
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/15/4/359
The online version of this article can be found at:

DOI: 10.1177/109434200101500403

 2001 15: 359International Journal of High Performance Computing Applications
Antoine Petitet, Susan Blackford, Jack Dongarra, Brett Ellis, Graham Fagg, Kenneth Roche and Sathish Vadhiyar

Numerical Libraries and the Grid

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/15/4/359.refs.htmlCitations:

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/15/4/359
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/15/4/359.refs.html
http://hpc.sagepub.com/

COMPUTING APPLICATIONS
NUMERICAL LIBRARIES AND THE GRID

NUMERICAL LIBRARIES

AND THE GRID

Antoine Petitet

SUN FRANCE BENCHMARK CENTER, PARIS, FRANCE

Susan Blackford

MYRICOM, INC.

Jack Dongarra

Brett Ellis

Graham Fagg

Kenneth Roche

Sathish Vadhiyar

UNIVERSITY OF TENNESSEE, KNOXVILLE

Summary

This paper describes an overall framework for the design
of numerical libraries on a computational grid of proces-
sors in which the processors may be geographically dis-
tributed and under the control of a grid-based scheduling
system. Experiments are presented in the context of solv-
ing systems of linear equations using routines from
the ScaLAPACK software collection along with various
grid service components, such as Globus, NWS, and
Autopilot.

Motivation on the Grid

The goal of the Grid Application Development Software
(GrADS) project (Berman et al., 2000) is to simplify dis-
tributed heterogeneous computing in the same way that
the World Wide Web simplified information sharing over
the Internet. The GrADS project is exploring the scien-
tific and technical problems that must be solved to make
grid applications development and performance tuning
for real applications an everyday practice. This requires
research in four key areas, each validated in a prototype
infrastructure that will make programming on the Grid a
routine task:

1. Grid software architectures that facilitate informa-
tion flow and resource negotiation among applica-
tions, libraries, compilers, linkers, and runtime
systems;

2. Base software technologies, such as scheduling,
resource discovery, and communication, to sup-
port development and execution of performance-
efficient grid applications;

3. Languages, compilers, environments, and tools to
support creation of applications for the Grid and
solution of problems on the Grid;

4. Mathematical and data structure libraries for grid
applications, including numerical methods for
control of accuracy and latency tolerance.

In this paper, we will describe the development of a
prototype system designed specifically to be used with
numerical libraries in the grid setting and the results of ex-
periments with routines from the ScaLAPACK library
(Blackford et al., 1997) on the Grid.

Motivation on Numerical Libraries

The primary goals of our effort in numerical libraries are
to develop a new generation of algorithms and software li-
braries needed for the effective and reliable use of dy-
namic, distributed, and parallel environments, and to vali-
date the resulting libraries and algorithms on important
scientific applications. To consistently obtain high perfor-
mance in the grid environment will require advances in
both algorithms and supporting software.

Some of the challenges in this arena have already been
encountered. For example, to make effective use of cur-
rent high-end machines, the software must manage both
communication and the memory hierarchy. This problem

NUMERICAL LIBRARIES AND THE GRID 359

The International Journal of High Performance Computing Applications,
Volume 15, No. 4, Winter 2001, pp. 359-374
 2001 Sage Publications

Address reprint requests to Jack Dongarra, Department of Com-
puter Science, University of Tennessee, 1122 Volunteer Boule-
vard, Suite 203, Knoxville, TN 37996-3450, U.S.A; dongarra@
cs.utk.edu.

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

has been approached with a combination of compile-time
and runtime techniques. On the Grid, the increased scale of
computation, depth of memory hierarchies, range of laten-
cies, and increased variability in the runtime environment
will make such problems more difficult.

To address these issues, we must rethink the way that
we build libraries. The issues to consider include software
architecture, programming languages and environments,
compile-time versus runtime functionality, data structure
support, and fundamental algorithm design. The chal-
lenges are as follows:

• The library software must support performance optimi-
zation and algorithm choice at runtime.

• The architecture of software libraries must facilitate ef-
ficient interfaces to a number of languages, as well as
effective support for the relevant data structures in those
languages.

• New algorithmic techniques will be a prerequisite for
latency tolerant applications.

• New scalable algorithms that expose massive numbers
of concurrent threads will be needed to keep parallel re-
sources busy and to hide memory latencies.

• Library mechanisms that will interact with the Grid will
be needed to dynamically deploy resources in solving
the posed users’ problems.

These considerations lead naturally to a number of impor-
tant areas in which research in algorithm design and library
architecture is needed.
Grid-Aware Libraries. To enable the use of the Grid as a
seamless computing environment, we are developing
parameterizable algorithms and software annotated with
performance contracts. These annotations will help a dy-
namic optimizer tune performance for a wide range of ar-
chitectures. This tuning will, in many cases, be accom-
plished by having the dynamic optimizer and runtime
system provide input parameters to the library routines that
will enable them to make a resource-efficient algorithm se-
lection. We are also developing new algorithms that use
adaptive strategies by interacting with other GrADS com-
ponents. For example, libraries will incorporate perfor-
mance contracts for dynamic negotiation of resources, as
well as runtime support for adaptive strategies to allow the
compiler, scheduler, and runtime system to influence the
course of execution.

We are using the grid information service and the grid
event service to obtain the information needed to guide ad-
aptation in the library routines. These services will be dis-
cussed in more detail later in this paper.

360 COMPUTING APPLICATIONS

“. . . to make effective use of current
high-end machines, the software must
manage both communication and the
memory hierarchy. This problem has
been approached with a combination of
compile-time and runtime techniques.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Latency-Tolerant Algorithm. Remote latency is one
of the major obstacles in achieving high efficiency on to-
day’s high performance computers. The growing gap be-
tween the speed of the microprocessors and memory cou-
pled with a deep memory hierarchy implies that the mem-
ory subsystem has become a large performance factor in
modern computer systems such as the Department of En-
ergy’s Advanced Strategic Computing Initiative comput-
ers. In the unpredictable and dynamic world of the Grid,
this problem will be even worse. Research into latency-
tolerant algorithms that explore a wider portion of the la-
tency and bandwidth/memory space is needed. Further-
more, tools are needed for measuring and managing la-
tency. We are designing and constructing numerical li-
braries that are parameterized to allow their performance
to be optimized over a range of current and future memory
hierarchies, including those expected in computational
grids.

