
Journal of Computational and Applied Mathematics 123 (2000) 489–514
www.elsevier.nl/locate/cam

Numerical linear algebra algorithms and software

Jack J. Dongarraa ;b;∗, Victor Eijkhouta
aDepartment of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA
bMathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge,

TN 37831-6367, USA

Received 12 July 1999; received in revised form 16 August 1999

Abstract

The increasing availability of advanced-architecture computers has a signi�cant e�ect on all spheres of scienti�c compu-
tation, including algorithm research and software development in numerical linear algebra. Linear algebra – in particular,
the solution of linear systems of equations – lies at the heart of most calculations in scienti�c computing. This paper
discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers.
We discuss two broad classes of algorithms: those for dense, and those for sparse matrices. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction

The increasing availability of advanced-architecture computers has a signi�cant e�ect on all spheres
of scienti�c computation, including algorithm research and software development in numerical linear
algebra. Linear algebra – in particular, the solution of linear systems of equations – lies at the heart
of most calculations in scienti�c computing. This article discusses some of the recent developments
in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad
classes of algorithms: those for dense, and those for sparse matrices. A matrix is called sparse if it
has a substantial number of zero elements, making specialized storage and algorithms necessary.
Much of the work in developing linear algebra software for advanced-architecture computers is

motivated by the need to solve large problems on the fastest computers available. In this article,
we focus on four basic issues: (1) the motivation for the work; (2) the development of standards

∗ Corresponding author.
E-mail address: dongarra@cs.utk.edu (J.J. Dongarra).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00400-3

490 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

for use in linear algebra and the building blocks for libraries; (3) aspects of algorithm design and
parallel implementation; and (4) future directions for research.
As representative examples of dense matrix routines, we will consider the Cholesky and LU

factorizations, and these will be used to highlight the most important factors that must be considered
in designing linear algebra software for advanced-architecture computers. We use these factorization
routines for illustrative purposes not only because they are relatively simple, but also because of
their importance in several scienti�c and engineering applications that make use of boundary element
methods. These applications include electromagnetic scattering and computational uid dynamics
problems, as discussed in more detail in Section 2.1.2.
For the past 15 years or so, there has been a great deal of activity in the area of algorithms and

software for solving linear algebra problems. The goal of achieving high performance on codes that
are portable across platforms has largely been realized by the identi�cation of linear algebra kernels,
the basic linear algebra subprograms (BLAS). We will discuss the EISPACK, LINPACK, LAPACK,
and ScaLAPACK libraries which are expressed in successive levels of the BLAS.
The key insight of our approach to designing linear algebra algorithms for advanced architec-

ture computers is that the frequency with which data are moved between di�erent levels of the
memory hierarchy must be minimized in order to attain high performance. Thus, our main algo-
rithmic approach for exploiting both vectorization and parallelism in our implementations is the use
of block-partitioned algorithms, particularly in conjunction with highly tuned kernels for performing
matrix–vector and matrix–matrix operations (the Level 2 and 3 BLAS).

2. Dense linear algebra algorithms

2.1. Overview of dense algorithms

Common operations involving dense matrices are the solution of linear systems

Ax = b;

the least-squares solution of over- or underdetermined systems

min
x
||Ax − b||

and the computation of eigenvalues and -vectors

Ax = �x:

Although these problems are formulated as matrix–vector equations, their solution involves a de�nite
matrix–matrix component. For instance, in order to solve a linear system, the coe�cient matrix is
�rst factored as

A= LU

(or A = U TU in the case of symmetry) where L and U are lower and upper triangular matrices,
respectively. It is a common feature of these matrix–matrix operations that they take, on a matrix
of size n × n, a number of operations proportional to n3, a factor n more than the number of data
elements involved.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 491

Thus, we are led to identify three levels of linear algebra operations:

• Level 1: vector–vector operations such as the update y ← y + �x and the inner product d= xTy.
These operations involve (for vectors of length n) O(n) data and O(n) operations.

• Level 2: matrix–vector operations such as the matrix–vector product y=Ax. These involve O(n2)
operations on O(n2) data.

• Level 3: matrix–matrix operations such as the matrix–matrix product C=AB. These involve O(n3)
operations on O(n2) data.

These three levels of operations have been realized in a software standards known as the basic linear
algebra subprograms (BLAS) [17,18,46]. Although BLAS routines are freely available on the net,
many computer vendors supply a tuned, often assembly coded, BLAS library optimized for their
particular architecture, see also Section 4.3.
The relation between the number of operations and the amount of data is crucial for the perfor-

mance of the algorithm. We discuss this in detail in Section 3.1.

2.1.1. Loop rearranging
The operations of BLAS levels 2 and 3 can be implemented using doubly and triply nested loops,

respectively. With simply modi�cations, this means that for level 2 each algorithms has two, and
for level 3 six di�erent implementations [20]. For instance, solving a lower triangular system Lx=y
is mostly written

for i = 1 : : : n
t = 0
for j = 1 : : : i − 1

t ← t + ‘ijxj
x = ‘−1ii (yi − t)

but can also be written as
for j = 1 : : : n
xj = ‘−1jj yj
for i = j + 1 : : : n

yi ← yi − ‘ijxj
(The latter implementation overwrites the right-hand side vector y, but this can be eliminated.)
While the two implementations are equivalent in terms of number of operations, there may be

substantial di�erences in performance due to architectural considerations. We note, for instance, that
the inner loop in the �rst implementation uses a row of L, whereas the inner loop in the second
traverses a column. Since matrices are usually stored with either rows or columns in contiguous
locations, column storage the historical default inherited from the FORTRAN programming language,
the performance of the two can be radically di�erent. We discuss this point further in Section 3.1.

2.1.2. Uses of LU factorization in science and engineering
A major source of large dense linear systems is problems involving the solution of boundary

integral equations [26]. These are integral equations de�ned on the boundary of a region of interest.
All examples of practical interest compute some intermediate quantity on a two-dimensional boundary

492 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

and then use this information to compute the �nal desired quantity in three-dimensional space. The
price one pays for replacing three dimensions with two is that what started as a sparse problem in
O(n3) variables is replaced by a dense problem in O(n2).
Dense systems of linear equations are found in numerous applications, including:

• airplane wing design;
• radar cross-section studies;
• ow around ships and other o�-shore constructions;
• di�usion of solid bodies in a liquid;
• noise reduction; and
• di�usion of light through small particles.
The electromagnetics community is a major user of dense linear systems solvers. Of particular

interest to this community is the solution of the so-called radar cross-section problem. In this problem,
a signal of �xed frequency bounces o� an object; the goal is to determine the intensity of the reected
signal in all possible directions. The underlying di�erential equation may vary, depending on the
speci�c problem. In the design of stealth aircraft, the principal equation is the Helmholtz equation.
To solve this equation, researchers use the method of moments [37,62]. In the case of uid ow,
the problem often involves solving the Laplace or Poisson equation. Here, the boundary integral
solution is known as the panel method [38,39], so named from the quadrilaterals that discretize and
approximate a structure such as an airplane. Generally, these methods are called boundary element
methods.
Use of these methods produces a dense linear system of size O(N) × O(N), where N is the

number of boundary points (or panels) being used. It is not unusual to see size 3N × 3N , because
of three physical quantities of interest at every boundary element.
A typical approach to solving such systems is to use LU factorization. Each entry of the matrix

is computed as an interaction of two boundary elements. Often, many integrals must be computed.
In many instances, the time required to compute the matrix is considerably larger than the time for
solution.
The builders of stealth technology who are interested in radar cross-sections are using direct

Gaussian elimination methods for solving dense linear systems. These systems are always symmetric
and complex, but not Hermitian.
For further information on various methods for solving large dense linear algebra problems that

arise in computational uid dynamics, see the report by Alan Edelman [26].

