
File: 740J 172401 . By:GC . Date:19:12:01 . Time:13:43 LOP8M. V8.B. Page 01:01
Codes: 4455 Signs: 1978 . Length: 58 pic 2 pts, 245 mm

Journal of Parallel and Distributed Computing 61, 1803�1826 (2001)

Telescoping Languages: A Strategy for Automatic
Generation of Scientific Problem-Solving

Systems from Annotated Libraries

Ken Kennedy, Bradley Broom, and Keith Cooper

Department of Computer Science, Rice University, 6100 South Main Street, Houston, Texas 77005-1892

Jack Dongarra

Computer Science Department, University of Tennessee, 1122 Volunteer Road,
Knoxville, Tennessee 37996-3450

Rob Fowler

Department of Computer Science, Rice University, 6100 South Main Street, Houston, Texas 77005-1892

Dennis Gannon

Computer Science Department, Indiana University, Bloomington, Indiana 47405-3475

Lennart Johnsson

Department of Computer Science, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-3475

and

John Mellor-Crummey and Linda Torczon

Department of Computer Science, Rice University, 6100 South Main Street, Houston, Texas 77005-1892

Received May 30, 2000; revised October 1, 2000; accepted November 15, 2000

As machines and programs have become more complex, the process of
programming applications that can exploit the power of high-performance
systems has become more difficult and correspondingly more labor-intensive.
This has substantially widened the software gap��the discrepancy between
the need for new software and the aggregate capacity of the workforce to
produce it. This problem has been compounded by the slow growth of
programming productivity, especially for high-performance programs, over
the past two decades. One way to bridge this gap is to make it possible for
end users to develop programs in high-level domain-specific programming
systems. In the past, a major impediment to the acceptance of such systems
has been the poor performance of the resulting applications. To address this
problem, we are developing a new compiler-based infrastructure, called

doi:10.1006�jpdc.2001.1724, available online at http:��www.idealibrary.com on

1803 0743-7315�01 �35.00

� 2001 Elsevier Science
All rights reserved.



File: 740J 172402 . By:GC . Date:19:12:01 . Time:13:43 LOP8M. V8.B. Page 01:01
Codes: 3845 Signs: 3241 . Length: 52 pic 10 pts, 222 mm

TeleGen, that will make it practical to construct efficient domain-specific
high-level languages from annotated component libraries. We call these
languages telescoping languages, because they can be nested within one
another. For programs written in telescoping languages, high performance
and reasonable compilation times can be achieved by exhaustively analyzing
the component libraries in advance to produce a language processor that
recognizes and optimizes library operations as primitives in the language. The
key to making this strategy practical is to keep compile times low by generat-
ing a custom compiler with extensive built-in knowledge of the underlying
libraries. The goal is to achieve compile times that are linearly proportional
to the size of the program presented by the user, rather than to the aggregate
size of that program plus the base libraries. � 2001 Elsevier Science

1. INTRODUCTION

As high-performance computing platforms continue to increase in complexity, the
performance achievable by applications is becoming much more sensitive to
program and data organization. Developers of scientific applications are thus facing
an increasingly daunting programming task. This is hampering the productivity of
scientific programmers and reducing the ability of the scientific rank and file to
effectively exploit high-end computing systems. Combined with a shortage of
application developers sophisticated enough to deal with the increasing complexity
of computing platforms, this has led to an effective crisis in high-performance-
software development. One way to address this problem is to make it easier for
scientists to solve problems by providing high-level programming systems that
enable scientists to rapidly develop new applications using the standard notations
of their problem domains and rely on sophisticated implementations of these
programming systems to ensure that applications achieve high performance.

Many high-level problem-solving environments exist today. Matlab [18] and
Mathematica [43] are standard tools for matrix computations and symbolic
analysis. Octave [14] is a high-level language originally intended for chemical
reactor design. EllPack [23] is a language for describing and solving elliptic partial
differential equations. However, most of these do not achieve acceptable perfor-
mance for complex, computation-intensive applications, especially if they entail
substantial programming in the package's scripting language. If we are to make
high-level problem-solving systems effective, applications developed using these
systems must be fast enough to obviate the need for recoding them in more conven-
tional programming languages such as Fortran 90, C, and C++.

1.1. Current Strategies

High-level problem-solving systems in use today are often constructed from
domain-specific libraries and flexible scripting systems. However, because existing
scripting languages are typically interpreted and treat libraries as black boxes, the
performance of such systems is inadequate for compute-intensive applications. Pre-
vious research [7, 9, 13] has shown that this problem can be ameliorated by trans-
lating the script to a conventional programming language and then compiling using

1804 KENNEDY ET AL.



whole-program analysis and optimization. The problem with this approach is that
compilation times are quite long��usually way out of proportion to the length of
the user's script.

An alternative strategy, pursued by the POOMA project [1], serves as a model
for some of the ideas we will explore in this effort. POOMA is based on a carefully
coded C++ library that implements distributed container classes and operations
that include overloaded arithmetic operators on these classes. Implementations of
overloaded arithmetic operators for container classes in POOMA exploit partial
evaluation performed during C++ template instantiation to generate inlined loops
that evaluate elementwise expressions on values in containers.

Unfortunately, POOMA suffers from two shortcomings. First, program compila-
tion times are quite long due to the time required for expansion of the program
representation, and other data structures, used by the template matching and
instantiation mechanisms. One large application implemented using POOMA takes
roughly an hour to compile on a 24-way parallel machine [19]. Second, POOMA
misses opportunities for improving run-time performance because the code that
results from instantiating its templates is difficult, if not impossible, to optimize
effectively and its operator implementations cannot circumvent this difficulty by
directly encoding standard optimizations such as loop fusion and common
subexpression elimination.

1.2. The Telescoping Languages Strategy

To overcome these problems, we have devised a new strategy that we call
telescoping languages. This strategy calls for developers of component libraries to
augment library routines with specifications of high-level, domain-specific proper-
ties and optimizations that a compiler could not discover unaided. These annotated
libraries are then analyzed and optimized extensively. Finally, knowledge of the
properties of these optimized libraries is used to synthesize a fast and effective
domain-specific optimizer.

A goal of our effort is to synthesize implementations of applications that achieve
high performance without sacrificing architectural portability. This issue is critical
for our intended use of telescoping languages to develop large-scale applications for
computational ``grids''��collections of interconnected heterogeneous computing
platforms. Domain-specific problem-solving languages are attractive for this pur-
pose because language processors can exploit domain knowledge to tailor applica-
tion implementations to cope effectively with the complexities of distributed execu-
tion environments.

Preserving portability is a tall order because the usual way to gain performance
is by compiling for a specific target machine. In order to avoid implementing a code
generator for each new high-performance computing system, we will pursue two
approaches for achieving portable performance.

First, we plan to generate self-tuning applications by designing and compiling
libraries to produce implementations tailored to the properties of each target plat-
form. Cache-oblivious algorithms [35] do not need tuning for specific cache sizes
and we will use them in library routines where possible. In other cases, the

1805TELESCOPING LANGUAGES



generated implementations will be extensively tuned by running sample loops on
the target machine to find the best values for critical parameters, such as cache
blocking factors.

