abraham [16]. Our contribution with respect to the original
work of Huang and Abraham is to extend ABFT to the parallel
distributed context. Huang and Abraham were concerned with
error detection, location and recovery in linear algebra operation.
Once a matrix–matrix multiplication is performed (for example),
then ABFT enables to recover from errors. This scenario is not
ideal for HPC where we want to be able to recover an errorless
environment immediately after a failure. The contribution is
therefore to create algorithms for which ABFT can be used on
the fly.
This manuscript focuses on obtaining an efficient fault-tolerant

matrix–matrix multiplication subroutine (PDGEMM). This applica-
tion does not respond well to memory exclusion techniques [18],
therefore standard checkpointing techniques perform poorly. Ma-
trix–matrix multiplication is a kernel of fundamental importance
to obtain efficient linear algebra subroutines. Our claim is that we
can encapsulate all the fault tolerance needed by the linear algebra
subroutines in ScaLAPACK in a fault-tolerant Basic Linear Algebra
Subroutines (BLAS).
The third contribution of this manuscript is the presentation of

model to predict the running time of our routines.
The fourth contribution of this manuscript is a software based

on FTMPI and some experimental results. Our parallel fault-
tolerant matrix–matrix multiplication scores 1.4 TFLOPS on 484
processors (cluster jacquard.nersc.gov) and returns a correct
result while one process failure has happened. This represents 65%
of the machine peak efficiency and less than 12% overhead with
respect to the fastest failure-free implementation.

2. A new approach for HPC fault tolerance

2.1. Additional processors to store redundant information

During a computation, our data is spread across different
processes. If one of these processes fails, we need an efficient
way to recover the lost part of the data. In that respect, we use
additional processes to store redundant information in a checksum
format. Checksums represent an efficient and memory-effective
way of supporting multiple failures.
If a vector of data x is spread across p processes where xi is held

by process i, then an additional process is added for the storage
of y such that y = a1x1 + · · · + apxp. (For the sake of simplicity,
we assume the size of x is constant on all the processes.) In case
of a single process failure, using the information in the additional
checksum process and the non-failed processes, the data on the
failed process can trivially be restored. (Assuming the ai are not
0.) This fault-tolerant mechanism is classically known as diskless
checkpointing and was first introduced by Plank et al. [24]. The
name diskless comes from the fact that checksums are stored on
additional processes as opposed to being stored on disks.
In order to support f failures, f additional processes are added

and f checksums are performed with the following linear relation
y1 = a11x1 + · · · + a1pxp,
...
yf = af 1x1 + · · · + afpxp.

A sufficient condition to recover from any f -failure set is that any
f -by-f submatrix of the f -by-pmatrix A is non-singular.
Checksums are traditionally performed in Galois Field arith-

metic. Another natural choice to encode floating-point numbers is
to use the floating-point arithmetic. Galois Field always guarantees
bit-by-bit accuracy. Floating-point arithmetic suffers from numer-
ical errors during the encoding and the recovery. However, cancel-
lation errors in the checksum are typically of the same order as the
ones arising in the numerical methods, therefore of no concern for
the quality of the final solution; additionally, the f -by-f recovery
submatrix is statistically guaranteed to be well conditioned if we
take the checkpoint matrix Awith random values [9].
The ABFT technique presented in this manuscript is based on a

floating-point checksum.

2.2. ABFT approaches to fault tolerance in FT-LA

In 1984, Huang and Abraham [16] proposed ABFT (Algorithm-
Based Fault Tolerance) to handle errors in numerical computation.
This section relies heavily on their idea. To illustrate the ABFT
technique, we consider two vectors x and y, spread among p
processes, where process i holds xi and yi. An additional checksum
process has been added to store the checksum xc = x1+· · ·+xp and
the checksum yc = y1+ · · ·+ yp. The checksums are performed in
floating-point arithmetic. Assume now that one wants to realize
z = x + y. This involves the local computation on process i,
i = 1, . . . , p: zi = xi+yi and the update of the checksum zc . Instead
of computing zc as z1 + · · · + zp, as proposed in Section 2.1, ABFT
simply performs zc = xc + yc . While the traditional checkpoint
method would require a global communication among the n
processes and an additional computational step, ABFT performs
a local operation (no communication involved) on an additional
process during the time the active processes perform the samekind
of operation. Therefore, to maintain the checksum of zc consistent
with the vector z, the penalty cost with respect to the non-fault-
tolerant case is an additional process.
The same idea applies to all linear algebra operations. For

example matrix–matrix multiplication, LU factorization, Cholesky
factorization or QR factorization (see [2,3,16,22,26]).
As an example, we have studied ABFT in the context of the

matrix–matrix multiplication. Assuming that A and B have been
checkpointed such that