2.2. Block algorithms and their derivation

It is comparatively straightforward to recode many of the dense linear algebra algorithms so that
they use level 2 BLAS. Indeed, in the simplest cases the same oating-point operations are done,
possibly even in the same order: it is just a matter of reorganizing the software. To illustrate this
point, we consider the Cholesky factorization algorithm, which factors a symmetric positive-de�nite
matrix as A = U TU . We consider Cholesky factorization because the algorithm is simple, and no
pivoting is required on a positive-de�nite matrix.
Suppose that after j − 1 steps the block A00 in the upper left-hand corner of A has been factored

as A00 = U T
00U00. The next row and column of the factorization can then be computed by writing

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 493

A= U TU as

A00 bj A02
: ajj cTj
: : A22

=

U T
00 0 0
vTj ujj 0
U T
02 wj U

T
22

U00 vj U02
0 ujj wTj
0 0 U22

 ;

where bj; cj; vj, and wj are column vectors of length j − 1, and ajj and ujj are scalars. Equating
coe�cients on the jth column, we obtain

bj = U T
00vj; ajj = vTj vj + u

2
jj:

Since U00 has already been computed, we can compute vj and ujj from the equations

U T
00vj = bj; u2jj = ajj − vTj vj:

The computation of vj is a triangular system solution, a BLAS level 2 operation. Thus, a code
using this will have a single call replacing a loop of level 1 calls or a doubly nested loop of scalar
operations.
This change by itself is su�cient to result in large gains in performance on a number of machines

– for example, from 72 to 251 megaops for a matrix of order 500 on one processor of a CRAY
Y-MP. Since this is 81% of the peak speed of matrix–matrix multiplication on this processor, we
cannot hope to do very much better by using level 3 BLAS.
We can, however, restructure the algorithm at a deeper level to exploit the faster speed of the

level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm – that is, an
algorithm that operates on blocks or submatrices of the original matrix.

2.2.1. Deriving a block algorithm
To derive a block form of Cholesky factorization, we partition the matrices as shown in Fig. 1,

in which the diagonal blocks of A and U are square, but of di�ering sizes. We assume that the �rst
block has already been factored as A00 = U T

00U00, and that we now want to determine the second
block column of U consisting of the blocks U01 and U11. Equating submatrices in the second block
of columns, we obtain

A01 = U T
00U01;

A11 = U T
01U01 + U

T
11U11:

Fig. 1. Partitioning of A; U T, and U into blocks. It is assumed that the �rst block has already been factored as A00=U T
00U00,

and we next want to determine the block column consisting of U01 and U11. Note that the diagonal blocks of A and U
are square matrices.

494 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

Table 1
Speed (Megaops) of Cholesky factorization A= U TU for n= 500

CRAY T-90 CRAY T-90
1 proc. 4 proc.

j-variant: LINPACK 376 392
j-variant: using level 3 BLAS 1222 2306
i-variant: using level 3 BLAS 1297 3279

Hence, since U00 has already been computed, we can compute U01 as the solution to the equation

U T
00U01 = A01

by a call to the level 3 BLAS routine STRSM; and then we can compute U11 from

U T
11U11 = A11 − U T

01U01:

This involves �rst updating the symmetric submatrix A11 by a call to the level 3 BLAS routine
SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow recursion, a
separate routine must be called, using level 2 BLAS rather than level 3. In this way, successive
blocks of columns of U are computed.
But that is not the end of the story, and the code given above is not the code actually used in the

LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computations there
are several algorithmic variants, often referred to as i-, j-, and k-variants, according to a convention
introduced in [15,20] and explored further in [53,54]. The same is true of the corresponding block
algorithms.
It turns out that the j-variant chosen for LINPACK, and used in the above examples, is not the

fastest on many machines, because it performs most of the work in solving triangular systems of
equations, which can be signi�cantly slower than matrix–matrix multiplication. The variant actually
used in LAPACK is the i-variant, which relies on matrix–matrix multiplication for most of the work.
Table 1 summarizes the results.

3. The inuence of computer architecture on performance

3.1. Discussion of architectural features

In Section 2.1.1 we noted that for BLAS levels 2 and 3 several equivalent implementations of
the operations exist. These di�er, for instance, in whether they access a matrix operand by rows or
columns in the inner loop. In FORTRAN, matrices are stored by columns, so accessing a column
corresponds to accessing consecutive memory elements. On the other hand, as one proceeds across
a row, the memory references jump across memory, the length of the jump being proportional to
the length of a column.
We will now give a simpli�ed discussion on the various architectural issues that inuence the

choice of algorithm. The following is, of necessity, a simpli�ed account of the state of a�airs for
any particular architecture.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 495

At �rst, we concentrate only on ‘nonblocked’ algorithms. In blocked methods, discussed in more
detail below, every algorithm has two levels on which we can consider loop arranging: the block
level, and the scalar level. Often, the best arrangement on one level is not the best on the other.
The next two subsections concern themselves with the scalar level.

3.1.1. Using consecutive elements
The decision how to traverse matrix elements should usually be taken so as to use elements that

are consecutive in storage. There are at least three architectural reasons for this.
Page swapping: By using consecutive memory elements, instead of ones at some stride distance

of each other, the amount of memory page swapping is minimized.
Memory banks: If the processor cycle is faster than the memory cycle, and memory consists

of interleaved banks, consecutive elements will be in di�erent banks. By contrast, taking elements
separated a distance equal to the number of banks, all elements will come from the same bank. This
will reduce the e�ective performance of the algorithm to the memory speed instead of the processor
speed.
Cache lines: Processors with a memory cache typically do not bring in single elements from

memory to cache, but move them one ‘cache line’ at a time. A cache line consists of a small
number of consecutive memory elements. Thus, using consecutive memory storage elements means
that a next element will already be in cache and does not have to be brought into cache. This cuts
down on memory tra�c.
Whether consecutive elements correspond to rows or columns in a matrix depends on the pro-

gramming language used. In Fortran, columns are stored consecutively, whereas C has row elements
contiguous in memory.
The e�ects of column orientation are quite dramatic: on systems with virtual or cache memo-

ries, the LINPACK library codes (Section 4.4.2), which are written in FORTRAN and which are
column-oriented, will signi�cantly outperform FORTRAN codes that are not column-oriented. In the
C language, however, algorithms should be formulated with row-orientation. We note that textbook
examples of matrix algorithms are usually given in a row-oriented manner.

3.1.2. Cache reuse
In many contemporary architectures, memory bandwidth is not enough to keep the processor

working at its peak rate. Therefore, the architecture incorporates some cache memory, a relatively
small store of faster memory. The memory bandwidth problem is now shifted to bringing the elements
into cache, and this problem can be obviated almost entirely if the algorithm can re-use cache
elements.
Consider for instance a matrix–vector product y = Ax. The doubly nested loop has an inner

statement

yi ← yi + aijaj

implying three reads and one write from memory for two operations. If we write the algorithm as

y∗ = x1a1∗ + x2a2∗ + · · · ;

496 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

we see that, keeping y in cache 1 and reusing the elements of x, we only need to load the column
of A, making the asymptotic demand on memory one element load once x and y have been brought
into cache.

3.1.3. Blocking for cache reuse
Above, we saw in the Cholesky example how algorithms can naturally be written in terms of

level 2 operations. In order to use level 3 operations, a more drastic rewrite is needed.
Suppose we want to perform the matrix–matrix multiplication C = AB, where all matrices are of

size n× n. We divide all matrices in subblocks of size k × k; and let for simplicity’s sake k divide
n: n= km. Then the triply nested scalar loop becomes, in one possible rearrangement

for i = 1 : : : m
for k = 1 : : : m
for j = 1 : : : m
Cij ← Cij + AikBkj

where the inner statement is now a size k matrix–matrix multiplication.
If the cache is now large enough for three of these smaller matrices, we can keep Cij and Aik in

cache, 2 while successive blocks Bkj are being brought in. The ratio of memory loads to operations
is then (ignoring the loads of the elements of C and A, which is amortised) k2=k3, that is, 1=k.
Thus, by blocking the algorithm, and arranging the loops so that blocks are reused in cache, we

can achieve high performance in spite of a low-memory bandwidth.