Compiler-Ready Libraries. In the past, library devel-
opment has typically focused on one architecture at a
time, with the result that much of the work must be re-
peated to migrate the code to a new architecture and its
memory hierarchy. We are exploring the design and de-
velopment of parameterized libraries that permit perfor-
mance tuning across a wide spectrum of memory hierar-
chies. Some developers of portable libraries rely on tools
such as the HPC Compiler to analyze and parallelize their
programs. These compilers are large and complex; they
do not always discover parallelism when it is available.
Automatic parallelization may be adequate for some sim-
ple types of scientific programming, but experts writing
libraries find it frustrating because they must often per-
form tedious optimizations by hand—optimizations that
could be handled by the compiler if it had a bit of extra in-
formation from the programmer. Programmers may find
it both easier and more effective to annotate their code
with information that will help the compiler generate the
desired code with the desired behavior. We have begun to
identify opportunities where information about algo-
rithms contained in library functions can help the com-
piler and the runtime environment and work with the
GrADS compiler group to develop a new system of anno-
tation to provide information about semantics and perfor-
mance that aids in compilation. At the library interface
level, this would include memory-hierarchy tuning pa-
rameters and semantic information, such as dependency
information to make it possible to block the LU
factorization of a matrix, and floating-point semantic in-
formation (e.g., to indicate that it is acceptable to reorder
certain floating-point operations or to handle exceptions

in particular ways). The goal is to make it possible to
“build in” to the compiler knowledge about these libraries
far beyond what can be derived by a compile-time analy-
sis of the source.

Current Numerical Subroutine Libraries

Current numerical libraries for distributed memory ma-
chines are designed for heterogeneous computing and are
based on MPI (Snir et al., 1998) for communication be-
tween processes. Two such widely used libraries are
ScaLAPACK and PETSc (Balay et al., 1996), designed
for dense and sparse matrix calculations, respectively.
ScaLAPACK assumes a two-dimensional block cyclic
data distribution among the processes, and PETSc pro-
vides a block-row or application-specific data distribu-
tion. The user must select the number of processes associ-
ated with an MPI communicator and the specific routine/
algorithm to be invoked.

In the case of ScaLAPACK, the user has total control
over the exact layout of the data, specifying the number of
block rows and the number of block columns in each
block to be distributed. These blocks are then distributed
cyclically to maintain proper load balance of the applica-
tion on the machine. It is the user’s responsibility to dis-
tribute the data prior to invoking the ScaLAPACK rou-
tine. If the user makes a poor choice of data layout, it can
significantly affect his application’s performance. All
data that have been locally distributed can be explicitly
accessed in the user’s program.

For PETSc, the library has a variety of data distribution
routines from which to choose. The user can select the de-
fault block row distribution where the size of the block is
determined by the PETSc system as a function of the size
of the global matrix to be distributed. PETSc will choose
the block size such that the matrix is evenly distributed
among the processes. The user can also select an applica-
tion-specific block-row distribution whereby the size of
the block is a function of the application to be run on that
process’s data. In contrast to ScaLAPACK, the user does
not have explicit access to individual elements in the data
structure. The user must use specialized PETSc matrix
manipulation routines to access the matrix data.

For both libraries, the user is responsible for making
many decisions on how the data are decomposed, the
number of processors used, and which software is to be
chosen for the solution. Given the size of the problem to
be solved, the number of processors available, and certain
characteristics of the processors, such as CPU speed and
the amount of available memory per processor, heuristics

NUMERICAL LIBRARIES AND THE GRID 361

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

exist for selecting a good data distribution to achieve effi-
cient performance. In addition, the ScaLAPACK Users’
Guide (Blackford et al., 1997) provides a performance
model for estimating the computation time given the speed
of the floating-point operations, the problem size, and the
bandwidth and latency associated with the specifics of the
parallel computer. Equation (1) provides the model used
by ScaLAPACK for solving a dense system of equations.

T(n, p) = Cf tf + Cvtv + Cmtm, (1)

where

C
n

p
f = 2

3

3

= total number of floating-point
operations per processor

C p
n

p
v = +


 


3

1

4
2

2

log = total number of data items
communicated per processor

Cm = n(6 + log2 p) = total number of messages
tf = time per floating-point operation
tv = time per data item communicated
tm = time per message
n = matrix size
p = number of processors
T(n, p) = parallel execution time for a

problem of size n run on
p processors

The performance model assumes that the parallel com-
puter is homogeneous with respect to both the processors
and communication network. With the Grid, both of these
assumptions are incorrect and a performance model be-
comes much more complex. With the dynamic nature of
the grid environment, the grid scheduler must assume the
task of deciding how many processors to use and the place-
ment of data. This selection would be performed in a dy-
namic fashion using the state of the processors and the
communication behavior of the network within the Grid in
conjunction with a performance model for the application.
The system would then determine the data layout, the num-
ber and location of the processors, and perhaps the algo-
rithm selection for a given problem for the best time to so-
lution on the Grid.

Adapting Current Libraries
to the Grid Environment

Our goal is to adapt the existing distributed memory soft-
ware libraries to fit into the grid setting without too many
changes to the basic numerical software. We want to free
the user from having to allocate the processors, make deci-
sions on which processors to use to solve the problem,

362 COMPUTING APPLICATIONS

“Our goal is to adapt the existing
distributed memory software libraries to fit
into the grid setting without too many
changes to the basic numerical software.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

make decisions on how the data are to be decomposed to
optimally solve the problem, allocate the resources, start
the message-passing system, monitor the progress, mi-
grate or restart the application if a problem is encoun-
tered, collect the results from the processors, and return
the processors to the pool of resources.

Implementation Outline of
the GrADS ScaLAPACK Demo

The ScaLAPACK experiment demonstrates the feasibil-
ity of solving large-scale numerical problems over the
Grid and analyzes the added cost of performing the calcu-
lation over machines spanning geographically distributed
sites. We solve a simple linear system of equations over
the Grid using Gaussian elimination with partial pivoting
via the ScaLAPACK routine, PDGESV. We illustrate how
users, without much knowledge of numerical libraries,
can seamlessly use numerical library routines over the
Grid. We also outline the steps that are necessary for a li-
brary writer to integrate his library into the grid system.
(The appendix contains a more detailed description of
these parts.) Although ease of use is an important aspect
of the Grid, performance improvement and the ability to
perform tasks that are too large to be performed on a sin-
gle tightly coupled cluster are important motivations be-
hind the use of the Grid. Our experiments show that effec-
tive resources can be selected to solve the ScaLAPACK
problem and, for our experiments, scalability (as the
problem size and the number of processors increase) of
the software is maintained.