AF =
(
A ACR
CTC A CTC ACR

)
and BF =

(
B BCR
CTC B CTC BCR

)
,

where CC and CR are the checksum matrices; then performing the
matrix–matrix multiplication(
A
CTC A

) (
B BCR

)
=

(
AB ABCR
CTC AB CTC ABCR

)
= (AB)F , (1)

we obtain the result (AB)F which is consistent, that is to say, it
verifies the same checkpoint relation as AF or BF . This consistency



412 G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416
Fig. 1. Algorithm-Based Fault-Tolerant DGEMM.
enables us to detect, localize and correct errors. In the context of
erasure, one has to be more careful since we want not only the
input and output matrices to be consistent, but we also want any
intermediate quantity to be consistent. Using the outer product
version of the matrix–matrix product (for k=1:n, Ck = Ck +
A:,kBk,: ; end), asCk is updated along the loop in k, the intermediate
Ck matrices are maintained consistently. Therefore a failure at any
time during the algorithm can be recovered (see Fig. 1).
If p2 processes are performing a matrix–matrix multiplication,

maintaining the checksum consistent requires (2p− 1) extra pro-
cesses. The cost with respect to a non-failure-tolerant application
occurs when the information of the matrix A is broadcasted along
the process rows. In this case, one extra processor needs to receive
the data. And vice versa for the matrix B: when the information of
the matrix B is broadcasted along the process columns, one extra
processor needs to receive the data. These are the only extra costs
for being fault tolerant. From this analysis,wededuce that themain
cost to enable ABFT in amatrix–matrixmultiplication is to dedicate
(2p − 1) processes over p2 for fault tolerance sake. Therefore, the
more the processors, the more advantageous the ABFT scheme!

3. Model

3.1. PBLAS PDGEMM

It is behind the scope of thismanuscript to describe every aspect
of parallelmatrix–matrixmultiplication, andwe refer the reader to
[32] for more information.
During a matrix–matrix multiplication, each block of A in the

current column (of size mloc ∗ nb) is broadcasted along the row
to all other processes. The same happens to B: each block in the
current row (of size nb ∗ nloc) is broadcasted along the columns.
After these two broadcasts, each process on the grid computes a
local dgemm. This step is repeated until thewhole A and Bmatrices
have been broadcasted to every process.
For the sake of simplicity, we consider that the matrices are

square, of size n-by-n, and distributed over a square grid of
√
p-

by-
√
p processes.

In SUMMA, we implement the broadcast as passing a message
around the logical ring that forms the row or column. In that case
the time complexity becomes

(
√
p− 1)

(
α +

n
√
p
β

)
+ (
√
p− 1)

(
α +

n
√
p
β

)
(2)

+ n
(
2n2

p
γ + α +

n
√
p
β + α +

n
√
p
β

)
(3)

+ (
√
p− 2)

(
α +

n
√
p
β

)
+ (
√
p− 2)

(
α +

n
√
p
β

)
(4)
+
2n3

p
γ (5)

=
2n2(n+ 1)

p
γ + 2(n+ 2

√
p− 3)

(
α +

n
√
p
β

)
(6)

where β is the inverse of the bandwidth, α is the latency and γ is
the inverse of the flop rate.
Eq. (2) is the time required to fill the pipe (that is the time for

the messages originating from A and B to reach the last process
in the row and in the column). The next term (3) is the time to
perform the sequential matrix–matrix multiplication and passing
the messages. Then, contribution (4) is the time for the final
messages to reach the end of the pipe. The last term is the time
for the final update at the node at the end of the pipe.
This complexity is then approximately

2n3

p
γ + 2(n+ 2

√
p− 3)

(
α +

n
√
p
β

)
(7)

and the estimated efficiency is

E(n, p) =
1

1+ O
(
p
n2

)
+ O

(√
p
n

) . (8)

We can see that the method is weakly scalable: if we increase
the number of processors while maintaining constant the memory
use per node (thus having p

n2
constant), this algorithm maintains

its efficiency constant.
In the remainder, we neglect the latency term (α) in the

communication cost.