3.2. Target architectures

The EISPACK and LINPACK software libraries were designed for supercomputers used in the
1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These machines featured
multiple functional units pipelined for good performance [41]. The CDC-7600 was basically a
high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.
The development of LAPACK in the late 1980s was intended to make the EISPACK and LIN-

PACK libraries run e�ciently on shared memory, vector supercomputers. The ScaLAPACK software
library will extend the use of LAPACK to distributed memory concurrent supercomputers. The de-
velopment of ScaLAPACK began in 1991 and is had its �rst public release of software by the end
of 1994.
The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-

partitioned algorithms to minimize data movement between di�erent levels in hierarchical memory.
Thus, the ideas discussed in this chapter for developing a library for dense linear algebra computations
are applicable to any computer with a hierarchical memory that (1) imposes a su�ciently large
startup cost on the movement of data between di�erent levels in the hierarchy, and for which (2)
the cost of a context switch is too great to make �ne grain size multithreading worthwhile. Our
target machines are, therefore, medium and large grain size advanced-architecture computers. These

1 Since many level-1 caches are write-through, we would not actually keep y in cache, but rather keep a number of
elements of it in register, and reuse these registers by unrolling the ‘∗’ loop.

2 Again, with a write-through level-1 cache, one would try to keep Cij in registers.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 497

include “traditional” shared memory, vector supercomputers, such as the Cray C-90 and T-90, and
MIMD distributed memory concurrent supercomputers, such as the SGI Origin 2000, IBM SP, Cray
T3E, and HP=Convex Exemplar concurrent systems.
Future advances in compiler and hardware technologies are expected to make multithreading a

viable approach for masking communication costs. Since the blocks in a block-partitioned algorithm
can be regarded as separate threads, our approach will still be applicable on machines that exploit
medium and coarse grain size multithreading.

4. Dense linear algebra libraries

4.1. Requirements on high-quality, reusable, mathematical software

In developing a library of high-quality subroutines for dense linear algebra computations the design
goals fall into three broad classes:

• performance,
• ease-of-use,
• range-of-use.

4.1.1. Performance
Two important performance metrics are concurrent e�ciency and scalability. We seek good per-

formance characteristics in our algorithms by eliminating, as much as possible, overhead due to load
imbalance, data movement, and algorithm restructuring. The way the data are distributed (or de-
composed) over the memory hierarchy of a computer is of fundamental importance to these factors.
Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [32], where the concur-
rent speedup is the execution time, Tseq, for the best sequential algorithm running on one processor
of the concurrent computer, divided by the execution time, T , of the parallel algorithm running
on Np processors. When direct methods are used, as in LU factorization, the concurrent e�ciency
depends on the problem size and the number of processors, so on a given parallel computer and for
a �xed number of processors, the running time should not vary greatly for problems of the same
size. Thus, we may write

�(N; Np) =
1
Np

Tseq(N)
T (N; Np)

; (1)

where N represents the problem size. In dense linear algebra computations, the execution time is
usually dominated by the oating-point operation count, so the concurrent e�ciency is related to the
performance, G, measured in oating-point operations per second by

G(N; Np) =
NP
tcalc
�(N; Np); (2)

where tcalc is the time for oating-point operation. For iterative routines, such as eigensolvers, the
number of iterations, and hence the execution time, depends not only on the problem size, but also
on other characteristics of the input data, such as condition number. A parallel algorithm is said to
be scalable [34] if the concurrent e�ciency depends on the problem size and number of processors

498 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

only through their ratio. This ratio is simply the problem size per processor, often referred to as
the granularity. Thus, for a scalable algorithm, the concurrent e�ciency is constant as the number
of processors increases while keeping the granularity �xed. Alternatively, Eq. (2) shows that this is
equivalent to saying that, for a scalable algorithm, the performance depends linearly on the number
of processors for �xed granularity.

4.1.2. Ease-of-use
Ease-of-use is concerned with factors such as portability and the user interface to the library.

Portability, in its most inclusive sense, means that the code is written in a standard language, such as
Fortran or C, and that the source code can be compiled on an arbitrary machine to produce a program
that will run correctly. We call this the “mail-order software” model of portability, since it reects
the model used by software servers such as netlib [19]. This notion of portability is quite demanding.
It requires that all relevant properties of the computer’s arithmetic and architecture be discovered at
runtime within the con�nes of a compilable Fortran code. For example, if it is important to know the
overow threshold for scaling purposes, it must be determined at runtime without overowing, since
overow is generally fatal. Such demands have resulted in quite large and sophisticated programs
[24,44], which must be modi�ed frequently to deal with new architectures and software releases.
This “mail-order” notion of software portability also means that codes generally must be written for
the worst possible machine expected to be used, thereby often degrading performances on all others.
Ease-of-use is also enhanced if implementation details are largely hidden from the user, for example,
through the use of an object-based interface to the library [22].

4.1.3. Range-of-use
Range-of-use may be gauged by how numerically stable the algorithms are over a range of input

problems, and the range of data structures the library will support. For example, LINPACK and
EISPACK deal with dense matrices stored in a rectangular array, packed matrices where only the
upper- or lower-half of a symmetric matrix is stored, and banded matrices where only the nonzero
bands are stored. In addition, some special formats such as Householder vectors are used internally
to represent orthogonal matrices. In the second half of this paper we will focus on sparse matrices,
that is matrices with many zero elements, which may be stored in many di�erent ways.

4.2. Portability, scalability, and standards

Portability of programs has always been an important consideration. Portability was easy to achieve
when there was a single architectural paradigm (the serial von Neumann machine) and a single pro-
gramming language for scienti�c programming (Fortran) embodying that common model of com-
putation. Architectural and linguistic diversity have made portability much more di�cult, but no
less important, to attain. Users simply do not wish to invest signi�cant amounts of time to create
large-scale application codes for each new machine. Our answer is to develop portable software
libraries that hide machine-speci�c details.
In order to be truly portable, parallel software libraries must be standardized. In a parallel com-

puting environment in which the higher-level routines and=or abstractions are built upon lower-level
computation and message-passing routines, the bene�ts of standardization are particularly apparent.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 499

Furthermore, the de�nition of computational and message-passing standards provides vendors with
a clearly de�ned base set of routines that they can implement e�ciently.
From the user’s point of view, portability means that, as new machines are developed, they are

simply added to network, supplying cycles where they are most appropriate.
From the mathematical software developer’s point of view, portability may require signi�cant

e�ort. Economy in development and maintenance of mathematical software demands that such de-
velopment e�ort be leveraged over as many di�erent computer systems as possible. Given the great
diversity of parallel architectures, this type of portability is attainable to only a limited degree, but
machine dependences can at least be isolated.
LAPACK is an example of a mathematical software package whose highest-level components are

portable, while machine dependences are hidden in lower-level modules. Such a hierarchical approach
is probably the closest one can come to software portability across diverse parallel architectures. And
the BLAS that are used so heavily in LAPACK provide a portable, e�cient, and exible standard
for applications programmers.
Like portability, scalabililty demands that a program be reasonably e�ective over a wide range

of number of processors. Maintaining scalability of parallel algorithms, and the software libraries
implementing them, over a wide range of architectural designs and numbers of processors will
likely require that the fundamental granularity of computation be adjustable to suit the particular
circumstances in which the software may happen to execute. Our approach to this problem is block
algorithms with adjustable block size. In many cases, however, polyalgorithms 3 may be required
to deal with the full range of architectures and processor multiplicity likely to be available in the
future.
Scalable parallel architectures of the future are likely to be based on a distributed memory architec-

tural paradigm. In the longer term, progress in hardware development, operating systems, languages,
compilers, and communications may make it possible for users to view such distributed architectures
(without signi�cant loss of e�ciency) as having a shared memory with a global address space.
For the near term, however, the distributed nature of the underlying hardware will continue to be
visible at the programming level; therefore, e�cient procedures for explicit communication will
continue to be necessary. Given this fact, standards for basic message passing (send=receive), as
well as higher-level communication constructs (global summation, broadcast, etc.), become essential
to the development of scalable libraries that have any degree of portability. In addition to stan-
dardizing general communication primitives, it may also be advantageous to establish standards for
problem-speci�c constructs in commonly occurring areas such as linear algebra.
The basic linear algebra communication subprograms (BLACS) [16,23] is a package that provides

the same ease of use and portability for MIMD message-passing linear algebra communication that
the BLAS [17,18,46] provide for linear algebra computation. Therefore, we recommend that future
software for dense linear algebra on MIMD platforms consist of calls to the BLAS for computation
and calls to the BLACS for communication. Since both packages will have been optimized for a
particular platform, good performance should be achieved with relatively little e�ort. Also, since both
packages will be available on a wide variety of machines, code modi�cations required to change
platforms should be minimal.