Before the user can start his application, the grid sys-
tem is assumed to have initialized three components: Glo-
bus MDS (Foster and Kesselman, 1997), Network
Weather Service (NWS) (Wolski, Spring, and Hayes,
1999) sensors on all machines in the Globus MDS reposi-
tory, and the Autopilot manager/contract monitor (Ribler
et al., 1998). We assume that the user has already commu-
nicated with the grid system (Globus) and has been au-
thenticate to use the grid environment. The Globus MDS
maintains a repository of all available machines in the
Grid, and the NWS sensors monitor a variety of system
parameters for all of the machines contained in the Globus
MDS repository. This information is necessary for mod-
eling the performance of the application and for making
scheduling decisions for the application on the Grid. Au-
topilot was designed and is maintained at the University
of Illinois at Urbana-Champaign (UIUC). It is a system
for monitoring the application execution and enabling
corrective measures, if needed, to improve the perfor-

mance while the application is executing. The Autopilot
manager must be running on one of the machines in the
Grid prior to the start of the experiment. The library rou-
tine (in our experiment, this is the ScaLAPACK code it-
self) must be instrumented with calls to Autopilot moni-
toring. It is hoped in the future that this instrumentation
can be done by the compilation system. However, for our
experiment, all instrumentation was inserted by hand.
The contract monitor is a component that is started along
with the application. Its main job is to monitor whether
the application execution is meeting its performance
guarantees. When the application starts executing, the
sensors associated with the application register with the
Autopilot manager. The contract monitor looks up the
Autopilot manager to get information about the sensors
and directly receives the application performance data
from the sensors. Work is under way to implement an Au-
topilot service that maintains a pool of Autopilot manag-
ers and assigns an Autopilot manager from the pool to a
particular application execution and contract monitoring.
At present, however, the name of the machine running the
Autopilot manager must be supplied by the user (see de-
tails below). There is also an ongoing effort in the com-
piler group of GrADS to produce a generic Configurable
Object Program (Berman et al., 2000), and hence the user
will not be required to maintain separate executables for
each machine in the Grid. However, at present, this fea-
ture is not available. After the user has compiled the exe-
cutable, he is responsible for copying this executable to
every machine in the Grid.

After these preliminary steps have been completed, the
user is now ready to execute his application on the Grid.
The user interface to the ScaLAPACK experiment in the
GrADS system is the routine Grads_Lib_Linear_Solve.
This routine is the main numerical library driver of the
GrADS system and calls other components in GrADS. It
accepts the following inputs: the matrix size, the block
size, and an input file. This input file contains information
such as the machine on which the Autopilot manager is
running, the path to the contract monitor, the subset of
machines in the Grid on which the user could run his ap-
plication, the path to the executable on each machine, and
so on. In the future, this file will not be necessary, since
most of the parameters in the file will be maintained by
the grid system. For purposes of this experiment, the input
matrices are either read from a URL or randomly gener-
ated. A more flexible user interface for the generation and
distribution of matrices is being developed. Future devel-
opment will also encompass the automatic determination
of the value of the block size that will yield the best perfor-

NUMERICAL LIBRARIES AND THE GRID 363

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

mance of the application on the Grid. This block size de-
termines the data distribution of the matrices to the pro-
cessors in the Grid, and likewise the size of the
computational kernel to be used in the block-partitioned
algorithm.

The Grads_Lib_Linear_Solve routine performs the
following operations:

1. Sets up the problem data;
2. Creates the “coarse grid” of processors and their

NWS statistics by calling the resource selector;
3. Refines the coarse grid into a “fine grid” by calling

the performance modeler;
4. Invokes the contract developer to commit the re-

sources in the fine grid for the problem (repeat
steps 2-4 until the fine grid is committed for the
problem);

5. Launches the application to execute on the com-
mitted fine grid.

The appendix contains additional details about these
steps, as well as pseudocode for Grads_Lib_Lin-
ear_Solve() and APIs for the GrADS components.

SETTING UP THE PROBLEM

This step supplies the GrADS system data structures with
the user-passed parameters. In the future, this step will in-
volve contacting the GrADS name server to get informa-
tion about the Autopilot managers. This step will also in-
volve the building of the Configurable Object Program,
which will be an extension to the normal object code, en-
capsulating annotations about the runtime system and
user preferences. These annotations will later be used for
rescheduling the applications when the grid parameters
change. Finally, future enhancements will entail the auto-
matic determination of the best block size for this
DGEMM-based application on each of the machines in
the Grid.

RESOURCE SELECTOR

The resource selector contacts the MDS server, main-
tained by the Information Sciences Institute as part of the
Globus system, to check the status of the machines needed
by the user for the application. If the MDS server does not
detect failures with the machines, the resource selector
then contacts the NWS, maintained at the University of
Tennessee (UT), to obtain machine-specific information
pertaining to available CPU, available memory, and la-
tency and bandwidth between machines. At the end of the

resource selection step, a coarse grid is formed. This
coarse grid is essentially all of the machines available
along with the statistics returned by NWS.

PERFORMANCE MODELER

The performance modeler calculates the speed of the ma-
chine as a percentage of the peak Mflop/s on the machine.
The user currently supplies the peak Mflop/s rate of the
machine. In the future, the GrADS system will be able to
determine the peak Mflop/s rate of a machine. The per-
centage used in the calculation of speed is heuristically
chosen by observing previous ScaLAPACK perfor-
mance, in this case routine PDGESV, on the given archi-
tecture. Typically, PDGESV achieves approximately
75% of the local DGEMM (matrix multiply) performance
per processor, and because the percentage of peak perfor-
mance attained by DGEMM is approximately 75%, we
use a heuristic measure of 50% of the theoretical peak
performance for routine PDGESV from ScaLAPACK.