Second, to avoid the need for machine-specific code generators, our translators
will produce source code in standard languages that can be fed to each vendor's
optimizing compiler. To achieve high performance on each system, the library
analysis and preparation step will automatically test the compiler and the code it
generates for strengths and weaknesses. It will then generate source code that
exploits the strengths and avoids the weaknesses, to ensure that the vendor
compiler will yield code that achieves the best possible performance.

Once the library has been analyzed, machine-specific implementations can be
selected and integrated in a dynamic compilation pass just prior to execution, as
soon as the actual computing environment is known. In addition, library code can
reconfigure itself dynamically for better performance once the size and shape of the
data are known. This strategy has been adopted by the GrADS project [4, 26],
which is building a framework for execution of high-level Grid applications.

The unifying goals of these approaches are to reduce application compilation
time and generate portable codes that can achieve high-performance by investing
extra time in a library analysis and preparation phase, on the assumption that the
domain libraries will be recompiled far less often than the programs that invoke
them. By exhaustively exploring the implementation space for library modules in
advance, it will be possible to automatically build a powerful framework for trans-
forming and optimizing uses of library primitives. The preliminary analysis and
optimization pass may take hours, but it will be worth the cost if the libraries are
widely reused.

2. AN ILLUSTRATIVE EXAMPLE

Before describing the details of our proposed telescoping languages system, which
we call TeleGen, we illustrate how it will be used to build a domain-specific
problem-solving system. The process begins when application and library designers
decide to build a problem-solving environment based on a library of domain-
specific computational procedures. At first, they might use a command interpreter
for a scripting language that generates calls to individual modules in the library.
When this proves too slow for serious applications, the developers can employ
TeleGen to achieve higher performance by taking the following steps:

v The team first prepares the domain-specific library for use by TeleGen.
Ideally, any large, complex library routines should be decomposed into orthogonal,
lower level program units. This will improve the ability of TeleGen to compose
such units into efficient modules. To enable TeleGen to fully optimize programs
using library primitives, the library should be augmented with three kinds of infor-
mation: (1) a specification of high-level algebraic properties of library primitives
that can be used by TeleGen for reasoning about and restructuring programs, (2)
domain-specific, context-sensitive program transformations that replace sequences
of library calls with equivalent, but more efficient, sequences, and (3) sample calling
programs that illustrate the typical usage patterns for the library components.

1806 KENNEDY ET AL.



FIG. 1. Telescoping languages.

v In a separate step, the designers specify how the scripting language is to be
translated to the base language in which the library is implemented. This specifica-
tion will be used by a grammar-based translator-generating system. The resulting
script translation system will serve as a preprocessing step. If the designer wishes,
the scripting language may simply be the base language augmented by calls to the
domain-specific library, in which case this step can be skipped, but we will continue
referring to it as the scripting language and to programs written in it as scripts.

v The enhanced library is processed, perhaps for hours or days, by the
TeleGen translator generator. TeleGen may synthesize specialized versions of the
library routines that are tailored to a specific context in which they will be invoked.
Where opportunities exist, it may transform library primitives to tune them to a
particular target platform or synthesize new library primitives to replace a sequence
of library calls. Because of the machine-specific nature of optimized code, this trans-
lation step will need to be redone for each new target machine on which the
problem-solving system is to run. The result, a new translator, can be used to
compile a script using library calls into an extensively optimized program in the
base language that calls routines in the optimized library.

The resulting script compiler will incorporate three phases, illustrated in Fig. 1:
(1) script translation into a target language program (that may largely consist of
library calls), (2) high-level source-to-source optimization of the target language
program with the enhanced language compiler generated by TeleGen, and (3) com-
pilation of the resulting optimized target language program for the target machine.
The entire script-compilation process should be limited to a running time that is
commensurate with the length of the script, rather than with the complexity of the
routines invoked by that script. In other words, the user should not be surprised by
the amount of compilation time used on any particular script. On the other hand,
the code produced by the translation process is expected to yield far higher perfor-
mance because the optimizations will be based on deep knowledge of the library
semantics.

3. INTENDED APPLICATIONS

To illustrate the leverage offered by the TeleGen system, we describe several
application areas that illustrate some of the key issues and briefly discuss the
advantages of TeleGen.

1807TELESCOPING LANGUAGES



High-performance compilers for domain-specific languages. As mentioned earlier,
end users can rapidly develop programs in high-level domain-specific languages, but
a high-performance compiler is needed for the production use of such programs.
Although several groups have developed high-performance compilation systems for
Matlab programs [9, 13] by hand, the difficulty involved impedes the develop-
ment of similar compilation systems for other languages. TeleGen would facilitate
the widespread development of advanced compilation systems for domain-specific
languages by automating a large portion of the development of such compilers.

Generalized data distributions. One of the weaknesses of High Performance
Fortran (HPF) was the inflexibility of its built-in data distributions. If compilers
could be defined to use a standard distribution library interface, these compilers
would be able to incorporate new distributions programmed by users. For example,
a library for adaptive distributions based on space-filling (e.g., Hilbert) curves [33]
would be easy to add. By extensively precompiling such libraries, and by using
transformations specified by the library designer to guide the optimization process,
the overhead of using such a packaged library might be significantly reduced.

Abstract libraries for scientific calculation. Although abstract libraries for
scientific calculation greatly increase programmer productivity, the POOMA
library is one of the few that have been implemented with reasonably high perfor-
mance. The POOMA library provides sophisticated distributed container classes to
support scientific calculation. It provides multiple implementations for a variety of
container abstractions including distributed arrays, fields, and particles. POOMA
uses C++ expression templates [20, 38, 39] to rewrite arithmetic expressions on
container objects into inlined loop nests that perform elementwise operations on
each of the values in the containers.1 It should be straightforward to build a library
of POOMA-like data structures from which TeleGen can produce an optimized
translator that does most of the work of POOMA's expression templates.

A TeleGen-constructed translator has the potential for compiling faster and for
generating code that will achieve better runtime performance. Since compilation of
POOMA operators implemented using expression templates heavily exploits partial
evaluation in the C++ template instantiation process to generate custom inlined
code for each application of an operator to a container class, compilation of
POOMA programs can be very time-consuming. By exploiting information about
the operators gathered during the library analysis phase, a TeleGen-constructed
translator would be able to generate code for these primitives directly rather than
through the complex, round-about process of expression template instantiation.
Having knowledge about the semantics of POOMA operators would also enable a
TeleGen-constructed translator to generate better code. For instance, a TeleGen-
constructed translator could perform common-subexpression elimination or loop-
invariant code motion on a collection of POOMA operators. In other cases, a
TeleGen-constructed translator would be able to apply program transformations
such as loop fusion when synthesizing inlined code for a set of operators.
Transformations such as fusion might otherwise be difficult, if not impossible, to

1808 KENNEDY ET AL.

1 Recent work explores how to provide similar expression template functionality for Java using partial
evaluation [40].



perform after instantiating separate code for each operation due to loss of precision
when re-analyzing the generated code.

Grid computing. Grid computations consist of dynamically assembled, distributed
computations that are tied together by an application programmer's control script.
For example, NetSolve [8] uses an agent-based design to allow the script code,
which can be in Fortran, Matlab, Mathematica, or Java, to invoke solver library
components that are hosted on a set of remote servers. In such a system, the script
is the user's ``main'' program, written in terms of the high-level functionality
provided by the remote library components it invokes. The scripts tend to be small
programs that are often modified and reused in many different forms. Because the
``heavy lifting'' of the computation takes place within the remote component, it will
be critical for performance that the script invoke the best version of required library
components for the computation at hand and that it provide an optimal routing of
the data between the computationally intensive remote components. An annotated
library of remote components could be used to generate a system similar to
NetSolve, but with an intrinsic optimization strategy provided from the outset.