3 In a polyalgorithm the actual algorithm used depends on the computing environment and the input data. The optimal
algorithm in a particular instance is automatically selected at runtime.

500 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

4.3. The BLAS as the key to portability

At least three factors a�ect the performance of compilable code:

1. Vectorization=cache reuse: Designing vectorizable algorithms in linear algebra is usually straight-
forward. Indeed, for many computations there are several variants, all vectorizable, but with
di�erent characteristics in performance (see, for example, [15]). Linear algebra algorithms can
approach the peak performance of many machines – principally because peak performance de-
pends on some form of chaining of vector addition and multiplication operations or cache reuse,
and this is just what the algorithms require. However, when the algorithms are realized in straight-
forward Fortran77 or C code, the performance may fall well short of the expected level, usually
because Fortran compilers fail to minimize the number of memory references – that is, the number
of vector load and store operations or e�ectively reuse cache.

2. Data movement: What often limits the actual performance of a vector, or scalar, oating-point
unit is the rate of transfer of data between di�erent levels of memory in the machine. Examples
include the transfer of vector operands in and out of vector registers, the transfer of scalar operands
in and out of a high speed cache, the movement of data between main memory and a high-speed
cache or local memory, paging between actual memory and disk storage in a virtual memory
system, and interprocessor communication on a distributed memory concurrent computer.

3. Parallelism: The nested loop structure of most linear algebra algorithms o�ers considerable scope
for loop-based parallelism. This is the principal type of parallelism that LAPACK and ScaLA-
PACK presently aim to exploit. On shared memory concurrent computers, this type of paral-
lelism can sometimes be generated automatically by a compiler, but often requires the insertion
of compiler directives. On distributed memory concurrent computers, data must be moved between
processors. This is usually done by explicit calls to message passing routines, although parallel
language extensions such as and Coherent Parallel C [30] and Split-C [13] do the message passing
implicitly.

These issues can be controlled, while obtaining the levels of performance that machines can o�er,
through use of the BLAS, introduced in Section 2.1.
Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they

perform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency on most
modern supercomputers. Also, the overhead entailed in calling the BLAS reduces the e�ciency of the
code. This reduction is negligible for large matrices, but it can be quite signi�cant for small matrices.
Fortunately, level 1 BLAS can be removed from the smaller, more frequently used LAPACK codes
in a short editing session.
Level 2 BLAS can achieve near-peak performance on many vector processors, such as a single

processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector processors
such as a CRAY-2 or an IBM 3090 VF, the performance of level 2 BLAS is limited by the rate of
data movement between di�erent levels of memory.
Level 3 BLAS overcome this limitation. Level 3 of BLAS performs O(n3) oating-point operations

on O(n2) data, whereas level 2 BLAS perform only O(n2) operations on O(n2) data. Level 3 BLAS
also allow us to exploit parallelism in a way that is transparent to the software that calls them.
While Level 2 BLAS o�er some scope for exploiting parallelism, greater scope is provided by Level
3 BLAS, as Table 2 illustrates.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 501

Table 2
Speed in Mop=s of level 2 and level 3 BLAS operations on a CRAY C90 (all matrices are of
order 1000; U is upper triangular)

Number of processors 1 2 4 8 16

Level 2: y ← �Ax + �y 899 1780 3491 6783 11207
Level 3: C ← �AB + �C 900 1800 3600 7199 14282
Level 2: x ← Ux 852 1620 3063 5554 6953
Level 3: B← UB 900 1800 3574 7147 13281
Level 2: x ← U−1x 802 1065 1452 1697 1558
Level 3: B← U−1B 896 1792 3578 7155 14009

The BLAS can provide portable high performance through being a standard that is available on
many platforms. Ideally, the computer manufacturer has provided an assembly coded BLAS tuned
for that particular architecture, but there is a standard implementation available that can simply be
compiled and linked. Using this standard BLAS may improve the e�ciency of programs when they
are run on nonoptimizing compilers. This is because doubly subscripted array references in the inner
loop of the algorithm are replaced by singly subscripted array references in the appropriate BLAS.
The e�ect can be seen for matrices of quite small order, and for large orders the savings are quite
signi�cant.

4.4. Overview of dense linear algebra libraries

Over the past 25 years, we have been directly involved in the development of several important
packages of dense linear algebra software: EISPACK, LINPACK, LAPACK, and the BLAS. Most
recently, we have been involved in the development of ScaLAPACK, a scalable version of LA-
PACK for distributed memory concurrent computers. In this section, we give a brief review of these
packages – their history, their advantages, and their limitations on high-performance computers.

4.4.1. EISPACK
EISPACK is a collection of Fortran subroutines that compute that eigenvalues and eigenvectors of

nine classes of matrices: complex general, complex Hermitian, real general, real symmetric, real sym-
metric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized
real symmetric matrices. In addition, two routines are included that use singular value decomposition
to solve certain least-squares problems.
EISPACK is primarily based on a collection of Algol procedures developed in the 1960s and

collected by J.H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the Handbook for
Automatic Computation [64] series. This volume was not designed to cover every possible method
of solution; rather, algorithms were chosen on the basis of their generality, elegance, accuracy, speed,
or economy of storage.
Since the release of EISPACK in 1972, over 10 000 copies of the collection have been distributed

worldwide.

502 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

4.4.2. LINPACK
LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and

linear least-squares problems. The package solves linear systems whose matrices are general, banded,
symmetric inde�nite, symmetric positive-de�nite, triangular, and tridiagonal square. In addition, the
package computes the QR and singular-value decompositions of rectangular matrices and applies
them to least-squares problems.
LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky

factorization, QR factorization, and singular value decomposition. The term LU factorization is used
here in a very general sense to mean the factorization of a square matrix into a lower triangular part
and an upper triangular part, perhaps with pivoting. Next, we describe the organization and factors
inuencing LINPACK’s e�ciency.
LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of ref-

erence. By column orientation we mean that the LINPACK codes always reference arrays down
columns, not across rows. This works because Fortran stores arrays in column major order. This
means that as one proceeds down a column of an array, the memory references proceed sequentially
in memory. Thus, if a program references an item in a particular block, the next reference is likely
to be in the same block. See further Section 3.1.1. LINPACK uses level 1 BLAS; see Section 4.3.
Since the release of LINPACK, over 20 000 copies of the collection have been distributed world-

wide.