The performance modeler then performs the following
steps in determining the collection of machines to use for
the problem:

i. Determine the amount of physical memory that is
needed for the current problem.

ii. If possible, find the fastest machine in the coarse
grid that has the memory needed to solve the prob-
lem.

iii. Find a machine in the coarse grid that has the maxi-
mum average bandwidth relative to the other ma-
chines in the Grid. Add this to the fine grid.

iv. Do the following:
a. Find the next machine in the coarse grid that

has maximum average bandwidth relative to
the machines that are already in the fine grid.

b. Calculate the new time estimate for the appli-
cation using the machines in the fine grid. This
time estimate is calculated by executing a per-
formance model for the application. We are as-
suming that the library writer has provided a
performance model for the library routine.
This performance model takes into account the
speed of the machines as well as the latency
and bandwidth as returned by the NWS.

c. Repeat step iv until the time estimate for the ap-
plication runtime increases.

v. If a single machine is found in step ii, the time esti-
mate for the problem using the single machine is
compared with the time estimate for the problem
using the machines found in steps iii and iv. If the

364 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

time estimate for the machine found in step ii is
less than the time estimate for the machines found
in steps iii and iv, then use the single machine in
step ii for the fine grid. Else, use the machines
found in steps iii and iv for the fine grid. If step ii
was not able to find a single machine that is able to
solve the problem, then the machines found in
steps iii and iv are used for the fine grid.

At the end of performance modeling, the fine grid, which
consists of a subset of machines that can solve the prob-
lem in the fastest possible time, given the grid parameters,
is committed to the run.

The performance model, for the current case of solving
a system of linear equations on a heterogeneous computa-
tional grid, relies specifically on modeling the time to so-
lution for the PDGESV kernel. This is the routine that is
responsible for solving the linear system. A full descrip-
tion of how PDGESV solves the system may be found in
the ScaLAPACK Users’ Guide (Blackford et al., 1997). It
should be recalled that the process is dominated by an LU
factorization of the coefficient matrix A; that is, solving
the equations is a Level 3 BLAS process. As such, the
time to perform this factorization is arguably the major
time constraint in the time to solution for solving a system
of linear equations, in particular, as the problem size
grows larger.

Figure 1 provides a measure of how precisely the cur-
rent performance model is making predictions. The plots
are a statistical study of grid-based runs on the TORC
cluster at UT. The runs represent a homogeneous,
nondedicated cluster case. This is the simplest realistic
case possible because the communication lines, available
memory, and CPU architectures are the same for each
computing node. The way the model makes decisions is
based on the grid conditions returned at the time of re-
quest as described above. More specifically, in the current
model the problem is distributed over the fine grid in a
one-dimensional block-cyclic fashion with N/NB-sized
panels (which are determined from the size of A, the size
of N, and the chosen block size, NB). In the LU factor-
ization there are three major steps: a factorization phase, a
broadcast phase, and an update phase. The current model
predicts times for each of these phases as would be re-
flected on the root-computing node of the fine grid. The
dominant phase is the update, which is a call to the Level 3
PBLAS (Blackford et al., 1997) routine PDGEMM.

The first plot of Figure 1 is the total wall clock time
measured for performing the linear solution for problem
sizes ranging from N = 600 to N = 10,000. The corre-

sponding predicted values are also shown. Five runs were
made for each data point on this linear-log plot. The sec-
ond plot gives a precise comparison of the ratios of these
numbers. Naturally, in the second plot, we see the outly-
ing data points for the smaller problem sizes. If one disre-
gards those points, the current model is better than 95%
accurate on average for this simplistic, homogeneous
cluster study.

CONTRACT DEVELOPER

Currently, the contract developer commits all of the ma-
chines that were returned by the performance modeler for
the application. In the future, the contract developer will
be more robust and able to build contracts for the given
user problem and the grid parameters (Vraalsen et al.,
2001; Vetter and Reed, 2000).

APPLICATION LAUNCHER

The application launcher spawns the parallel application
over the machines in the fine grid and starts the contract
monitor. The sensors associated with the application reg-
ister themselves with the Autopilot manager. The contract
monitor, through the Autopilot manager, contacts the sen-
sors, obtains instrumentation data from the sensors, deter-
mines whether the application behaves as predicted by the
application model, and prints the output. In the future, the
contract monitor will send its output to a scheduler, which
may then reschedule, perhaps migrate, the application if
the contracts are violated. As soon as the parallel applica-
tion has been spawned, the input matrices are randomly
generated (or read from a URL) and block cyclically dis-
tributed among the processors in the fine grid. After the
input matrices are distributed, the ScaLAPACK routine
PDGESV is invoked to solve the system of linear equa-
tions, the validity of the solution is checked, and the re-
sults are returned to the user’s application.

Experiments

Two sets of experiments were conducted. The first set of
experiments compares the grid version of ScaLAPACK
(using MPICH-G) and the native ScaLAPACK (using
MPICH-P4) as implemented on a cluster. These measure-
ments give an estimate of the overhead cost associated
with performing numerical computations using the
GrADS system. The second set of experiments illustrate
the functionality of GrADS by running the application on
a dynamically chosen number of processors that exist and
are available on the Grid.

NUMERICAL LIBRARIES AND THE GRID 365

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

In viewing the following graphs, it is important to note
that the GrADS strategy for building the fine grid attempts
to optimize the time to solution. This model does not opti-
mize for best efficiency. However, the model could be
changed to alternatively optimize for best efficiency. There
are many possible grid resources (dedicated, shared, etc.),
and the needs of the user changes depending on the types of
resources available to him. Similarly, his definition of best
performance could be measured in terms of Mflop/s to
most effectively utilize the CPUs in his machine, instead of
minimum time to solution. Keeping these issues in mind,
in Figure 2, the number of processors selected by the
GrADS strategy for the fine grid is close to the best choice
for raw ScaLAPACK with respect to the time-to-solution
criterion and the one-dimensional mapping of processors
constraint.

COMPARISON OF GRID

AND RAW SCALAPACK

In the following experiments, ScaLAPACK runs using the
GrADS system were compared with the native
ScaLAPACK runs without the GrADS system on a local
Linux cluster (TORC) (http://icl.cs.utk.edu/projects/torc/)
at UT. Each machine is a dual-processor 550-MHz
Pentium III running Linux, and only one process was

366 COMPUTING APPLICATIONS

0

50

100

150

200

250

300

350

400

450

500

600 1500 3000 5000 8000 10000

N

T
im

e(
se

co
n

d
s)

Measured

Predicted

<Measured Time>/<Predicted Time>

0

0.2

0.4

0.6

0.8

1

1.2

1.4

600 1500 3000 5000 8000 10000

N

<Ratio>

(2p) (4p) (5p) (8p) (8p)(7p)

Fig. 1 Performance model versus measured performance

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

spawned per node. The comparison is between the
(ScaLAPACK+MPICH-G) (Foster and Karonis, 1998)
performance over the Grid and the (ScaLAPACK+
MPICH-P4) (Gropp et al., 1996; Gropp and Lusk, 1996)
performance without the Grid. Although the goal of the
GrADS system is to solve large problems across multiple
wide-area clusters, the following experiments reveal the
costs of grid-related overhead in the most ideal setting, a
local cluster. The results yield an approximate 30% over-
head in running MPICH-G versus MPICH-P4. In a best-
case scenario, this is a lower bound on the overhead to be
incurred when running across geographically distributed
clusters. Experiments were run using the TORC cluster in
dedicated and nondedicated modes.