3.2. ABFT PDGEMM (0 failure)

In this section, we derive a model for ABFT PDGEMM. If we
perform a traditional matrix–matrix multiplication, the result will
be a checkpointedmatrix (see Eq. (1)). In the outer-product variant
of the matrix–matrix multiplication algorithm, rank-nb updates
are applied to the global matrix C . Therefore, the checksum stays
consistent throughout the execution of the algorithm provided
that all the processes go at the same speed.
The last row of A (checksum) and the last column of B

(checksum) are sent exactly in the sameway as the rest of the data
(see Fig. 1).
When no failure occurs, the overhead of the fault tolerance are:

• The initial checksum. However, if we call ABFT BLAS functions
the ones after the other, we do not have to recompute the
checksum between each call. As a consequence, we do not
consider the cost of the initial checksum.



G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416 413
Table 1
Performance (GFLOPS/s/proc) of PBLAS PDGEMM, ABFT BLAS PDGEMM (0 failure), and ABFT BLAS PDGEMM (1 failure). The number without parenthesis is the experimental
result, while the number in between parenthesis corresponds to the model value. This is a weak scalability experiment with nloc = 3000. (See also Fig. 5.)

Performance per processor (GFLOPS/s/proc)
64 81 100 121 256 484

PBLAS PDGEMM 3.14 (3.09) 3.16 (3.09) 3.14 (3.10) 3.10 (3.10) 3.12 (3.12) 3.13 (3.13)
ABFTBLAS PDGEMM (0 failure) 2.43 (2.49) 2.51 (2.55) 2.56 (2.60) 2.62 (2.65) 2.74 (2.79) 2.86 (2.88)
ABFTBLAS PDGEMM (1 failure) 2.33 (2.40) 2.40 (2.46) 2.47 (2.52) 2.52 (2.53) 2.58 (2.63) 2.73 (2.74)

Cumul performance (GFLOPS/sec)
64 81 100 121 256 484

PBLAS PDGEMM 201 (198) 256 (251) 314 (310) 375 (376) 799 (798) 1515 (1513)
ABFTBLAS PDGEMM (0 failure) 156 (159) 203 (207) 256 (260) 317 (320) 701 (714) 1384 (1395)
ABFTBLAS PDGEMM (1 failure) 149 (154) 194 (200) 247 (252) 305 (306) 660 (672) 1321 (1327)
Table 2
Overhead of the fault tolerancewith respect to the non-failure-resilient application PBLAS PDGEMM. This is a weak scalability experiment with nloc = 3000. (See also Fig. 6.)

64 81 100 121 256 484

PBLAS PDGEMM 100.0 100.0 100.0 100.0 100.0 100.0
ABFTBLAS PDGEMM (0 failure) 129.2 125.9 122.7 118.3 113.9 109.4
ABFTBLAS PDGEMM (1 failure) 134.8 131.7 127.1 123.0 120.9 114.7
Fig. 2. Overhead between no fault and one fault in ABFT SUMMA.

• The computation of an (n + nloc)-by-n-by-(n + nloc)
matrix–matrixmultiplication, instead of n-by-n-by-n for a non-
fault-tolerant code.
• The broadcast which needs to be performed on q+ 1 processes
along the rows and p+ 1 processes along the columns, instead
of respectively p and q for a non-fault-tolerant matrix–matrix
multiplication.
Using Eq. (6), we can then write the complexity for ABFT

PDGEMMwith no fault:

2(n+ nloc)2n
p

γ + 2(n+ 2
√
p− 3)

(
n+ nloc
√
p

β

)
. (9)

The modification in the first term of the sum comes from the
fact that thematrix–matrix multiplication now involves n-by-(n+
nloc)matrices on the samenumber of processors. Themodification
in the second term shows that the pipeline is now longer than in
regular SUMMA.
Fig. 3. Data distribution in the ABFT BLAS framework for vectors andmatrices over
a 4-by-6 process grid.