4.4.3. LAPACK
LAPACK [14] provides routines for solving systems of simultaneous linear equations, least-squares

solutions of linear systems of equations, eigenvalue problems, and singular-value problems. The as-
sociated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-
vided, as are related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all
areas, similar functionality is provided for real and complex matrices, in both single and double
precision.
The original goal of the LAPACK project was to make the widely used EISPACK and LIN-

PACK libraries run e�ciently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are ine�cient because their memory access patterns disregard the multi-
layered memory hierarchies of the machines, thereby spending too much time moving data instead
of doing useful oating-point operations. LAPACK addresses this problem by reorganizing the algo-
rithms to use block matrix operations, such as matrix multiplication, in the innermost loops [2,14].
These block operations can be optimized for each architecture to account for the memory hierar-
chy [1], and so provide a transportable way to achieve high e�ciency on diverse modern machines.
Here, we use the term “transportable” instead of “portable” because, for fastest possible performance,
LAPACK requires that highly optimized block matrix operations be already implemented on each
machine. In other words, the correctness of the code is portable, but high performance is not – if
we limit ourselves to a single Fortran source code.
LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the

capabilities of these two packages and much more besides. LAPACK improves on LINPACK and
EISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACK

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 503

and EISPACK are based on the vector operation kernels of level 1 BLAS, LAPACK was designed
at the outset to exploit level 3 BLAS – a set of speci�cations for Fortran subprograms that do
various types of matrix multiplication and the solution of triangular systems with multiple right-hand
sides. Because of the coarse granularity of level 3 BLAS operations, their use tends to promote high
e�ciency on many high-performance computers, particularly if specially coded implementations are
provided by the manufacturer.
LAPACK is designed to give high e�ciency on vector processors, high-performance “superscalar”

workstations, and shared memory multiprocessors. LAPACK in its present form is less likely to
give good performance on other types of parallel architectures (for example, massively parallel
SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK project, described
in Section 4.4.4, is intended to adapt LAPACK to these new architectures. LAPACK can also be
used satisfactorily on all types of scalar machines (PCs, workstations, mainframes).
LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The LIN-

PACK algorithms can easily be restructured to use level 2 BLAS, though restructuring has little e�ect
on performance for matrices of very narrow bandwidth. It is also possible to use level 3 BLAS, at
the price of doing some extra work with zero elements outside the band [21]. This process becomes
worthwhile for large matrices and semi-bandwidth greater than 100 or so.

4.4.4. ScaLAPACK
The ScaLAPACK software library extends the LAPACK library to run scalably on MIMD, dis-

tributed memory, concurrent computers [10,11]. For such machines the memory hierarchy includes
the o�-processor memory of other processors, in addition to the hierarchy of registers, cache,
and local memory on each processor. Like LAPACK, the ScaLAPACK routines are based on
block-partitioned algorithms in order to minimize the frequency of data movement between dif-
ferent levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACK li-
brary are distributed memory versions of levels 2 and 3 BLAS, and a set of BLACS [16,23] for
communication tasks that arise frequently in parallel linear algebra computations. In the ScaLA-
PACK routines, all interprocessor communication occurs within the distributed BLAS and BLACS,
so the source code of the top software layer of ScaLAPACK looks very similar to that of
LAPACK.

5. Future research directions in dense algorithms

Traditionally, large, general-purpose mathematical software libraries have required users to write
their own programs that call library routines to solve speci�c subproblems that arise during a com-
putation. Adapted to a shared-memory parallel environment, this conventional interface still o�ers
some potential for hiding underlying complexity. For example, the LAPACK project incorporates
parallelism in level 3 BLAS, where it is not directly visible to the user.
But when going from shared-memory systems to the more readily scalable distributed memory

systems, the complexity of the distributed data structures required is more di�cult to hide from the
user. Not only must the problem decomposition and data layout be speci�ed, but di�erent phases of
the user’s problem may require transformations between di�erent distributed data structures.

504 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

These de�ciencies in the conventional user interface have prompted extensive discussion of alter-
native approaches for scalable parallel software libraries of the future. Possibilities include:

1. Traditional function library (i.e., minimum possible change to the status quo in going from serial
to parallel environment). This will allow one to protect the programming investment that has
been made.

2. Reactive servers on the network. A user would be able to send a computational problem to a
server that was specialized in dealing with the problem. This �ts well with the concepts of a
networked, heterogeneous computing environment with various specialized hardware resources (or
even the heterogeneous partitioning of a single homogeneous parallel machine).

3. General interactive environments like Matlab or Mathematica, perhaps with “expert” drivers (i.e.,
knowledge-based systems). With the growing popularity of the many integrated packages based on
this idea, this approach would provide an interactive, graphical interface for specifying and solving
scienti�c problems. Both the algorithms and data structures are hidden from the user, because the
package itself is responsible for storing and retrieving the problem data in an e�cient, distributed
manner. In a heterogeneous networked environment, such interfaces could provide seamless ac-
cess to computational engines that would be invoked selectively for di�erent parts of the user’s
computation according to which machine is most appropriate for a particular subproblem.

4. Domain-speci�c problem solving environments, such as those for structural analysis. Environments
like Matlab and Mathematica have proven to be especially attractive for rapid prototyping of new
algorithms and systems that may subsequently be implemented in a more customized manner for
higher performance.

5. Reusable templates (i.e., users adapt “source code” to their particular applications). A template
is a description of a general algorithm rather than the executable object code or the source code
more commonly found in a conventional software library. Nevertheless, although templates are
general descriptions of key data structures, they o�er whatever degree of customization the user
may desire.

Novel user interfaces that hide the complexity of scalable parallelism will require new concepts
and mechanisms for representing scienti�c computational problems and for specifying how those
problems relate to each other. Very high level languages and systems, perhaps graphically based,
not only would facilitate the use of mathematical software from the user’s point of view, but also
would help to automate the determination of e�ective partitioning, mapping, granularity, data struc-
tures, etc. However, new concepts in problem speci�cation and representation may also require
new mathematical research on the analytic, algebraic, and topological properties of problems (e.g.,
existence and uniqueness).
We have already begun work on developing such templates for sparse matrix computations. Future

work will focus on extending the use of templates to dense matrix computations.
We hope the insight we gained from our work will inuence future developers of hardware,

compilers and systems software so that they provide tools to facilitate development of high quality
portable numerical software.
The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain, and

are available from netlib. For example, for more information on how to obtain LAPACK, send the
following one-line email message to netlib@ornl.gov:

send index from lapack

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 505

or visit the web site at http:==www:netlib:org=lapack=. Information for EISPACK, LINPACK, and
ScaLAPACK can be similarly obtained.

6. Sparse linear algebra methods

6.1. Origin of sparse linear systems

The most common source of sparse linear systems is the numerical solution of partial di�erential
equations. Many physical problems, such as uid ow or elasticity, can be described by partial
di�erential equations. These are implicit descriptions of a physical model, describing some internal
relation such as stress forces. In order to arrive at an explicit description of the shape of the object
or the temperature distribution, we need to solve the PDE, and for this we need numerical methods.

6.1.1. Discretized partial di�erential equations
Several methods for the numerical solution of PDEs exist, the most common ones being the

methods of �nite elements, �nite di�erences, and �nite volumes. A common feature of these is that
they identify discrete points in the physical object, and give a set of equations relating these points.
Typically, only points that are physically close together are related to each other in this way.

This gives a matrix structure with very few nonzero elements per row, and the nonzeros are often
con�ned to a ‘band’ in the matrix.

6.1.2. Sparse matrix structure
Matrices from discretized partial di�erential equations contain so many zero elements that it pays

to �nd a storage structure that avoids storing these zeros. The resulting memory savings, however,
are o�set by an increase in programming complexity, and by decreased e�ciency of even simple
operations such as the matrix–vector product.
More complicated operations, such as solving a linear system, with such a sparse matrix present a

next level of complication, as both the inverse and the LU factorization of a sparse matrix are not as
sparse, thus needing considerably more storage. Speci�cally, the inverse of the type of sparse matrix
we are considering is a full matrix, and factoring such a sparse matrix �lls in the band completely.

Example. Central di�erences in d dimensions, n points per line, matrix size N = nd, bandwidth
q= nd−1 in natural ordering, number of nonzero ∼ nd, number of matrix elements N 2 = n2d, number
of elements in factorization N 1+(d−1)=d.