4. TELESCOPING LANGUAGES

The goal of the telescoping-languages approach is to automate the construction
of high-level problem-solving systems. The process takes as input a set of specially
constructed domain-specific libraries and produces a translator for a scripting
language into which the library components are integrated as primitive operations.
The important subgoals in this process are to achieve high performance and por-
tability of the application, without sacrificing the speed of the script compilation.
Based on the assumption that library analysis and preparation will occur far less
often than script compilation, we are willing to expend significant computation time
on library processing to achieve these goals.

To achieve high performance, we plan to use an interprocedural compilation of
the script along with the domain library components it invokes either directly or
indirectly. The effectiveness of this approach has been established for Matlab
programs by several projects [9, 13]. In addition, we plan to follow the POOMA
strategy and leverage specialized optimization strategies coded by the library
designer. Unfortunately, experience with these systems indicates that they lead to
unacceptably long compilation times (hours in some cases) because the whole
program, including all invoked libraries, must be compiled each time a new script
is processed.

The telescoping-language strategy, depicted in Fig. 1, shifts much of the cost of
these processes from script compilation time to a library analysis and preparation
phase that is done well in advance. The domain-specific library and its optimization
specifications are provided as input to the TeleGen translator generator, which
produces an enhanced base-language compiler, one that understands library entry
points and their execution properties as language primitives. In essence, this defines
a new problem-solving language consisting of the original base language plus the
domain library primitives. In cases where the eventual target machine and compiler

1809TELESCOPING LANGUAGES



is known, the library compilation process may precompile parts of the library for
the known target, a practice that will be discussed in Section 7, below.

This implementation strategy can be applied iteratively to several different levels
of libraries��hence the term ``telescoping languages.'' Once the extended compiler is
available, scripts can be translated into calls to the extended library and compiled
to efficient object code.

Although our strategy is for TeleGen to extensively analyze the library primitives
and automatically discover as many optimization strategies as possible, it will also
input and apply optimization specifications that cannot be (reasonably) deduced
automatically. Our intention is that these optimization specifications would be
developed primarily by the original library developer along with the library itself.
However, the performance specifications need not be stored in the same file(s)
as the library components they refer to, so an application developer could subsequently
supply TeleGen with additional optimization specifications (but no code) and
invoke it iteratively to produce an optimizer tailored for a very specific application
or problem domain. These additional optimization specifications could be easily
shared by a community of application developers.

4.1. Key Idea

A key to the success of the telescoping-languages approach is to automatically
incorporate knowledge about libraries into an efficient translator that optimizes
scripts when they are processed. To do this well, the system must extensively
analyze the library and the specifications provided about its operations. Based on
that analysis, it must use information about the properties of the operations defined
by the library, the semantic equivalences between operation sequences, and the
profitability of transformations to generate a translator that will analyze and
transform sequences of library operations as if they were language primitives.
Investments of substantive processing power in such analysis allows effective high-
level optimization of scripts incorporating library calls with only a modest cost at
script compilation time.

In many cases, the most promising optimizations will be those specified by the
library designer (following POOMA) rather than those found by the compiler. By
incorporating algebraic specifications describing legal transformations for the
application domain, especially transformations that a compiler by itself could not
prove are legal, we add to the range of optimizations available to the compiler. In
the case of a distributed application, this optimization capability is especially
important. If the script program is making a large number of invocations of a
library object on a remote host, it may be possible to transform the script to use
a single, block-request interface to the library object. This can only happen if the
library implements a mutable set of interfaces and this fact is known to the script
transformation engine. Specification is a good way to convey this knowledge.

4.2. Component Technologies

Several implementation technologies are critical to the success of this strategy:

v Library design and specification strategies help developers organize libraries
to facilitate the TeleGen analysis and to specify algebraic properties of library

1810 KENNEDY ET AL.



operations (e.g., associativity of matrix multiplication) for use by a compiler. By
providing carefully selected sample calling sequences, a library designer can direct
reasoning by TeleGen to consider expected operation contexts so that potential
optimizations can be identified. Library design is discussed in Section 5.

v Automatic property discovery eases the burden of specification synthesis
faced by library designers, while recognizing properties of the library inputs that are
critical to the optimization process. Type and value are examples of properties
likely to be important. There are two key aspects to property discovery: identifica-
tion and propagation. Property identification consists of reasoning about which
properties of library parameters will be important for optimization. Identification is
done by examining library code, specifications, and sample calling sequences.
Property propagation consists of building into the generated script compiler
mechanisms for assessing the impacts on parameter properties of calls to library
routines. To do this at library preparation time, TeleGen will construct procedures,
called jump functions, that provide an efficient mechanism for summarizing the
effect of library calls on operand properties such as type and value. Examples of
properties that may be critical to some optimizations include the shape of an input
operand (matrix rank and size) and whether two operands are effective aliases of
one another. Property discovery is discussed in Section 6.1.

v Strategies for generating efficient, effective script optimizers are needed so
that information about user-defined library routines and their properties can be
automatically incorporated into a compiler optimization framework. Such strategies
include incorporation of specification-driven transformations on code involving
library calls, mechanisms for selecting the most profitable transformations for the
context in which the optimization is being performed, and low-level code specialization.
These strategies are the subject of Section 6.

5. LIBRARY DESIGN AND SPECIFICATION

Although we expect that some benefits will result from the application of the
TeleGen translator generator to an arbitrary library, the process is intended to
work best if library design uses the following strategies.

Organization. Organization into a small number of computationally intensive
core components that can be called through a variety of specialized interfaces per-
mits intensive optimization of multiple versions of the core, each specialized to be
called from a different context. This organization also facilitates the construction of
efficient libraries for a distributed execution environment. An effective organiza-
tional principle for maximizing programmer productivity is the separation of
orthogonal functionalities. For example, it may be possible to define a set of opera-
tions on matrices in one library and a set of data distributions for those matrices
in another. Combinations of different matrix operations with different distributions
provides a rich collection of operations supported by the library. Orthogonality in
design often comes with performance penalties, but the aggressive interprocedural
optimizations used by TeleGen will minimize such effects.

1811TELESCOPING LANGUAGES



Adaptivity. A good high-performance library will be organized to take advan-
tage of special cases that may arise due to properties of the library inputs and the
target platform. For example, it may be effective to use one algorithm on large
matrices, another on small matrices and vectors. This adaptation to the specifics of
the user-supplied input and the dynamic nature of the execution environment
requires the design of smart libraries that will be able to fit the environment and
problem specification.

Specification of algebraic properties. A number of simplifying optimizations
become possible only with the addition of axioms that specify relationships among
the operations defined by the library. For example, if a library provides a stack data
structure with push and pop operations, the designer could specify that a push
followed by a pop can simply deliver the pushed value. This transformation may
eliminate the occurrence of a side effect such as an overflow exception or an extension
of the stack representation. These side-effects are nonessential consequences of the
implementation chosen for the stack. Without axioms that specifically allow and
encourage this transformation, to preserve these side-effects a conventional compiler
would not be allowed to perform this transformation even if it were capable of
deriving it for the nonoverflow case.