Figure 2 depicts a sample case from the nondedicated
runs on TORC. It is a statistical set of measurements (10
runs for each point on the graph) for the total turnaround
time involved in solving a linear system of equations with
5000 unknowns. In other words, the interval from the time
the user submits a request to the time the system has been
solved and the application has been cleanly removed from
the computing resource is compared.

As mentioned, the GrADS linear system solver is built
with ScaLAPACK embedded in grid-based software.
Thus, it is important to understand what overhead is intro-
duced when going from the raw ScaLAPACK runs to the
full grid-based application. A fair question to ask for the
grid-based runs for a given problem size is: “How can one
guarantee that the fine grid will consist of exactly X pro-
cessors, where X is varying for a set problem size?”
Actually, if you allow the entire set of grid-based comput-
ing resources to be considered when solving the N = 5000
problem, the answer is you cannot. However, one can con-
strain the study to the TORC cluster and to a preset num-
ber of processors through a well-defined configuration
file used at runtime. Furthermore, although restriction to a
cluster is easy to impose, the number of nodes requested
versus the number that is actually selected for the fine grid
cannot be imposed with certainty. This is due to the per-
formance model. The point is, once the maximum number
of compute nodes requested becomes larger than the opti-
mal number predicted by the model, the request is ignored
and the model chooses the number it thinks would best
solve the problem in a timely fashion. Naturally, because
the grid resources are dynamic, this optimal number of
machines in the fine grid will vary. Thus, the number of
nodes for the grid-based runs is seen to terminate at six
processors in the plot.

The plot in Figure 2 compares three sets of measure-
ments:

1. The MPICH1.2.0-P4 + ScaLAPACK1.6 +
MPIBLACS1.1 numbers—which are referred to
as the raw ScaLAPACK runs;

2. The MPICH-G1.1.2 (Globus-based MPI) +
Autopilot2.3 + ScaLAPACK1.6 + MPIBLACS1.1
runs;

3. The MPICH-G1.1.2 (Globus-based MPI) +
NWS2.0pre2 + MDS + Autopi lot2.3 +
ScaLAPACK1.6 + MPIBLACS1.1 runs—the ac-
tual grid runs.

In this example, the raw ScaLAPACK had a minimal
runtime, on average, when run on five processors (as did
the type 2 runs). The grid-based runs were solved the fast-
est on four of the TORC computing nodes.

Clearly, going from the type 1 to type 3 runs incurs ad-
ditional overhead in time associated with the gathering of
information for the grid run. A detailed breakdown of
where this extra time comes from in the grid application is
provided in Figure 3.

With the exception of process spawning, the grid over-
head remains more or less constant as the size of the prob-
lem and the number of processors chosen increase. The
time it takes to spawn processes in the Grid is noticeably
more expensive than in the non-Grid case, and increases
with the number of processes. Because the complexity of
the problem being solved is O(n3), for very large problems
this overhead will become negligible.

SCALAPACK ACROSS CLUSTERS

In this experiment, we used two separate clusters from UT
called TORC and CYPHER (http://www.cs.utk.edu/
sinrg/) and a cluster from UIUC called OPUS. For this ex-
periment, four TORC machines, six CYPHER machines,
and eight OPUS machines were available. Table 1 shows
some of the system parameters of the machines.

Figure 4 shows the total time taken for GrADS for each
experiment as the matrix size is increased.

In the above experiments, GrADS chose only OPUS
machines at UIUC for matrix sizes up to 8000. In fact, for
this problem size, the system can be solved on one cluster.
The OPUS and the CYPHER clusters are comparable in
terms of their network parameters. At the time the experi-
ments were conducted, the OPUS cluster was found to
have better network bandwidth than the CYPHER cluster
due to the network load on CYPHER. Hence, the OPUS
cluster was the best choice among the pool of resources.
For a matrix size of 8000, the amount of memory needed
per node is on the order of 512 MB. Because none of the
UIUC machines has this much memory, GrADS used

NUMERICAL LIBRARIES AND THE GRID 367

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

both the UIUC and CYPHER machines at UT for matrix
sizes larger than 8000. The GrADS framework gave pref-
erence to the CYPHER machines over the TORC ma-
chines because of the superior network speed of the
CYPHER network. Hence, we find a steep increase in exe-
cution time from matrix size 7000 to 8000.

We also found that the number of machines chosen for a
matrix size of 10,000 is smaller than the number of ma-

368 COMPUTING APPLICATIONS

“. . . although restriction to a cluster is
easy to impose, the number of nodes
requested versus the number that is
actually selected for the fine grid cannot
be imposed with certainty.”

0

50

100

150

200

250

300

350

400

450

500

550

1 2 3 4 5 6 7 8

N processors

T
o

ta
l W

al
l C

lo
ck

 T
im

e
(s

ec
o

n
d

s)

MPICH1.2.0-P4,ScaLAPACK1.6,BLACS1.1

Globus1.1.3,MPICH-G1.1.2,AutoPilot2.3,ScaLAPACK1.6,BLACS1.1

Globus1.1.3,MPICH-G1.1.2,AutoPilot2.3,NWS2.0pre2,MDS,ScaLAPACK1.6,BLACS1.1

Fig. 2 Ax = b, N = 5000, multiprocessor runs

0

100

200

300

400

500

600

Grid Non-Grid Grid Non-Grid Grid Non-Grid Grid Non-Grid Grid Non-Grid

T
im

e
(s

ec
o

n
d

s)

Time for Application Execution

Time for processes spawning

Time for NWS retrieval

Time for MDS retrieval

N=600, NB=40,
2 torc procs.

Actual time /
Predicted time =
46.12

N=1500, NB=40,
4 torc procs.

Actual time /
Predicted time =
15.03

N=5000, NB=40,
6 torc procs.

Actual time /
Predicted time =
2.25

N=8000, NB=40,
8 torc procs.

Actual time /
Predicted time =
1.52

N=10,000, NB=40,
8 torc procs.