6.2. Basic elements in sparse linear algebra methods

Methods for sparse systems use, like those for dense systems, vector–vector, matrix–vector, and
matrix–matrix operations. However, there are some important di�erences.
For iterative methods, discussed in Section 8, there are almost no matrix–matrix operations. See

[43] for an exception. Since most modern architectures prefer these level 3 operations, the perfor-
mance of iterative methods will be limited from the outset.

506 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

An even more serious objection is that the sparsity of the matrix implies that indirect addressing
is used for retrieving elements. For example, in the popular row-compressed matrix storage format,
the matrix–vector multiplication looks like

for i = 1 : : : n
p← pointer to row i
for j = 1; ni
yi ← yi + a(p+ j)x(c(p+ j))

where ni is the number of nonzeros in row i, and p(·) is an array of column indices. A number of
such algorithms for several sparse data formats are given in [6].
Direct methods can have a BLAS 3 component if they are a type of dissection method. However,

in a given sparse problem, the more dense the matrices are, the smaller they are on average. They
are also not general full matrices, but only banded. Thus, we do not expect very high performance
on such methods either.

7. Direct solution methods

For the solution of a linear system one needs to factor the coe�cient matrix. Any direct method is a
variant of Gaussian elimination. As remarked above, for a sparse matrix, this �lls in the band in which
the nonzero elements are contained. In order to minimize the storage needed for the factorization,
research has focused on �nding suitable orderings of the matrix. Re-ordering the equations by a
symmetric permutation of the matrix does not change the numerical properties of the system in
many cases, and it can potentially give large savings in storage. In general, direct methods do not
make use of the numerical properties of the linear system, and thus their execution time is a�ected
in a major way by the structural properties of the input matrix.

7.1. Matrix graph theory

The most convenient way of talking about matrix orderings or permutations is to consider the
matrix ‘graph’ [55]. We introduce a node for every physical variable, and nodes i and j are connected
in the graph if the (i; j) element of the matrix is nonzero. A symmetric permutation of the matrix
then corresponds to a numbering of the nodes, while the connections stay the same. With these
permutations, one hopes to reduce the ‘bandwidth’ of the matrix, and thereby the amount of �ll
generated by the factorization.

7.2. Cuthill–McKee ordering

A popular ordering strategy is the Cuthill–McKee ordering, which �nds levels or wavefronts in
the matrix graph. This algorithm is easily described:

1. Take any node as starting point, and call that ‘level 0’.
2. Now successively take all nodes connected to the previous level, and group them into the next
level.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 507

3. Iterate this until all nodes are grouped into some level; the numbering inside each level is of
secondary importance.

This ordering strategy often gives a smaller bandwidth than the natural ordering and there are
further advantages to having a level structure, e.g., for out-of-core solution or for parallel processing.
Often, one uses the ‘reverse Cuthill–Mckee’ ordering [50].

7.3. Minimum degree

An explicit reduction of bandwidth is e�ected by the minimum degree ordering, which at any
point in the factorization chooses the variable with the smallest number of connections. Considering
the size of the resulting �ll-in is used as a tie breaker.

7.4. Nested dissection

Instead of trying to minimize �ll-in by reducing the bandwidth, one could try a direct approach.
The ‘nested dissection’ ordering recursively splits the matrix graph in two, thus separating it into
disjoint subgraphs. Somewhat more precisely, given a graph, this algorithm relies on the existence of
a ‘separator’: a set of nodes such that the other nodes fall into two mutually unconnected subgraphs.
The �ll from �rst factoring these subgraphs, followed by a factorization of the separator, is likely
to be lower than for other orderings.
It can be shown that for PDEs in two space dimensions this method has a storage requirement

that is within a log factor of that for the matrix itself, that is, very close to optimal [33]. This proof
is easy for PDEs on rectangular grids, but with enough graph theory it can be generalized [48,49].
However, for problems in three space dimensions, the nested dissection method is no longer optimal.
An advantage of dissection-type methods is that they lead to large numbers of uncoupled matrix

problems. Thus, to an extent, parallelization of such methods is easy. However, the higher levels
in the tree quickly have fewer nodes than the number of available processors. In addition to this,
they are also the larger subproblems in the algorithm, thereby complicating the parallelization of the
method.
Another practical issue is the choice of the separator set. In a model case this is trivial, but

in practice, and in particular in parallel, this is a serious problem, since the balancing of the two
resulting subgraphs depends on this choice. Recently, the so-called ‘second eigenvector methods’
have become popular for this [56].

8. Iterative solution methods

Direct methods, as sketched above, have some pleasant properties. Foremost is the fact that their
time to solution is predictable, either a priori, or after determining the matrix ordering. This is due
to the fact that the method does not rely on numerical properties of the coe�cient matrix, but only
on its structure. On the other hand, the amount of �ll can be substantial, and with it the execution
time. For large-scale applications, the storage requirements for a realistic size problem can simply
be prohibitive.

508 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

Iterative methods have far lower storage demands. Typically, the storage, and the cost per iteration
with it, is of the order of the matrix storage. However, the number of iterations strongly depends on
properties of the linear system, and is at best known up to an order estimate; for di�cult problems
the methods may not even converge due to accumulated round-o� errors.

8.1. Basic iteration procedure

In its most informal sense, an iterative method in each iteration locates an approximation to the
solution of the problem, measures the error between the approximation and the true solution, and
based on the error measurement improves on the approximation by constructing a next iterate. This
process repeats until the error measurement is deemed small enough.

8.2. Stationary iterative methods

The simplest iterative methods are the ‘stationary iterative methods’. They are based on �nding
a matrix M that is, in some sense, ‘close’ to the coe�cient matrix A. Instead of solving Ax = b,
which is deemed computationally infeasible, we solve Mx1 = b. The true measure of how well x1
approximates x is the error e1 = x1 − x, but, since we do not know the true solution x, this quantity
is not computable. Instead, we look at the ‘residual’: r1 = Ae1 = Ax1 − b, which is a computable
quantity. One easily sees that the true solution satis�es x = A−1b = x1 − A−1r1, so, replacing A−1

with M−1 in this relation, we de�ne x2 = x1 −M−1r1.
Stationary methods are easily analyzed: we �nd that ri → 0 if all eigenvalues � = �(I − AM−1)

satisfy |�|¡ 1. For certain classes of A and M this inequality is automatically satis�ed [36,61].

8.3. Krylov space methods

The most popular class of iterative methods nowadays is that of ‘Krylov space methods’. The
basic idea there is to construct the residuals such that nth residual rn is obtained from the �rst by
multiplication by some polynomial in the coe�cient matrix A, that is,

rn = Pn−1(A)r1:

The properties of the method then follow from the properties of the actual polynomial [3,7,9].
Most often, these iteration polynomials are chosen such that the residuals are orthogonal under

some inner product. From this, one usually obtains some minimization property, though not neces-
sarily a minimization of the error.
Since the iteration polynomials are of increasing degree, it is easy to see that the main operation

in each iteration is one matrix–vector multiplication. Additionally, some vector operations, including
inner products in the orthogonalization step, are needed.

8.3.1. The issue of symmetry
Krylov method residuals can be shown to satisfy the equation

rn ∈ span{Arn−1; rn−1; : : : ; r1}:

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 509

This brings up the question whether all rn−1; : : : ; r1 need to be stored in order to compute rn. The
answer is that this depends on the symmetry of the coe�cient matrix. For a symmetric problem, the
rn vectors satisfy a three-term recurrence. This was the original conjugate gradient method [40].
For nonsymmetric problems, on the other hand, no short recurrences can exist [29], and therefore,

all previous residuals need to be stored. Some of these methods are OrthoDir and OrthoRes [65].
If the requirement of orthogonality is relaxed, one can derive short-recurrence methods for non-

symmetric problems [31]. In the biconjugate gradient method, two sequences {rn} and {sn} are
derived that are mutually orthogonal, and that satisfy three-term recurrences.
A disadvantage of this latter method is that it needs application of the transpose of the coe�cient

matrix. In environments where the matrix is only operatively de�ned, this may exclude this method
from consideration. Recently developed methods, mostly based on the work of [59,60], obviate this
consideration.