Specification of contextual transformations. It can be productive to specify trans-
formations that can be used in certain specific contexts. For example, when using a
library that implements access to an ``out-of-core'' array, it is useful to replace a
single-element fetch within a loop by a block fetch, provided that the loop can be
distributed around the fetch operation. To facilitate this transformation, the library
designer must specify the algebraic property that the block fetch is equivalent to a
loop in which the sole operation is a single-element fetch. To employ this transforma-
tion during script compilation, a script compiler must know that a loop containing
many operations can be distributed around the fetch, which requires detailed under-
standing of the fetch operation's side effects. Such properties are often difficult for a
compiler to discover, but fairly easy for a library designer to specify [30, 42].

Provision of sample calling sequences. Sample calling sequences provided by
library and application designers serve to alert TeleGen to expected idiomatic uses
of the library primitives. This would direct TeleGen to reason about program trans-
formations and optimized library primitives that would yield better performance for
these cases. For example, if a sample calling sequence for a routine that computes
the elementwise average of its inputs passes two arrays that are just shifted aliases
of one another, the compiler can synthesize a special-purpose routine for this case
that eliminates most of the loads associated with one of the vector operands. It
would be implausible to guess that such a usage might be common without such
a code sample. By using sample calling sequences as a guide, TeleGen could also
automatically synthesize composite library operations to replace sequences of
library calls when doing so would enable significant optimizations (e.g., when fusing
loops from different routines would enhance temporal reuse).

To explore these issues, we are investigating library design strategies that can be
effectively used in telescoping languages. The experimental evaluation of these ideas
will be pursued through the construction of a number of prototype libraries.

1812 KENNEDY ET AL.



5.1. Library Organization Strategies

An important part of the TeleGen project is to determine and systematize the
best strategies for enabling the framework itself to discover and exploit as many
effective library optimizations as possible. Two promising strategies, which were
described above, are the organization of the library into a small number of
computationally intensive core components and the separation of orthogonal
functionalities. Another strategy is to isolate computational kernels in regions that
can be highly tuned for different target machines, as explained in the section on
``portable performance'' below.

Note that some languages have features, such as overloading, that confound
attempts to determine library properties before runtime. Although a telescoping
compiler could still produce streamlined versions of the operation, from which one
is selected at run time once it is known which will operate correctly, avoiding such
language features will minimize the need for run-time selection and perhaps enable
additional optimizations.

We plan to build a collection of scientific software libraries that can serve as
testbeds for experimentation with the organizational strategies needed for telescop-
ing languages. Specifically, these libraries will support the automatic generation of
problem-solving systems for computational grids and, in addition to generic struc-
turing to work with the TeleGen generator, will incorporate novel techniques
for managing high latencies, low bisection bandwidths, and other properties of
high-performance computational grids.

These libraries will also contain significant potential for aggressive transformation
and optimization. The growing gap between the speed of microprocessors and that
of memory technology, resulting in deep memory hierarchies, implies that the
memory subsystem is a critical performance factor posing increased challenges in
the production of software libraries. The research literature contains a growing
body of latency-tolerant algorithms and program transformations that reorganize
code and data to improve latency, bandwidth, and space requirements. Many of
these transformations involve multiple library routines, so the libraries will need to
be structured so that the right integrated code can be selected by the script compiler
based on context.

These efforts will result in a comprehensive toolkit of techniques for designing
and constructing high-performance libraries. We also intend to produce suites of
prototype libraries that incorporate these techniques, hence providing a basis for a
new generation of scientific and engineering problem-solving environments.

5.2. Library Adaptivity and the Design of Smart Libraries

Adaptivity of library functions to the data structures to which they are applied,
and their distribution in the case of structures distributed across memory units in
a parallel system, are vital for predictable and robust performance. For the Grid,
adaptation to different execution environments is also critical for success.

A goal of our research is to explore ways to build adaptive and smart libraries
in which the selection among algorithmic and implementation alternatives can be

1813TELESCOPING LANGUAGES



made at the earliest possible moment in the program preparation process. In other
words, we would like to use analysis to move the selection to a time prior to
execution in order to achieve higher run-time performance.

Adaptivity in libraries takes place at two levels. First, library routines need to
adapt their implementation to select the most efficient encoding of a given algorithm
on the target computing platform. This kind of adaptivity includes instruction
selection, loop reordering, and blocking for cache. Second, libraries need to exploit
algorithmic adaptivity��that is, they must select the best algorithm for the given
computing circumstances. An example of the latter is choosing between the conven-
tional O(N3) matrix multiplication and Strassen's algorithm, or between Gaussian
elimination and some divide-and-conquer scheme for tridiagonal systems of
equations. In a parallel execution environment, implementation adaptivity includes
blocking and scheduling of communication at each processor as well as global
communication strategies, such as how to best realize broadcast or all-to-all
communication. Of course, algorithmic adaptivity is critical here as well.

In addition, the library routine should be able to adapt to the data it is given,
perhaps changing the algorithm to fit the data and execution environment. Thus,
the user would be relieved of the burden of algorithm and software selection.

In general, algorithmic adaptivity can be achieved through polyalgorithmic
library functions, or ``overloading,'' following rules based on performance models
built into the library. Selection can be made at compile time, run time, or some
combination thereof. For the foreseeable future, algorithmic adaptivity will be the
responsibility of the library developer. However, adaptivity for efficiency can be a
shared responsibility of library developers, compilers, and development tools.
In some cases, the compiler can assist in algorithmic adaptivity, using high-level
transformations derived from axioms provided by the library developer.

As evidence of the potential impact of adaptivity on the TeleGen system, we
point to the Connection Machine Scientific Subroutine Library (CMSSL),
developed at Thinking Machines, Inc. In CMSSL, much of the implementation
adaptivity was accomplished manually, due to the absence of sufficiently powerful
tools. Thus, all code specialization was performed manually or through customized
tools for specialized domains, such as WASSEM (Weitek Assembler) for intrinsic
functions, as well as the BLAS and the Stencil Compiler for convolution operations.
Though this approach resulted in library functions with robust high performance,
several single-use tools had to be built, and the strategy severely limited the oppor-
tunity for optimizations that crossed the boundaries between library and calling
program. In TeleGen, we seek to eliminate these drawbacks through the use of
exhaustive library analysis and advance preparation.

5.3. Specifying Algebraic Properties of Library Operations

To support the high-level reasoning needed for our aggressive optimization of
scripting languages, a key requirement is that library designers describe precisely
the salient algebraic properties of their library components. One promising
approach is to express these properties in a formal notation such as a specification

1814 KENNEDY ET AL.



language. Specifications in such languages can be formally checked for self-
consistency and can be manipulated by automated tools.

Other researchers have explored such axiomatic approaches. Menon and Pingali
[30, 31] describe a set of axioms for matrix operations that they embodied in a
series of hand-coded routines that are applied in a particular order to optimize
Matlab programs. In contrast, the approach we are developing will automatically
derive an optimizer given a set of axioms written in a specification language.
Weaver et al. [41] describe a compiler representation that has provision for incor-
porating user annotations of library properties such as associativity, commutativity,
and identity. Guyer and Lin [17] describe a compiler-based framework and an
annotation language to guide optimization of calls to library operations. A library
developer annotates library operations with information that indicates which data
the operation accesses and modifies, other abstract properties, and hand-coded
jump functions to facilitate analysis of data flow at operation call sites. These
annotations also include directives that indicate when to remove a call to the opera-
tion and when to replace it with a call to a more specialized operation. Although
their approach shares many of the high-level objectives of our research, it falls short
of our goal of using axiomatic equivalences to choose the most efficient equivalent
sequences of library calls.