Actual time /
Predicted time =
1.29

Fig. 3 Overhead in grid runs (NWS = Network Weather Service, MDS = Metacomputing Directory Service

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

chines chosen for matrix size of 8000. This is because cer-
tain UIUC machines have small memory size, and they
were found to be not optimal by the GrADS system for a
matrix size of 10,000. Also, because the experiment was
conducted on nondedicated systems, the GrADS schedul-
ing system did not choose some machines from the collec-
tion when the system and network loads corresponding to
those machines significantly increased.

For matrix sizes larger than 10,000, machines from all
three of the clusters were chosen. We find that the transi-
tion from 10,000 to 11,000 is not as steep as the transition
from 7000 to 8000. This is because the transition from
7000 to 8000 involved Internet connections between
UIUC and UT machines and the transition from 10,000 to
11,000 involved UT campus interconnections between the
CYPHER and the TORC machines.

As can be seen from these experiments, the GrADS in-
frastructure is making intelligent decisions based on the
application and the dynamics of the system parameters.

We also ran an experiment using all the machines in the
system including 6 TORC machines, 12 CYPHER ma-
chines, and 11 UIUC machines. Due to memory limita-
tions (and CPU load on the machines), the maximum prob-
lem size that was solvable by the collection of machines
was a matrix of size 30,000. In this case, GrADS chose 17
processors to solve the problem. These 17 machines con-
sisted of 8 TORC machines and 9 CYPHER machines. The
total time taken for the problem was 81.7 minutes. It took
55 seconds to retrieve information from the MDS and
NWS; the remaining time was spent launching and execut-
ing the application. Thus, for the problem size of 30,000,
GrADS was able to achieve 213.4 Mflop/s. The theoretical
peak performance achievable is 500 Mflop/s on CYPHER

NUMERICAL LIBRARIES AND THE GRID 369

Table 1

Grid of Computers Used

TORC CYPHER OPUS

Type Dual Pentium III Dual Pentium III Pentium II
OS Red Hat Linux 2.2.15 SMP Debian Linux 2.2.17 SMP Red Hat Linux 2.2.16 SMP
Memory 512 MB 512 MB 128 or 256 MB
CPU speed 550 MHz 500 MHz 265-448 MHz
Network Fast Ethernet (100 Mbit/s) Gigabit Ethernet (SK-9843) IP over Myrinet (LANai 4.3) + Fast

(3Com 3C905B) and switch and switch (Foundry FastIron II) Ethernet (3Com 3C905B) and
(BayStack 350T) with 16 ports with 24 ports switch (M2M-SW16 & Cisco

Catalyst 2924 XL) with 16 ports each

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000

Matrix Size

5 OPUS
8 OPUS

8 OPUS

8 OPUS, 6 CYPHER

8 OPUS, 2 TORC, 6 CYPHER m/c
s

6 OPUS, 5 CYPHER

2 OPUS, 4 TORC, 6 CYPHER

8 OPUS, 4 TORC, 4 CYPHER

 OPUS
OPUS,
CYPHER

OPUS, TORC, CYPHER

T
im

e
(s

ec
o

n
d

s)

Fig. 4 Performance on the Grid

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

and 550 Mflop/s on TORC. Thus, GrADS was able to
achieve 42.6% of the peak performance whereas the raw
ScaLAPACK can achieve about 50% of the peak perfor-
mance. Thus, we find that the performance of GrADS
over the Grid is not far from the performance of the native
numerical application over a local cluster. The GrADS
system as configured was not able to solve problem sizes
larger than 30,000 due to the memory limitations (and
CPU load) of the available machines.

The timings for grid ScaLAPACK need to more pre-
cisely reflect the total overhead cost for performing
ScaLAPACK on the Grid. Grid ScaLAPACK timings
were performed with the NWS clique leader not included
as one of the computational nodes, so the complete over-
head associated with NWS is not totally reflected in the
timings. Also, the TORC nodes are dual processors; the
timings were performed on one processor of each node,
but the kernel was configured as a dual processor. Because
the communication is done over IP, the amount of over-
head communication cost that is not being captured by the
timings is unknown because this cost is being offset on the
second processor per node. For future work, to more accu-
rately reflect the total overhead associated with perform-
ing ScaLAPACK over the Grid, timings will be performed
with the TORC nodes configured as uniprocessors and the
clique leader included as one of the compute nodes.

The timings reported for grid ScaLAPACK and raw
ScaLAPACK include the time to spawn the MPI pro-
cesses, generate the matrices, solve the system, and per-
form an error check to validate the computed solution.
The cost of the error check is negligible. In terms of per-
formance, on the TORC cluster, for example, each ma-
chine’s theoretical peak performance is 550 Mflop/s
(each processor is 550 MHz and one flop per cycle), and
ATLAS’s (Whaley, Petitet, and Dongarra, 2001)
DGEMM achieves 400 Mflop/s, 73% of the theoretical
peak performance. As a general rule of thumb, when opti-
mizing for best efficiency per processor, ScaLAPACK
achieves 75% of DGEMM performance, approximately
300 Mflop/s per processor. This measure depends greatly
on the network and the mapping of the processors (one-di-

mensional vs. two-dimensional). Thus, in its best case,
raw ScaLAPACK performs at 55% of the theoretical peak
performance of the machine. As can be seen from the grid
ScaLAPACK timings and the N = 30,000 case, the code
achieves approximately 210 Mflop/s per processor,
which is 40% of the theoretical peak performance. This
performance is quite good considering the fact that we
have a heterogeneous group of machines connected
across the Internet, most of which are slower than 550
MHz.

Conclusion

The experiments reported in this paper were more chal-
lenging than originally anticipated. We had to coordinate
a number of machines across different administrative do-
mains, and there were varying degrees of maturity in the
software and the sheer amount of software involved in
getting the experiments in place and maintaining a work-
able configuration over a long period of time. It is hoped
that this situation will improve as the software matures,
more sites engage in grid-based computing, and the soft-
ware infrastructure is more widely used.

Part of the point of conducting these experiments was
to show that using geographically distributed resources
under a grid framework through the control of the library
routine can lead to an improved time to solution for a user.
As such, the results, for this modest number of experi-
ments, show that performing a grid-based computation
can be a reasonable undertaking. In the case of solving
dense matrix problems, we have the situation in which
there are O(n2) data to move and O(n3) operations to per-
form. So the fact that we are dealing with geographically
distributed systems is not a major factor in performance
when the data have to be moved across slow networks. If
the problem characteristics are different the situation
might not be the same in terms of grid feasibility.