3.3. ABFT PDGEMM (1 failure)

When one fault happens, the timeline is illustrated in Fig. 2 and
explained below.

• Tdetection: All non-failed processes must be notified when
a failure happens. Since processes are only notified when
attempting an MPI communication, odds are that at least one
process will be doing a full local dgemm before being notified.
So, basically, this overhead is more or less equal to the time of
one local dgemm.
• Trestart: FT-MPI must spawn a new process to replace the failed
one. This is a blocking operation and the time for this step
depends solely on the total number of processes involved in the
computation.
• Tpushdata: The non-failed processes must reach the same
consistent state. The time overhead consists in filling and
emptying the pipe once.
• Tchecksum: The last step in the recovery is to reconstruct the lost
data of the failed process. This cost is the cost of anmpi_reduce.



414 G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416
Fig. 4. Performance (GFLOPS/s/proc) of PBLAS PDGEMM (left) and ABFT BLAS PDGEMM with 0 failure (right). The solid lines represent model while the circles represent
experimental points.
Fig. 5. Performance (GFLOPS/s/proc) of PBLAS PDGEMM, ABFT BLAS PDGEMM (0
failure), and ABFT BLAS PDGEMM (1 failure). The solid lines represent model while
the circles represent experimental points. This is aweak scalability experimentwith
nloc = 3000. (See also Table 1.)

4. Experimental results

4.1. ABFT BLAS framework

A prototype framework ABFT BLAS has been designed and
implemented. The ABFT BLAS application relies on the FT-MPI
library for handling process failures at the middleware level. The
ABFT BLAS responsibilities is to (efficiently) recover the data lost
during a crash.
Vectors over processes are created and then destroyed. Several

operations over the vectors are possible: scalar product, norm,
vector addition, etc. Vectors are registered to the fault-tolerant
context. When a failure occurs, all data registered in the fault-
tolerant context is recovered and the application is continued. The
default encoding mode is diskless checkpointing with floating-
point arithmetic but an option is to perform Galois Field encoding
(although this rules out ABFT).
The same functionality have been implemented for dense

matrices. Dense matrices are spread on the processor in the 2D-
block cyclic format, and checksums can be performed by row, by
columns or both (see Fig. 3).
Fig. 6. Overhead of the fault tolerance with respect to the non-failure-resilient
application PBLAS PDGEMM. The plain curves correspond tomodelwhile the circles
correspond to experimental data. This is a weak scalability experiment with nloc =
3000. (See also Table 2.)

Regarding matrix and vector operations, available functionality
are matrix–vector products and several implementations of
matrix–matrix multiplications. One of the main features of the
ABFT BLAS library is that the user is able to stack fault-tolerant
parallel routines the ones on top of the others. The code looks like
a sequential code but the resulting application is parallel and fault
tolerant.

4.2. Experimental set-up

All runs where done on the jacquard.nersc.gov cluster,
from the National Energy Research Scientific Computing Center
(NERSC). This cluster is a 512-CPU Opteron cluster running a
Linux operating system. Each processor runs at a clock speed of
2.2 GHz and has a theoretical peak performance of 4.4 GFLOPS/s.
Measured peak (on a 3000-by-3000-by-3000 dgemm run) is
4.03 GFLOPS/s. The nodes are interconnected with a high-speed
InfiniBand network. The latency is 4.5 µs, while the bandwidth is
620 MB/s.
Below are more details on the experimental set-up:
• We have systematically used square processor grids.



G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416 415
(a) Performance (GFLOPS/s/proc). (b) Overhead with respect to PBLAS PDGEMM.