In our approach, library designers augment the library with axioms describing
valid transformations involving the library components. These axioms supplement
the properties that the compiler can discover for itself, and in general cannot be
automatically derived or verified. Indeed, they could be in general false, but the
library designer is instructing the telescoping languages compiler that it can ignore
any differences. Recall the stack example in which the compiler need not preserve
stack overflow. The best notation for specifying the allowed transformations is a
topic of our research, and we will explore existing specification languages, subsets
or extensions thereof, new notations, simple annotations, and combinations of
these.

To illustrate our approach, we present some examples of axioms written in the
Z specification language [24, 36], which is a typed set theory used extensively for
the formal specification of computing systems. Z uses mathematical abstractions to
model the data in a system, and it uses predicate logic to describe the effect of the
operations in the system. It has been applied successfully to significant hardware
and software systems, such as the IEEE floating-point standard [2].

A Z specification is decomposed into small pieces called schemas. Schemas are
used to describe both the data in the system and the operations on that data.
Z allows specifications to be developed progressively by using the schema calculus
to combine schemas. The ability to work with incrementally developed partial
specifications is vital for our work with telescoping languages. The schema calculus
can also be used to express relations between library operations. Describing the
essential algebraic properties of library operations only requires specifying a
signature schema for each library component along with properties of individual
schema and axioms that relate different compositions of schema. These composi-
tions and axioms are the basis for deriving the desired optimization framework for
script compilation.

1815TELESCOPING LANGUAGES



Semantic equivalence between operations and between compositions of opera-
tions are described by stating shape axioms. For example, an axiom that matrix
addition is associative

|&\ m1, m2, m3: Matrix v

mmadd(m1, mmadd(m2, m3))=mmadd(mmadd(m1, m2), m3)

would enable the compiler to change the evaluation order of a sequence of those
operations.

Although axioms can show equivalence between two different sequences of opera-
tions, the use of axioms as the basis for optimization requires that the axiom's left-
and right-hand-side terms each have associated cost models to help determine when
a transformation is profitable. For instance, given axioms for the associativity of
matrix multiplication and matrix�vector multiplication,

|&\ m1, m2: Matrix; v1: Vector v

mvmul(mmmul(m1, m2), v1)=mvmul(m1, mvmul(m2, v1))

an associated cost model would enable us to recognize the opportunity to replace
(m1 V m2) V v1, which has O(n3) complexity, with m1 V (m2 V v1), which has O(n2)
complexity. Similarly, an axiom specifying the associativity of matrix multiplication,
for instance, would carry a cost model capturing the benefit of first multiplying the
pair of matrices sharing the largest common dimension. This order of operations
reduces the overall work necessary. Since array sizes may not be known until run
time, the script compilation engine might use the axioms as the basis for generating
multi-version code, then put them in a wrapper that selects the version to use at a
particular point in a program. At run time, code selection can be accomplished by
completing the final steps of the partially evaluated cost models for each of the
alternatives.

5.4. Contextual Transformations

It should be possible for the library designer to specify how major computational
simplifications can be achieved based on local knowledge of the script. This idea
follows the style of the POOMA template library [1] which includes both com-
putational information and library expansion strategies. Guyer and Lin also
incorporate specialization transformations [17].

For example, scientific programs often require both the sine and cosine of an
angle. Based on a sample calling sequence that shows these two routines invoked
in a loop with the same argument, TeleGen could automatically synthesize a more
efficient composite routine that computes both sine and cosine. The composite
routine would achieve higher efficiency by avoiding repetition of case analysis of the
angle value and by interleaving the computation of the sine and cosine polynomials
to better fill the floating-point execution pipeline.

1816 KENNEDY ET AL.



Consider our earlier example of wanting to effectively ``vectorize'' the operand fetch
operation for an out-of-core array. For the compiler system to be able to determine
that vectorization is legal, it must be able to discern two facts: (1) that the fetch is
not part of any recurrence in the loop, and hence that the loop can be distributed
around it, and (2) which library entry implements a ``vector fetch.'' The first of these
properties can be determined using a library specification of the side effects of the
fetch call. The second property must be specified as an algebraic equivalence as
described in Section 5.3. It is unlikely that the compiler could derive the vectoriza-
tion relationship between two library routines. In addition, the compiler must have
cost models to help determine when transformations like vectorization would be
profitable.

6. GENERATION OF FAST, EFFECTIVE OPTIMIZERS

The goal of optimizer generation is to produce an optimizer that generates
excellent code, taking advantage of as many opportunities for transformation as
possible while limiting compile time. This means that the compile time must be
proportional to the script size rather than to the complexity of the procedures
invoked by that script. In other words, we want to avoid full interprocedural
analysis and optimization of the script and all the library routines that it calls by
precomputing enough information to achieve results comparable to those of a full
analysis and optimization.

At the highest level, the script compilation procedure for telescoping languages
will be organized into three phases:

Analysis of property creation and propagation. The goal of this phase is to deter-
mine at every point in the script a ``most precise estimate'' of the properties that
hold for each parameter of a library invocation.

High-level specification-driven transformation. This phase performs specification-
driven transformations to replace sequences of library calls with more efficient code.
The selection of appropriate transformations depends on the types of parameters of
the library calls involved, on the program control constructs, and on the data flow
patterns that arise from the code sequence. Parameter types after these transformations
are recomputed incrementally to support further transformations.

Low-level code specialization. Finally, a code expansion pass substitutes
appropriate specialized versions of the library routines at each point of call. The
specialized versions are generated via a combination of transformation and selec-
tion, based on the properties of the input variables at each point of call. For each
invocation, the most specialized code for the given combination of variable proper-
ties is selected by a process similar to the unification algorithm used in theorem
proving [34]. Actual expanded code is loaded from a database of code variants,
with a limited transformation step to bound the inlining time. This phase can also
select variants based on target machine properties.

Through the use of a no-inline specification for a library routine, the library
designer could preserve procedure invocations where there is no point in performing

1817TELESCOPING LANGUAGES



inlining, the code needs to be kept private, or the invocation may be implemented
as a remote procedure call to a server process on another machine.

Once the script optimizer is finished, the transformed code is presented to the
target machine's compiler for the base language to produce machine code.

6.1. Automatic Property Discovery

Property identification. A critical component of the construction of script
optimizers will be the determination of special operand properties that can be
exploited to achieve high performance. An obviously useful property is the value of
a scalar operand, when that operand is a known constant in the calling context.
Other examples include type information, the rank and size of matrix operands,
and aliasing patterns among operands. In dealing with vector operands, it is useful
to know if the elements are contiguous in memory.