Future work will involve the development of a system
that implements a migration system if the time to solution
violates the performance contract and a mechanism to
deal with fault tolerance.

370 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

NUMERICAL LIBRARIES AND THE GRID 371

APPENDIX: GRADS NUMERICAL LIBRARY INTERFACE

The following example is for a user running an application on a sequential machine that is connected to the network. The user will
make a grid-enabled library call, and the computation will be done on a set of processors provided by the system. In this example, the user
wants to solve a system of linear equations using Gaussian elimination with partial pivoting. The framework provided here can be ex-
panded to include other mathematical software.

We assume the user has already communicated with the system (Globus) and has been authenticated (we assume using grid-proxy-
init).

The user must include “grads.h” in his program and invokes Grads_Lib_Linear_Solve() as follows:

ierr = Grads_Lib_Linear_Solve(USER_ARGS);

The USER_ARGS data structure contains all the parameters passed by the user including the matrix size, the block size, the list of ma-
chines on which the user wants to run his application, the machine that is running the Autopilot manager and so on.

Below is the pseudocode for Grads_Lib_Linear_Solve, as well as the APIs for the GrADS components detailed in this paper.

int Grads_Lib_Linear_Solve(demo_args_T *USER_ARGS)
{

Grads_Resource_Coarse_Grid_Handle_T coarse_grid;
Grads_Lib_Fine_Grid_Handle_T fine_grid;
Grads_Lib_Problem_Handle_T problem;
int n, match;

/* Create a problem of type “Linear_Solve” */
Grads_Lib_Problem_Create(Linear_Solve, &problem);

/* Set problem attributes */
Grads_Lib_Problem_Set_Attr(Problem_Matrix_Size, &Matrix_Size, problem);
Grads_Lib_Problem_Set_Attr(Problem_Block_Size, &Block_Size, problem);
do
{

/* For a given problem, retrieve a grid */
ierr = Grads_Resource_Selector(problem, &coarse_grid);

/* Extract sub-grid to work with */
Grads_Lib_Performance_Modeler(problem, coarse_grid, USER_ARGS,

&fine_grid);
/* we are done with coarse_grid; free memory coarse_grid points to. */
Grads_Resource_Coarse_Grid_Remove(problem, coarse_grid);

/* Try to commit the fine grid for the problem */
match = Grads_Contract_Developer(problem, fine_grid);

/* If this list of machines is not good - release it */
if(match != Grads_SUCCESS) Grads_Lib_Grid_Free(problem, fine_grid);

} while(match != Grads_SUCCESS);

ierr = Grads_Application_Launcher(problem, fine_grid, USER_ARGS);

/* Release the Resources */
Grads_Lib_Fine_Grid_Remove(fine_grid);
Grads_Lib_Problem_Remove (problem);
return(ierr);

}
The APIs for the GrADS components detailed in this paper are listed below. For complete information, refer to the “grads.h” include file.

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

372 COMPUTING APPLICATIONS

RESOURCE SELECTOR

Grads_Resource_Selector(problem, coarse_grid)
IN problem the problem handle
OUT coarse_grid handle to a structure with the following information

int no_coarse_grid number of processors potentially available
int array name(no_coarse_grid)

names of the available processors (perhaps ip addresses)
int array memory(no_coarse_grid)

amount of memory available on each of the processors
int array communication(no_coarse_grid^2)

a 2-d array containing bandwidth and latency information
on the link between available processors

int array speed(no_coarse_grid)
peak speed for each processor according to some metric.

int array load(no_coarse_grid)
load on each processor at the time the call was made.

OUT ierr error flag from the Resource_Selector

int Grads_Resource_Selector(Grads_Lib_Problem_Handle_T problem,
Grads_Resource_Coarse_Grid_Handle_T *coarse_grid)

PERFORMANCE MODELER

Grads_Lib_Performance_Modeler(problem, coarse_grid, USER_ARGS, fine_grid)
IN problem a unique problem identifier for this library call
IN coarse_grid struct (see above call)
IN USER_ARGS struct
OUT fine_grid handle to a structure specifying the machine configuration

to use
OUT ierr error code returned by the function

int Grads_Lib_Performance_Modeler(Grads_Lib_Problem_Handle_T problem,
Grads_Resource_Coarse_Grid_Handle_T coarse_grid,
demo_args_T *USER_ARGS,
Grads_Lib_Fine_Grid_Handle_T *fine_grid)

CONTRACT DEVELOPER

match = Grads_Contract_Developer(problem, fine_grid)
IN problem a unique problem identifier for this library call
OUT fine_grid handle to machine configuration
OUT match will be 0 if the processors are available for this run.

int Grads_Contract_Developer(Grads_Lib_Problem_Handle_T problem,
Grads_Lib_Fine_Grid_Handle_T fine grid)

APPLICATION LAUNCHER

ierr = Grads_Application_Launcher(problem, fine_grid, USER_ARGS)
IN problem a unique problem identifier for this library call
IN fine_grid handle to machine configuration
IN USER_ARGS user arguments
OUT ierr error flag from the Application_Launcher

int Grads_Application_Launcher(Grads_Lib_Problem_Handle_T problem,
Grads_Lib_Fine_Grid_Handle_T fine_grid,
demo_args_T *USER_ARGS)

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

ACKNOWLEDGMENTS

The work is supported in part by the National Science Founda-
tion contract GRANT #E81-9975020, SC R36505-29200099,
R01-1030-09. We would like to thank the following individuals
who contributed code and support to the ScaLAPACK experi-
ment: Ruth Aydt, Dan Reed, Frederik Vraalsen, and Celso
Mendes of UIUC; Fran Berman, Holly Dail, Otto Sievert, and
Graziano Obertelli of UCSD; Sridhar Gullapalli at USC/ISI;
Rich Wolski, Martin Swany, and Clay England at UT.

BIOGRAPHIES

Antoine Petitet is a benchmark engineer at Sun
Microsystems in Paris, France. Until February 2001, he was a
research scientist in the Computer Science Department at the
University of Tennessee, Knoxville. His research interests pri-
marily focused on parallel computing, numerical linear algebra,
and the design of scientific parallel numerical software libraries
for distributed-memory concurrent computers. He was involved
in the design and implementation of the software packages
ScaLAPACK and ATLAS.