Fig. 7. Strong scalability of PBLAS PDGEMM and ABFT PDGEMM with 0 failure. On the left, performance for PBLAS PDGEMM (plain) and performance for ABFT PDGEMM
(dashed). On the right, overhead of ABFT PDGEMMwith respect to PBLAS PDGEMM.
• The blocksize for the algorithm is always 64.
• Process failure were performed manually. We introduced
an exit statement in the application for one arbitrary non-
checksum process. Although our application support failures
at any point in the execution (see Section 4.3), we find that
having a constant failure point was the most practical and
reproduceable approach for performance measurements.
• Whenwepresent results of ABFT PDGEMMona p-by-p grid, this
means that the total number of processors used is p2. Therefore
(p− 1)2 processors are used to process the data while (2p− 1)
are used to checkpoint the data.
• The performance model parameters are

flops rate: 3.75 GFLOPS/s bandwidth: 52.5 MBytes/s.

These two machine-dependent parameters and our models
(see Section 3) are enough to predict the running time for
PBLAS PDGEMM and ABFT BLAS PDGEMM (0 failure). To model
ABFT BLAS PDGEMM (1 failure), we also need the time for a
checkpoint (mpi_reduce) and the time for the FT-MPI library to
recover from a failure (see Section 3.3).

4.3. Stress test

In order to assess the robustness of our library, we have
designed the following stress test.We set up an infinite loopwhere,
at each loop, we initialize the data (A and B), checkpoint the data,
perform a matrix–matrix multiplication C ← AB, and check the
result with residual checking.
Residual checking consists in taking a random vector x and

checking that ‖Cx−A(Bx)‖/ (nε‖C‖‖x‖) is reasonably small. If this
test passes, then we have high confidence of the correctness of our
matrix–matrix multiplication routine.
During the execution, a process killer is activated. This process

killer kills randomly in time and in the location any process in the
application.
Our application have successfully returned from tens of

such failures. This testing not only stresses the matrix–matrix
multiplication subroutine but it also stresses the whole ABFT BLAS
library since failure can occur at any time.

4.4. Performance results

In Fig. 4, we present a weak scalability experiment. While
the number of processors increases from 64 (8-by-8) to 424
(22-by-22), we keep the local matrix size constant (nloc =
1000, . . . , 4000) and observe the performance for PBLAS PDGEMM
and ABFT BLAS PDGEMMwith no failure.
The first observation is that ourmodel performs verywell.With

only two parameters (β and γ ), we are able to predict the 48
experimental values within a few percents.
We observe that PBLAS PDGEMM is weakly scalable. That is

the performance is constant when we increase the number of
processors. We also observe that as the processor count increases,
the performance of ABFT PDGEMM increases.
In Fig. 5, Table 1, Fig. 6, and Table 2, we present the weak

scalability of our application when nloc is kept constant with
nloc = 3000.We present performance results for PBLAS PDGEMM,
ABFT BLAS PDGEMMwith 0 failure and ABFT BLAS PDGEMMwith 1
failure. We see that as the number of processors increases the cost
of the fault tolerance converges to 0.
The fact that matrix–matrix multiplication performs n3 opera-

tions enables us to hide a lot of n2 operations (for example check-
pointing) in the background. This renders weak scalability easily
feasible.
In Fig. 7, we present a strong scalability experiment. The right

graph assesses our claim. We see that for a fixed problem size,
when we increase the number of processors, the overhead of the
fault tolerance decreases to 0. We also observe that the problem
size is not relevant in terms of overhead, the overhead is only
governed by the number of processors. We do not know of any
other fault-tolerant scheme that possesses these two qualities.

References

[1] A. Agbaria, R. Friedman, Starfish: Fault-tolerant dynamic MPI programs on
clusters of workstations, in: 8th IEEE International Symposium on High
Performance Distributed Computing, 1999.

[2] P. Banerjee, J.A. Abraham, Bounds on algorithm-based fault tolerance in
multiple processor systems, IEEE Transactions on Computers 35 (4) (1986)
296–306.

[3] P. Banerjee, J.T. Rahmeh, C. Stunkel, V.S. Nair, K. Roy, V. Balasubramanian,
J.A. Abraham, Algorithm-based fault-tolerance on a hypercubemultiprocessor,
IEEE Transactions on Computers 35 (9) (1990) 1132–1145.