Generally, there are three strategies for discovering which properties are critical
to optimizing a library:

v Examination of the library specifications to discover which properties are
essential to carry out some key transformation;

v Examination of the source code of the library itself, which may determine
that an operand property can yield significant savings. For example, a collection of
loops might be interchanged to achieve stride-one access as long as the input matrix
is contiguous. Discovery of such properties requires that the analyzer reasons back-
ward from optimization points to determine parameter properties that permit these
optimizations [27]. Although this bears some similarity to slicing [22], it actually
is more like computation of inverse jump functions [5, 32] or the discovery of
weakest preconditions in automated program proof.

v Examination of the sample calling sequences provided by the library
designer to determine whether the operand examples have useful properties. For
example, if a calling sequence passes two matrices that are shifted versions of one
another, it may be possible to avoid half the loads in a library routine by saving
values in registers between corresponding uses of the two inputs. Even if the loads
cannot be avoided, the loops can be restructured to ensure that values are reused
while they are still in cache.

Property propagation. Once key properties are identified, the script compiler
must be able to determine when these properties hold in the calling program. To
do that it must not only recognize their creation, but it also must know when the
properties are preserved by other library components. If the script compiler is to do
this efficiently, it must be able to determine instantaneously the effect on those
properties of other library calls that are on a path from the start of the script to
the call being analyzed. Jump functions (sometimes called transfer functions) provide
a way to do this. A jump function for procedure P summarizes the value of an out-
put parameter from P in terms of the values of input parameters. When no precise
summary can be computed, the jump function will return a special value indicating

1818 KENNEDY ET AL.



that the output parameter is undefined. Where jump functions are well defined, they
can make it possible to propagate properties of variables through a call site without
redoing extensive analysis of the called program. Thus, if telescoping languages are
to be an effective strategy, the library compilation phase must compute jump
functions for every public interface.

Jump functions have been a subject of substantial research on interprocedural
analysis [5, 32]. Within the library, they can be constructed by composition if
partial jump functions are computed to determine the translation of parameters
from a procedure entry to other parameters at call sites within each procedure. If
the jump functions become too complicated to compute accurately, they can simply
return a gross approximation for the parameter property, effectively saying that it
is unknown. A simple jump function can indicate that the value of a reference
parameter is unchanged by a library routine [16]. Sophisticated analysis can
enable a compiler to compute more complicated jump functions such as equational
relationships between outputs and inputs. Havlak's linear congruence relations are
an example of this class of relationships [21].

Carefully precomputing jump functions ensures that practically no time is spent
during script compilation to determine what properties hold for output parameters
from the library. This makes it possible to propagate these properties rapidly
throughout the script.

6.2. Specification-Driven Optimization

A key goal of our research is to devise a program transformation framework that
can be instantiated automatically from axiomatic specifications. Axioms indicate
relationships between different semantically equivalent sequences of operations. To
use an axiom as the justification for a program transformation, the pattern of
operations specified by either the left- or right-hand side of the axiom must match
a pattern of operations in a script.

Using simple text or tree matching to identify replaceable patterns in a script is
insufficient for our purposes, because unrelated operations (from an axiom's
perspective) may be interleaved in the script. To avoid this problem, TeleGen will
collect information about operation sequences by traversing a representation of a
script's data flow instead. Static-single assignment (SSA) form [12] provides a con-
venient high-level representation for examining relationships between variable
definitions and uses. In some cases, we may need to compute full dependence
relations to match axiom specifications.

How best to match operation patterns specified by axioms to a data flow
representation for a script that we extract from programs is an open research
question. Given a set of axioms, the question is how to identify quickly all of the
possible axioms that could be applied and how to select from among them based
on associated cost models and the rules for composing cost functions. One
approach that we have used successfully in the past is building recognizers based
on graph grammars that exhibit the Finite Church-Rosser (FCR) property
[15, 28]. However, these methods can converge on local, suboptimal extrema
rather than the global optimum. Another approach is to apply a dynamic program-
ming method to consider sequences of axioms to apply. When an axiom is selected

1819TELESCOPING LANGUAGES



to initiate a restructuring transformation, the translator must consider its effect on
the representation to determine if the application of a transformation will cause
additional axioms to match. A possible approach is to shift some of the cost of
dynamic programming from script compilation time to library analysis time by
precomputing and reasoning about the best axiomatic transformation strategies and
costs for expected sequences of operations. When these sequences arise and certain
conditions about their context are met, precomputed costs and axiomatic trans-
formations can be incorporated into the dynamic programming calculation at
script compilation time without reconsidering all possible alternatives for such
sequences.

In addition to using a data flow representation for matching axioms with scripts,
another key technology that we will explore as part of this effort is the use of data-
flow information to infer the type and shape of dynamically typed operands.

6.3. Low-level Code Expansion

In this phase, the goal is to replace procedure invocations in the script with
invocations of more efficient versions of those procedures specialized to the proper-
ties of the inputs as estimated at compile time. A subgoal is to do this via a
combination of inline expansion and invocation of specialized entries so that the
amount of code that must be processed by the target machine's optimizer is not
more than linearly proportional to the size of the original script.

Specialization is not a new idea. This strategy has been widely researched in the
literature on interprocedural analysis [11, 17] and in work on partial evaluation
[3, 25]. Our strategy differs from most of the previous work in that the specializa-
tions in a telescoping language must be generated before the calling program is
revealed. Hence, the TeleGen translator generator must prepare specializations for
all important combinations of parameter properties that lead to significant cost
savings. Sample calling sequences can be a guide as to which combinations to con-
sider. In preparing these specializations, TeleGen can expend significant computa-
tional resources, but it must avoid generating translators that take unacceptably
long to process a script.

The TeleGen translator generator will produce specializations in two ways. First,
it will use annotations developed by the library designer, as suggested by Guyer
and Lin [17]. Second, it will use the critical properties of input parameters,
discovered as described in Section 6.1, to specialize a call interface in the library
for each set of critical properties that are simultaneously satisfiable. This in-
volves assuming those properties and optimizing the called routine accordingly.
As the various specializations are produced, information about the specializations
will be collected in a database that is loaded when the generated translator is
initiated. (The specializations themselves would be precomputed and stored
on disk.) When the script translator encounters a call to a library routine with a
collection of known properties for the parameters, it picks the most specialized
version of the routine for the estimated parameter properties (or types) by a
process known as unification. Unification, which originated in theorem-proving
literature, requires time linear in the number of parameters of the called routine,

1820 KENNEDY ET AL.



assuming the parameter property lattice has no unbounded descending chains
[6, 34].

The total number of variants that must be maintained in the compiler's database
and the total number of specialized entries in the library can be reduced by generat-
ing only a subset of the meaningful variants in the optimizer construction phase. In
other words, variants that differ by only small amounts would be combined. Some
of the lost performance might be regained by a good optimizer on the vendor
end.

Perhaps the best way to illustrate this idea is by an example. Consider the following
simple Fortran routine:

SUBROUTINE VMP(C, A, B, M, N, S)
REAL A(N), B(N), C(M), S
I=1
DO J=1, N

C(I)=C(I)+A(J)*B(J)
I=I+S

ENDDO
END

When presented with this routine, the TeleGen analyzer discovers that the incre-
ment to the variable I is a function of the input parameter S. Therefore, the DO
loop is vectorizable if S{0. When this condition is propagated back to the inter-
face and the code is specialized, we get two versions of the code suitable for inlining.
For S{0, we have

C(1:S*N-S+1:S)=C(1:S*N-S+1:S)+A(1:N)*B(1:N)

But for the case of S=0, we get

C(1)=C(1)+SUM(A(1:N)*B(1:N))

These two specialized variants would be saved in a code selection database for
the library.