Susan Blackford is a member of the technical staff at
Myricom Inc. Before joining the software development team at
Myricom, she was a senior research associate at the University
of Tennessee’s Innovative Computing Laboratory (1990-2001).
She received a B.S. in mathematics from the University of Ten-
nessee in 1988 and an M.S. in computer science from the Uni-
versity of Tennessee in 1990. Her interests lie in high perfor-
mance computing, and she specializes in the development,
testing, and documentation of high-quality mathematical soft-
ware. She was involved in the design, implementation, and sup-
port of the software packages LAPACK and ScaLAPACK, and
was recently involved in the use of numerical libraries in
NetSolve.

Jack Dongarra holds an appointment as university distin-
guished professor of computer science in the Computer Science
Department at the University of Tennessee and is an adjunct R&D
participant in the Computer Science and Mathematics Division
at Oak Ridge National Laboratory and an adjunct professor in
computer science at Rice University. He specializes in numeri-
cal algorithms in linear algebra, parallel computing, use of ad-
vanced-computer architectures, programming methodology,
and tools for parallel computers. His research includes the de-
velopment, testing, and documentation of high-quality mathe-
matical software. He has contributed to the design and imple-
mentation of the following open source software packages and
systems: EISPACK, LINPACK, the BLAS, LAPACK,
ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS,
and PAPI. He has published approximately 200 articles, papers,
reports, and technical memoranda, and he is coauthor of several
books. He is a fellow of the American Association for the Ad-
vancement of Science, the Association for Computing Machin-

ery, and the Institute of Electrical and Electronics Engineers,
and a member of the National Academy of Engineering.

Brett Ellis is a senior computer systems specialist in the In-
novative Computing Laboratory (ICL), a research group within
the Computer Science Department at the University of Tennes-
see. He has received B.S. degrees in mathematics 1996 and in
computer science in 2000. At ICL, he has been involved with
work on the research done in support of the computing infra-
structure and installation/troubleshooting of the software cre-
ated within.

Graham Fagg received a B.Sc. in computer science and cy-
bernetics from the University of Reading (U.K.) 1991 and a
Ph.D. in computer science in 1998. From 1991 to 1993, he
worked on CASE tools for interconnecting array processors and
Inmos T-800 transputer systems as part of the ESPRIT Alpha
project. From 1994 to the end of 1995, he was a research assis-
tant in the Cluster Computing Laboratory at the University of
Reading working on code generation tools for group communi-
cations. From 1991 to 1996, he has worked as a senior research
associate at the University of Tennessee. Since 1999, he has
been a research assistant professor. His current research inter-
ests include distributed scheduling, resource management, per-
formance prediction, benchmarking, cluster management tools,
and high-speed networking. He is currently involved in the de-
velopment of a number of different metacomputing and grid
middleware systems including SNIPE, MPI_Connect(), HAR-
NESS, and a fault-tolerant MPI implementation (FT-MPI).

Kenneth Roche works in the Linear Algebra and Distributed
Computing groups at the Innovative Computing Laboratory
(ICL) in Knoxville, Tennessee. His professional activities in the
past 5 years include studies in scientific computing and theoreti-
cal physics. In physics, quantum mechanical many body theory,
nuclear astrophysics, and some mesoscopic phenomena have
been his interests. In computer science, his interests are in nu-
merical mathematics (libraries) and distributed computing envi-
ronments. He is a member of the American Physical Society and
the Society for Industrial and Applied Mathematics.

Sathish Vadhiyar is a Ph.D. student in the Department of
Computer Science at the University of Tennessee. He received
an M.S. in computer science from Clemson University. In his
master’s work, he concentrated on parallel compilers involving
threads. He was also involved in a research group on graphics.
He is currently a graduate research assistant in the Innovative
Computing Laboratory in Knoxville, Tennessee. His main re-
search interests are in the fields of parallel, distributed, and grid
computing and architecture-specific tuning. He works on three
different projects: a metacomputing system called HARNESS, a
client-server based grid computing system called NetSolve, and
Grid Application Development Software. His work includes ar-
chitecture-specific tuning of MPI collective communications.
He is currently involved in finding solutions for efficient sched-
uling in grid environments. He is a student member of the Insti-
tute of Electrical and Electronics Engineers.

NUMERICAL LIBRARIES AND THE GRID 373

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

REFERENCES

Balay, S., et al. 1996. PETSc 2.0 Users’ Manual. Argonne, IL:
Argonne National Laboratory.

Berman, F., et al. 2000. The GrADS Project: Software Support
for High-Level Grid Application Development. Houston,
TX: Rice University.

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.,
Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet,
A., Stanley, K., Walker, D., and Whaley, R. ScaLAPACK
Users’ Guide. Philadelphia: SIAM.

Foster, I., and Karonis, N. 1998. A grid-enabled MPI: Message
passing in heterogeneous distributed computing systems. In
Proceedings of SuperComputing 98 (SC98), Orlando, FL.

Foster, I., and Kesselman, C. 1997. Globus: A metacomputing
infrastructure toolkit. International Journal of High Perfor-
mance Computing Applications 11:115-128.

Gropp, W., Lusk, E., Doss, N. and Skjellum, A. 1996. A high
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing 22:789-828.

Gropp, W., and Lusk, W. 1996. Users’ Guide for MPICH, a
Portable Implementation of MPI. Argonne, IL: Mathemat-

ics and Computer Science Division, Argonne National
Laboratory.

Ribler, R. L., et al. 1998. Autopilot: Adaptive control of distrib-
uted applications. In Proceedings of the 7th IEEE Sympo-
sium on High-Performance Distributed Computing, Chi-
cago.

Snir, M., et al. 1998. MPI: The Complete Reference, Volume 1,
the MPI Core. 2nd ed. Boston: MIT Press.

Vetter, J. S., and Reed, D. A. 2000. Real-time performance mon-
itoring, adaptive control, and interactive steering of compu-
tational grids. International Journal of High Performance
Computing Applications 14:357-366.

Vraalsen, F., et al. 2001. Performance contracts: Predicting and
monitoring grid application behavior. In 2nd International
Workshop on Grid Computing, Denver, CO.

Whaley, R., Petitet, A., and Dongarra, J. 2001. Automated em-
pirical optimization of software and the ATLAS project. Par-
allel Computing 27 (1-2): 3-25.

Wolski, R., Spring, N., and Hayes, J. 1999. The Network
Weather Service: A distributed resource performance fore-
casting service for metacomputing. Future Generation
Computer Systems 15:757-768.

374 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