[4] A. Bouteiller, G. Bosilca, J. Dongarra, Redesigning the message logging model
for high performance, in: ISC 2008, International Supercomputing Conference,
Dresden, Germany, June 17–20, 2008.

[5] A. Bouteiller, P. Lemarinier, G. Krawezik, F. Cappello, Coordinated checkpoint
versusmessage log for fault tolerantMPI, in: Proceedings of Cluster 2003,Hong
Kong, December 2003.

[6] G. Burns, R. Daoud, J. Vaigl, LAM: An open cluster environment for MPI, in:
Proceedings of Supercomputing Symposium, 1994, pp. 379–386.



416 G. Bosilca et al. / J. Parallel Distrib. Comput. 69 (2009) 410–416
[7] J. Casas, et al. MIST: PVM with transparent migration and checkpointing, 3rd
Annual PVM Users’ Group Meeting, Pittsburgh, PA, 1995.

[8] Charm++ web site. http://charm.cs.uiuc.edu/u/ft/.
[9] Z. Chen, J. Dongarra, Condition numbers of Gaussian random matrices, SIAM
Journal on Matrix Analysis and Applications 27 (3) (2005) 603–620.

[10] T. Chiueh, P. Deng, Efficient checkpoint mechanisms for massively parallel
machines, in: 26th International Symposium on Fault-Tolerant Computing,
Sendai, June 1996.

[11] A. Clematis, V. Gianuzzi, CPVM—Extending PVM for consistent checkpointing,
in: 4th Euromicro Workshop on Parallel and Distributed Processing, Braga,
January 1996.

[12] E.N. Elnozahy, L. Alvisi, Y.-M.Wang, D.B. Johnson, A survey of rollback-recovery
protocols in message-passing systems, ACM Computing Surveys 34 (3) (2002)
375–408.

[13] E.N. Elnozahy, D.B. Johnson, W. Zwaenepoel, The performance of consistent
checkpointing, in: 11th Symposium on Reliable Distributed Systems, October
1992.

[14] E.N. Elnozahy, J.S. Plank, Checkpointing for peta-scale systems: A look into the
future of practical rollback-recovery, IEEE Transactions on Dependable and
Secure Computing 1 (2) (2004) 97–108.

[15] C. Engelmann, G.A. Geist, A diskless checkpointing algorithm for super-scale
architectures applied to the fast Fourier transform, in: Challenges of Large
Applications in Distributed Environments, 2003.

[16] K. Huang, J. Abraham, Algorithm-based fault tolerance for matrix operations,
IEEE Transactions on Computers (Spec. Issue Reliable & Fault-Tolerant Comp.)
33 (1984) 518–528.

[17] Y. Huang, Y.-M. Wang, Why optimistic message logging has not been used in
telecommunication systems, 1995.

[18] Y. Kim, J.S. Plank, J. Dongarra, Fault tolerant matrix operations for networks of
workstations using multiple checkpointing, in: High Performance Computing
on the Information Superhighway, HPC Asia’97, Seoul, Korea, 1997.

[19] J. Leon, A.L. Fisher, P. Steenkiste, Fail-safe PVM: A portable package for
distributed programming with transparent recovery, Technical Report CMU-
CS-93-124, Carnegie Mellon University, February 1993.

[20] W.-J. Li, J.-J. Tsay, Checkpointing message-passing interface (MPI) parallel
programs, in: Pacific Rim International Symposiumon Fault-Tolerant Systems,
December 1997.

[21] C.D. Lu, Scalable diskless checkpointing for large parallel systems, Ph.D.
Dissertation, University of Illinois at Urbana-Champaign, 2005.

[22] F.T. Luk, H. Park, An analysis of algorithm-based fault tolerance techniques,
Journal of Parallel and Distributed Computing 5 (1988) 172–184.

[23] V.K. Naik, S.P. Midkiff, J.E. Moreira, A checkpointing strategy for scalable
recovery on distributed parallel systems, in: SC97: High Performance
Networking and Computing, San Jose, CA, 1997.

[24] J.S. Plank, Y. Kim, J. Dongarra, Algorithm-based diskless checkpointing for
fault tolerant matrix operations, in: 25th International Symposium on Fault-
Tolerant Computing, Pasadena, CA, June 1995.