7. PORTABLE PERFORMANCE

An essential property of a useful script-based application development system is
that it be possible to run the applications developed in the system on a variety of
target platforms with the expectation of high performance. The problem is that the
final target of a script-based application may not become known until script com-
pilation time, long after the libraries that form the basis for the telescoping
language are precompiled. In a naive system, this would mean that the entire
application, including the library code, would need to be optimized for a specific
target platform just prior to execution time. Once again, long compilation times
might make this approach impractical.

1821TELESCOPING LANGUAGES



Telescoping languages provide an opportunity to overcome this problem.
Because TeleGen is free to spend a long time compiling libraries, it can generate
specialized variants of every implementation in the database for each of a potential
collection of target machines. The script compilation process is primarily a high-
level transformation phase to be followed by a low-level compilation for the target
machine, so the same high-level version may be effective for all of the potential
target systems. In that case, we need only compile one version. Exceptions will
occur in cases in which high-level transformations, such as blocking for cache, must
be tuned to a specific machine. In those cases, a specialized implementation is tuned
during the exhaustive compilation phase for each equivalence class of target machines
and the appropriate version is later passed to the low-level compiler. In some cases,
such measures can be avoided by using cache-oblivious algorithms [35].

Once preoptimized and compiled versions of each database routine are available,
the correct implementation can be selected at link time. In fact, there is no require-
ment that the same target machine be used for every invocation��in the GrADS
project [4], the link phase is replaced by a dynamic optimization phase that dis-
tributes work among a heterogeneous collection of processors, tailoring the code
and communication to each target machine in the collection.

To summarize, the process of preparing a library for use in a system based on
telescoping languages is as follows: (1) Using the compilation process described
earlier, compute specialized implementations, along with associated jump functions,
for each public interface in the library. These are typically machine-independent. (2)
Specialize the code for each potential target machine if necessary and invoke the
target machine's compiler to produce a linkable object module for each target. At
script compile time, the specialized implementations are chosen for each library call
for the target machine to which that call has been assigned.

The work on optimizing for specific machines builds on previous efforts that use
extensive preprocessing to produce near-optimal code for specific machines. As an
example, linear algebra is rich in operations which are highly optimizable, in the
sense that a highly tuned code may run multiple orders of magnitude faster than a
naively coded routine. However, these optimizations are platform specific, such that
an optimization for a given computer architecture will actually cause a slow-down
on another architecture.

The traditional method of handling this problem has been to produce hand-
optimized routines for a given machine. This is a painstaking process, typically
requiring many man-months of highly trained (both in linear algebra and computa-
tional optimization) personnel. The incredible pace of hardware evolution makes
this technique untenable in the long run, particularly considering the many software
layers (e.g., operating systems and compilers) that also affect these kinds of
optimizations, all of which are changing independently at similar rates.

A new paradigm has emerged for the production of highly efficient routines��the
library incorporates a generator that provides many ways of doing the required
operations and uses empirical timings in order to choose the best method for a
given architecture. This approach typically uses code generators (i.e., programs that
write other programs) to instantiate the different ways of performing a given opera-
tion, and it has sophisticated search scripts and robust timing mechanisms to find

1822 KENNEDY ET AL.



the best ways of performing the operation for a given architecture. This is done just
once for a given architecture and reused thereafter.

A number of efforts are using this approach in their design for high performance,
for example ATLAS at the University of Tennessee [42] and UHFFT at the
University of Houston [29]. These efforts use precompiled and optimized kernels
that are selected dynamically.

An obstacle to achieving high performance is that the shape and size of many of
the application data structures remain unknown until run time. This is particularly
true in applications that use adaptive or dynamic data structures, which are
increasingly common in sophisticated scientific applications. Within the telescoping
languages framework, this problem can be addressed, at the cost of initial code
space, by including alternative implementations in the object code for the applica-
tion and selecting the correct one dynamically at run time in a preprocessing step
that takes place right after the parameters in question are known. This strategy is
similar to the dynamic compilation strategies in Java [37] and the inspector�
executor method for compiling irregular applications for parallel execution [10].

Although these strategies are not unique to telescoping languages, the framework
makes it possible to automate many of the steps in tailoring libraries so that the
library developer need only identify shared compute-intensive kernels along with
test drivers, leaving the specific optimizations to the library precompilation system.

8. SUMMARY

The telescoping languages strategy provides a new approach to the implementa-
tion of high-level, domain-specific problem-solving environments. By extensively
preprocessing the domain-specific libraries that provide functionality to the system,
it can be possible to generate code that is efficient enough for production use on
scientific problems without incurring undue compilation cost. The idea is to con-
struct a translator that recognizes library calls as primitives of the underlying script-
ing language by expending substantive computational resources on a library
analysis and preparation phase executed at language build time. For this strategy
to be successful, the underlying libraries must be carefully designed and annotated
so that high-level transformations can be applied and fast specialized code can be
selected at script translation time. In addition, the strategy can be used to generate
optimized code for different computing platforms, ensuring that good performance
is portable across multiple platforms.

The authors have embarked on a collaborative project to build a system called
TeleGen for generating efficient script-based high-level programming systems based
on these ideas. It is our hope that this system will make it easy to produce new high-
level languages in which it will be much easier for the end user to develop efficient
applications. By so doing it may help ameliorate the shortage of programming
talent, particularly in the domain of scientific computing.

ACKNOWLEDGMENTS

Many people have contributed to the development of the ideas described in this paper. John Reynders'
lucid descriptions of the POOMA project deeply influenced the ideas in this project. We acknowledge

1823TELESCOPING LANGUAGES



the NSF Center for Research on Parallel Computation; the Los Alamos Computer Science Institute,
supported by the Department of Energy ASCI program; and the GrADS Project, supported by NSF
Next Generation Software Program under the program management of Frederica Darema, for the
support they have provided and for their influence on the vision behind this work.

REFERENCES

1. S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant, J. V. W. Reynders, and
M. Tholburn, POOMA: A high performance distributed simulation environment for scientific
applications, in ``Proceedings of Supercomputing 95,'' San Diego, CA, December 1995.

2. G. Barrett, Formal methods applied to a floating-point number system, IEEE Trans. Software Eng.
15(5) (May 1989), 611�621.

3. A. Berlin and D. Weise, Compiling scientific code using partial evaluation, IEEE Comput. 23(12)
(1990), 25�37.

4. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy,
C. Kesselman, D. Reed, L. Torczon, and R. Wolski, ``The GrADS Project: Software Support for
High-Level Grid Application Development,'' Technical Report COMPTR00-355, Department of
Computer Science, Rice University, February 2000.

5. D. Callahan, K. Cooper, K. Kennedy, and L. Torczon, Interprocedural constant propagation, in ``Pro-
ceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction,'' Palo Alto, CA, June 1986.

6. D. Callahan and K. Kennedy, Analysis of interprocedural side effects in a parallel programming
environment, in ``Proceedings of the First International Conference on Supercomputing,'' Athens,
Greece, Springer-Verlag, Berlin�New York, June 1987.

7. A. Carle, K. D. Cooper, R. T. Hood, K. Kennedy, L. Torczon, and S. K. Warren, A practical
environment for Fortran programming, IEEE Comput. 20(11) (Nov. 1987), 75�89.

8. H. Casanov and J. Dongarra, A network-enabled server for solving computational science problems,
Internat. J. Supercomputer Appl. High Performance Comput. 11(3) (1997), 212�223.