8.3.2. True minimization
The methods mentioned so far minimize the error (over the subspace generated) in some matrix-

related norm, but not in the Euclidean norm. We can e�ect a true minimization by collecting the
residuals generated so far, and �nding a minimizing convex combination. This leads to one of the
most popular methods nowadays: GMRES [58]. It will always generate the optimal iterate, but for
this it requires storage of all previous residuals. In practice, truncated or restarted version of GMRES
are popular.

8.4. Preconditioners

The matrix M that appeared in the section on stationary iterative methods can play a role in
Krylov space methods too. There, it is called a ‘preconditioner’, and it acts to improve spectral
properties of the coe�cient matrix that determine the convergence speed of the method. In a slight
simpli�cation, one might say that we replace the system Ax = b by

(AM−1)(Mx) = b:

(Additionally, the inner product is typically changed.) It is generally recognized that a good precon-
ditioner is crucial to the performance of an iterative method.
The requirements on a preconditioner are that it should be easy to construct, a system Mx = b

should be simple to solve, and in some sense M should be an approximation to A. These requirements
need to be balanced: a more accurate preconditioner is usually harder to construct and more costly
to apply, so any decrease in the number iterations has to be set against a longer time per iteration,
plus an increased setup phase.
The holy grail of preconditioners is �nding an ‘optimal’ preconditioner: one for which the number

of operations for applying it is of the order of the number of variables, while the resulting number
of iterations is bounded in the problem size. There are very few optimal preconditioners.

8.4.1. Simple preconditioners
Some preconditioners need no construction at all. For instance, the Jacobi preconditioner consists

of simply the matrix diagonal DA. Since in PDE applications the largest elements are on the diagonal,
one expects some degree of accuracy from this. Using not just the diagonal, but the whole lower

510 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

triangular part DA + LA of the coe�cient matrix, an even more accurate method results. Since
this triangular matrix is nonsymmetric, it is usually balanced with the upper triangular part as
(DA + LA)D−1

A (DA + UA).

8.4.2. Incomplete factorizations
A successful strategy for preconditioners results from mimicking direct methods, but applying

some approximation process to them. Thus, the so-called ‘incomplete factorization’ methods ignore
�ll elements in the course of the Gaussian elimination process. Two strategies are to ignore elements
in �xed positions, or to drop elements that are deemed small enough to be negligible. The aim is
here to preserve at least some of the sparsity of the coe�cient matrix in the factorization, while
giving something that is close enough to the full factorization.
Incomplete factorizations can be very e�ective, but there are a few practical problems. For the

class of M -matrices, these methods are well de�ned [52], but for other, even fairly common classes
of matrices, there is a possibility that the algorithm breaks down [42,45,51].
Also, factorizations are inherently recursive, and coupled with the sparseness of the incomplete

factorization, this gives very limited parallelism in the algorithm using a natural ordering of the
unknowns. Di�erent orderings may be more parallel, but take more iterations [25,27,43].

8.4.3. Analytically inspired preconditioners
In recent years, a number of preconditioners have gained in popularity that are more directly

inspired by the continuous problem. First of all, for a matrix from an elliptic PDE, one can use a
so-called ‘fast solver’ as preconditioner [12,28,63].
A particularly popular class of preconditioners based on the continuous problem, is that of ‘domain

decomposition’ methods. If the continuous problem was elliptic, then decomposing the domain into
simply connected pieces leads to elliptic problems on these subdomains, tied together by internal
boundary conditions of some sort.
For instance, in the Schur complement domain decomposition method [8], thin strips of variables

are assigned a function as interface region, and the original problem reduces to fully independent
problems on the subdomains, connected by a system on the interface that is both smaller and better
conditioned, but more dense, than the original one. While the subdomains can trivially be executed
in parallel, the interface system poses considerable problems.
Choosing overlapping instead of separated subdomains leads to the class of Schwarz method [47].

The original Schwarz method on two domains proposed solving one subdomain, deriving interface
conditions from it for the other subdomain, and solving the system there. Repetition of this process
can be shown to converge. In a more parallel variant of this method, all subdomains solve their
system simultaneously, and the solutions on the overlap regions are added together.
Multilevel methods do not operate by decomposing the domain. Rather, they work on a sequence

of nested discretization, solving the coarser ones as a starting point for solving the �ner levels.
Under certain conditions such methods can be shown to be close to optimal [4,35]. However, they
require explicit knowledge of the operator and boundary conditions. For this reason, people have
investigated algebraic variants [5,57]. In both cases, these methods can be parallelised by distributing
each level over the processors, but this may not be trivial.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 511

9. Libraries and standards in sparse methods

Unlike in dense methods, there are few standards for iterative methods. Most of this is due to
the fact that sparse storage is more complicated, admitting of more variation, and therefore less
standardised. Whereas the (dense) BLAS has been accepted for a long time, sparse BLAS is not
more than a proposal under research.

9.1. Storage formats

As is apparent from the matrix–vector example in Section 6.2, storage formats for sparse matrices
include not just the matrix elements, but pointer information describing where the nonzero elements
are placed in the matrix. A few storage formats are in common use (for more details see [6]):
Aij format: In the ‘Aij’ format, three arrays of the same length are allocated: one containing

the matrix elements, and the other two containing the i and j coordinates of these elements. No
particular ordering of the elements is implied.
Row=column-compressed: In the row-compressed format one array of integers is allocated in ad-

dition to the matrix element, giving the column indices of the nonzero elements. Since all elements
in the same row are stored contiguously, a second, smaller, array is needed giving the start points
of the rows in the two larger arrays.
Compressed diagonal: If the nonzero elements of the matrix are located, roughly or exactly,

along subdiagonals, one could use contiguous storage for these diagonals. There are several diagonal
storage formats. In the simplest, describing a contiguous block of subdiagonals, only the array of
matrix elements is needed; two integers are su�cient to describe which diagonals have been stored.
There exist blocked versions of these formats, for matrices that can be partitioned into small

square subblocks.

9.2. Sparse libraries

Since sparse formats are more complicated than dense matrix storage, sparse libraries have an
added level of complexity. This holds even more so in the parallel case, where additional indexing
information is needed to specify which matrix elements are on which processor.
There are two fundamentally di�erent approaches for handling this complexity. Some sparse li-

braries require the user to set up the matrix and supply it to the library, while all handling is
performed by the library. This requires the user to store data in a format dictated by the library,
which might involve considerable work.
On the other hand, the library might do even the matrix setup internally, hiding all data from

the user. This gives total freedom to the user, but it requires the library to supply su�cient access
functions so that the user can perform certain matrix operations, even while not having access to
the object itself.

References

[1] E. Anderson, J. Dongarra, Results from the initial release of LAPACK, Technical Report LAPACK
Working Note 16, Computer Science Department, University of Tennessee, Knoxville, TN, 1989.
http:==www.netlib.org=lapack=lawns=lawn16.ps.

512 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

[2] E. Anderson, J. Dongarra, Evaluating block algorithm variants in LAPACK, Technical Report LAPACK
Working Note 19, Computer Science Department, University of Tennessee, Knoxville, TN, 1990.
http:==www.netlib.org=lapack=lawns=lawn19.ps.

[3] O. Axelsson, A.V. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic
Press, Orlando, FL, 1984.

[4] O. Axelsson, P. Vassilevski, Algebraic multilevel preconditioning methods, I, Numer. Math. 56 (1989) 157–177.
[5] O. Axelsson, V. Eijkhout, The nested recursive two-level factorization method for nine-point di�erence matrices,

SIAM J. Sci. Statist. Comput. 12 (1991) 1373–1400.
[6] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der

Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 1994. http:==www.netlib.org=templates=templates.ps.