[25] J. Pruyne,M. Livny,Managing checkpoints for parallel programs, in:Workshop
on Job Scheduling Strategies for Parallel Processing, IPPS’96, 1996.

[26] A. Roy-Chowdhury, P. Banerjee, Algorithm-based fault location and recovery
for matrix computations, in: 24th International Symposium on Fault-Tolerant
Computing, Austin, TX, 1994.

[27] L.M. Silva, J.G. Silva, Global checkpoints for distributed programs, in: 11th
Symposium on Reliable Distributed Systems, Houston, TX, 1992.

[28] L.M. Silva, B. Veer, J.G. Silva, Checkpointing SPMD applications on transputer
networks, in: Scalable High Performance Computing Conference, Knoxville,
TN, May 1994.

[29] G. Stellner, Consistent checkpoints of PVM applications, in: First European
PVM User Group Meeting, Rome, Italy, 1994.

[30] G. Stellner, CoCheck: Checkpointing and process migration for MPI, in:
Proceedings of the 10th International Parallel Processing Symposium, IPPS’96,
Honolulu, Hawaii, April 1996.

[31] N.H. Vaidya, A case for two-level distributed recovery schemes, in: ACM
SIGMETRICS Conference onMeasurement andModeling of Computer Systems,
Ottawa, CA, May 1995.
[32] R.A. van de Geijn, J. Watts, SUMMA: Scalable universal matrix multiplication
algorithm, Concurrency: Practice and Experience 9 (4) (1997) 255–274.

George Bosilca is Research Assistant Professor at the Uni-
versity of Tennessee Knoxville. He received a B.Sc. degree
and a Ph.D. degree in Computer Science from Universite
Paris XI Orsay, France. His research interest is centered on
programming environment for high performance comput-
ing, fault tolerance and computer architecture.

Rémi Delmas obtained his Master degree from INSA
Toulouse (option: Applied Mathematics and Modeling),
a French engineering School. This article is based on his
Master Thesis done at ICL during Summer 05. Now Rémi is
enjoying the weather and the food of south-east of France
where he works for Thalès IS, an IT consulting company
belonging to the Thalès group.

Jack Dongarra holds an appointment as University Dis-
tinguished Professor of Computer Science in the Elec-
trical Engineering and Computer Science Department at
the University of Tennessee and holds the title of Distin-
guished Research Staff in the Computer Science andMath-
ematics Division at Oak Ridge National Laboratory (ORNL),
Turing Fellow in the Computer Science and Mathemat-
ics Schools at the University of Manchester, and an Ad-
junct Professor in the Computer Science Department at
Rice University. He specializes in numerical algorithms
in linear algebra, parallel computing, use of advanced-

computer architectures, programming methodology, and tools for parallel com-
puters. His research includes the development, testing and documentation of high
quality mathematical software. He has contributed to the design and implementa-
tion of the following open source software packages and systems: EISPACK, LIN-
PACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, AT-
LAS, Open-MPI, and PAPI. He has published approximately 200 articles, papers, re-
ports and technical memoranda and he is coauthor of several books. He is a Fel-
low of the AAAS, ACM, and the IEEE and a member of the National Academy of
Engineering.

Julien Langou is Assistant Professor at the University
of Colorado Denver. He received a B.Sc. degree in
Propulsion Engineering from École National Supérieure de
l’Aéronautique et de l’Espace (SUPAERO), France, and a
Ph.D. degree in applied mathematics from the National
Institute of Applied Sciences (INSA), France. His research
interest is in numerical linear algebra with application in
high-performance computing.

http://charm.cs.uiuc.edu/u/ft/

	Algorithm-based fault tolerance applied to high performance computing
	Introduction
	A new approach for HPC fault tolerance
	Additional processors to store redundant information
	ABFT approaches to fault tolerance in FT-LA

	Model
	PBLAS PDGEMM
	ABFT PDGEMM (0 failure)
	ABFT PDGEMM (1 failure)

	Experimental results
	ABFT BLAS framework
	Experimental set-up
	Stress test
	Performance results

	References