9. S. Chauveau and F. Bodin, Menhir: An environment for high performance Matlab, Sci. Programming
7 (1999), 303�312.

10. A. Choudhary, G. Fox, S. Ranka, S. Hiranandani, K. Kennedy, C. Koelbel, and J. Saltz, Software support
for irregular and loosely synchronous problems, Internat. J. Comput. Systems Eng. 3(2) (1993), 43�52.

11. K. Cooper, M. W. Hall, and K. Kennedy, A methodology for procedure cloning, Comput. Languages
19(2) (Febr. 1993), 105�117.

12. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, Efficiently computing static single
assignment form and the control dependence graph, ACM Trans. Progr. Languages Systems 13(4)
(Oct. 1991), 451�490.

13. L. DeRose and D. Padua, A MATLAB to Fortran 90 translator and its effectiveness, in
``Proceedings of the 10th International Conference on Supercomputing,'' May 1996.

14. J. Eaton, ``Octave,'' http:��www.che.wisc.edu�octave, 1999.

15. R. Farrow, K. Kennedy, and L. Zucconi, Graph grammars and global program data flow analysis,
in ``Proceedings of Seventeenth Annual Symposium on Foundations of Computer Science,''
pp. 42�56, Oct. 1976.

16. D. Grove and L. Torczon, Interprocedural constant propagation: A study of jump function
implementations, in ``Proceedings of the SIGPLAN '93 Conference on Programming Language
Design and Implementation,'' Albuquerque, June 1993.

17. S. Guyer and C. Lin, An annotation language for optimizing software libraries, in ``Proceedings of
the Second Conference on Domain-Specific Languages,'' Oct. 1999.

18. B. Hahn, ``Essential MATLAB for Scientists and Engineers,'' Arnold, Sevenoaks, 1997.

19. S. Haney, Personal communication on POOMA experience, 1999.

1824 KENNEDY ET AL.



20. S. Haney, J. Crotinger, S. Karmesin, and S. Smith, PETE, the portable expression template engine,
Dr. Dobbs J. 24(10) (Oct. 1999).

21. P. Havlak, ``Interprocedural Symbolic Analysis,'' Ph.D. thesis, Dept. of Computer Science, Rice
University, May 1994. [Also available as CRPC-TR94451 from the Center for Research on Parallel
Computation and as CS-TR94-228 from the Rice Department of Computer Science]

22. S. Horowitz, T. Reps, and D. Binkley, Interprocedural slicing using dependence graphs, in
``Proceedings of the SIGPLAN '88 Conference on Programming Language Design and Implementa-
tion,'' Atlanta, GA, June 1988.

23. E. N. Houstis and J. R. Rice, The engineering of modern interfaces for PDE solvers, in ``Symbolic
Computation: Applications to Scientific Computing'' (E. N. Houstis, J. R. Rice, and R. Vichnevetsky,
Eds.), pp. 89�94, North-Holland, Amsterdam, 1992.

24. J. Jacky, ``The Way of Z: Practical Programming with Formal Methods,'' Cambridge University
Press, Cambridge, UK, 1997.

25. N. D. Jones, C. K. Gomard, and P. Sestoft, ``Partial Evaluation and Automatic Program Genera-
tion,'' Prentice�Hall International, Englewood Cliffs, NJ, 1993.

26. K. Kennedy, Compilers, languages, and libraries, in ``The Grid: Blueprint for a New Computing
Infrastructure'' (I. Foster and C. Kesselman, Eds.), pp. 181�204, Morgan Kaufmann, San Mateo,
CA, 1998.

27. K. Kennedy, Telescoping languages: A compiler strategy for implementation of high-level domain-
specific programming systems, in ``Proceedings of International Parallel and Distributed Processing
Symposium 2000,'' Cancun, Mexico, May 2000.

28. K. Kennedy and L. Zucconi, Applications of a graph grammar for program control flow analysis,
in ``Conference Record of the Fourth ACM Symposium on Principles of Programming Languages,''
pp. 72�85, Jan. 1977.

29. R. Mahasoom, ``An Adaptive Software Library for Fast Fourier Transforms,'' Master's thesis,
Department of Computer Science, University of Houston, Houston, TX, Dec. 1999.

30. V. Menon and K. Pingali, A case for source-level transformations in MATLAB, in ``Proceedings of
the Second Conference on Domain-Specific Languages,'' pp. 53�65, Oct. 1999.

31. V. Menon and K. Pingali, High-level semantic optimization of numerical codes, in ``Proceedings of
the International Conference on Supercomputing 1999,'' pp. 434�443, 1999.

32. B. Murphy and M. Lam, Program analysis with partial transfer functions, in ``Proceedings of
the Workshop on Partial Evaluation and Semantics-Based Program Manipulation,'' pp. 94�103,
Jan. 2000.

33. M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski, A common computational infrastruc-
ture for adaptive algorithms for PDE solutions, in ``Proceedings of Supercomputing '97,'' 1997.

34. M. S. Patterson and M. N. Wegman, Linear unification, J. Comput. System Sci. 16(2) (1978),
158�167.

35. H. Prokop, ``Cache-Oblivious Algorithms,'' Master's thesis, MIT Department of Electrical Engineering
and Computer Science, June 1999.

36. J. M. Spivey, ``The Z Notation: A Reference Manual,'' Prentice Hall International Series in
Computer Science, 2nd ed., Prentice�Hall International, Englewood Cliffs, NJ, 1992.

37. Sun Microsystems Inc., Java HOTSPOT performance engine architecture: A white paper about
Sun's second generation performance technology, April 1999. [http:��java.sun.com�products�hotspot�
whitepaper.html]

38. D. Vandevoorde, ``valarray<Troy>: An implementation of a numerical array,'' available at
ftp:��ftp.cs.rpi.edu�pub�vandevod�Valarray�Documents�valarray. ps, 1995.

39. T. L. Veldhuizen, Expression templates, C++ Report 7(5) (June 1995), 26�31. [Reprinted in C++
Gems, Stanley Lippman, Ed.]

40. T. L. Veldhuizen, ``Just When You Thought Your Little Language Was Safe: `Expression Templates'
in Java,'' Technical Report IUCS 539, Computer Science Department, Indiana University, July 2000.

1825TELESCOPING LANGUAGES



41. G. E. Weaver, K. S. McKinley, and C. C. Weems, Score: A compiler representation for hetero-
geneous systems, in ``Proceedings of the 1996 Heterogeneous Computing Workshop,'' Honolulu,
April 1996.

42. C. Whaley and J. Dongarra, Automatically tuned linear algebra software, in ``Proceedings of SC
'98,'' Orlando, FL, Nov. 1998, IEEE Press, New York.

43. S. Wolfram, ``The Mathematica Book,'' Cambridge Univ. Press, Cambridge, UK, 1999.

1826 KENNEDY ET AL.


	1. INTRODUCTION 
	2. AN ILLUSTRATIVE EXAMPLE 
	FIG. 1 

	3. INTENDED APPLICATIONS 
	4. TELESCOPING LANGUAGES 
	5. LIBRARY DESIGN AND SPECIFICATION 
	6. GENERATION OF FASE, EFFECTIVE OPTIMIZERS 
	7. PORTABLE PERFORNANCE 
	8. SUMMARY 
	ACKNOWLEDGMENTS 
	REFERENCES 