[7] G. Birkho�, R.E. Lynch, Numerical Solution of Elliptic Problems, SIAM, Philadelphia, PA, 1984.
[8] P. BjHrstad, O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into

substructures, SIAM J. Numer. Anal. 23 (1986) 1097–1120.
[9] T. Chan, Henk van der Vorst, Linear system solvers: sparse iterative methods, in: D. Keyes et al (Eds.), Parallel

Numerical Algorithms, Proceedings of the ICASW=LaRC Workshop on Parallel Numerical Algorithms, May 23–25,
1994, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 91–118.

[10] J. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, Scalapack: a scalable linear algebra library for distributed memory
concurrent computers, Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation,
IEEE Computer Society Press, Silver Spring, MD, 1992, pp. 120–127.

[11] J. Choi, J.J. Dongarra, D.W. Walker, The design of scalable software libraries for distributed memory concurrent
computers, in: J.J. Dongarra, B. Tourancheau (Eds.), Environments and Tools for Parallel Scienti�c Computing,
Elsevier Science Publishers, Amsterdam, 1993.

[12] P. Concus, Gene H. Golub, Use of fast direct methods for the e�cient numerical solution of nonseparable elliptic
equations, SIAM J. Numer. Anal. 10 (1973) 1103–1120.

[13] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, K. Yelick, Introduction to
Split-C: Version 0.9, Technical Report, Computer Science Division – EECS, University of California, Berkeley, CA
94720, February 1993.

[14] J. Demmel, LAPACK: a portable linear algebra library for supercomputers, Proceedings of the 1989 IEEE Control
Systems Society Workshop on Computer-Aided Control System Design, December 1989.

[15] J.J. Dongarra, Increasing the performance of mathematical software through high-level modularity, Proceedings
of the Sixth International Symposium Comp. Methods in Engineering & Applied Sciences, Versailles, France,
North-Holland, Amsterdam, 1984, pp. 239–248.

[16] J.J. Dongarra, LAPACK Working Note 34: Workshop on the BLACS, Computer Science Department, Technical
Report CS-91-134, University of Tennessee, Knoxville, TN, May 1991. http:==www.netlib.org=lapack=lawns=
lawn16.ps.

[17] J.J. Dongarra, J. Du Croz, S. Hammarling, I. Du�, A set of level 3 basic linear algebra subprograms, ACM Trans.
Math. Software 16 (1) (1990) 1–17.

[18] J.J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, An extended set of Fortran basic linear algebra subroutines,
ACM Trans. Math. Software 14 (1) (1988) 1–17.

[19] J.J. Dongarra, E. Grosse, Distribution of mathematical software via electronic mail, Comm. ACM 30 (5) (1987)
403–407.

[20] J.J. Dongarra, F.C. Gustavson, A. Karp, Implementing linear algebra algorithms for dense matrices on a vector
pipeline machine, SIAM Rev. 26 (1984) 91–112.

[21] J.J. Dongarra, P. Mayes, Giuseppe Radicati di Brozolo, The IBM RISC System=6000 and linear algebra operations,
Supercomputer 44 (VIII-4) (1991) 15–30.

[22] J.J. Dongarra, R. Pozo, D.W. Walker, An object oriented design for high performance linear algebra on distributed
memory architectures, Proceedings of the Object Oriented Numerics Conference, 1993.

[23] J.J. Dongarra, R.A. van de Geijn, Two-dimensional basic linear algebra communication subprograms, Technical
Report LAPACK Working Note 37, Computer Science Department, University of Tennessee, Knoxville, TN, October
1991.

J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514 513

[24] J. Du Croz, M. Pont, The development of a oating-point validation package, in: M.J. Irwin, R. Stefanelli (Eds.),
Proceedings of the Eighth Symposium on Computer Arithmetic, Como, Italy, May 19–21, 1987, IEEE Computer
Society Press, Silver Spring, MD, 1987.

[25] I.S. Du�, G.A. Meurant, The e�ect of ordering on preconditioned conjugate gradients, BIT 29 (1989) 635–657.
[26] A. Edelman, Large dense numerical linear algebra in 1993: the parallel computing inuence, Int. J. Supercomput.

Appl. 7 (1993) 113–128.
[27] V. Eijkhout, Analysis of parallel incomplete point factorizations, Linear Algebra Appl. 154–156 (1991) 723–740.
[28] H.C. Elman, M.H. Schultz, Preconditioning by fast direct methods for non self-adjoint nonseparable elliptic equations,

SIAM J. Numer. Anal. 23 (1986) 44–57.
[29] V. Faber, T. Manteu�el, Orthogonal error methods, SIAM J. Numer. Anal. 24 (1987) 170–187.
[30] E.W. Felten, S.W. Otto, Coherent parallel C, in: G.C. Fox (Ed.), Proceedings of the Third Conference on Hypercube

Concurrent Computers and Applications, ACM Press, New York, 1988, pp. 440–450.
[31] R. Fletcher, Conjugate gradient methods for inde�nite systems, in: G.A. Watson (Ed.), Numerical Analysis Dundee,

1975, Springer, New York, 1976, pp. 73–89.
[32] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon, D.W. Walker, Solving Problems on Concurrent

Processors, Vol. 1, Prentice-Hall, Englewood Cli�s, NJ, 1988.
[33] A. George, H.-W. Liu, Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall, Englewood

Cli�s, NJ, 1981.
[34] A. Gupta, V. Kumar, On the scalability of FFT on parallel computers, Proceedings of the Frontiers 90 Conference

on Massively Parallel Computation, IEEE Computer Society Press, 1990. Also available as Technical Report TR
90-20 from the Computer Science Department, University of Minnesota, Minneapolis, MN 55455.

[35] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[36] L.A. Hageman, D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981.
[37] W. Croswell, Origin and development of the method of moments for �eld computation, IEEE Antennas Propagation

Mag. 32 (1990) 31–34.
[38] J.L. Hess, Panel methods in computational uid dynamics, Annu. Rev. Fluid Mech. 22 (1990) 255–274.
[39] J.L. Hess, M.O. Smith, Calculation of potential ows about arbitrary bodies, in: D. K�uchemann (Ed.), Progress in

Aeronautical Sciences, Vol. 8, Pergamon Press, Oxford, 1967.
[40] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Nat. Bur. Stand. J. Res. 49

(1952) 409–436.
[41] R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger, Bristol, UK, 1981.
[42] A. Jennings, G.M. Malik, Partial elimination, J. Inst. Math. Appl. 20 (1977) 307–316.
[43] M.T. Jones, P.E. Plassmann, Parallel solution of unstructured, sparse systems of linear equations, in: R.F. Sincovec,

D.E. Keyes, M.R. Leuze, L.R. Petzold, D.A. Reed (Eds.), Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scienti�c Computing, SIAM, Philadelphia, PA, pp. 471–475.

[44] W. Kahan, Paranoia, Available from netlib [19]: http:==www.netlib.org=paranoia.
[45] D.S. Kershaw, The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear

equations, J. Comput. Phys. 26 (1978) 43–65.
[46] C. Lawson, R. Hanson, D. Kincaid, F. Krogh, Basic linear algebra subprograms for Fortran usage, ACM Trans.

Math. Software 5 (1979) 308–323.
[47] P.L. Lions, On the Schwarz alternating method. i., in: R. Glowinski, G.H. Golub, G. Meurant, J. Periaux (Eds.),

Domain Decomposition Methods for Partial Di�erential Equations, Proceedings of the First Internation Symposium,
Paris, January 7–9, 1987, SIAM, Philadelphia, PA, 1988, pp. 1–42.

[48] R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (1979) 346–358.
[49] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177–189.
[50] J.W-H. Liu, A.H. Sherman, Comparative analysis of the Cuthill–McKee and the reverse Cuthill–McKee ordering

algorithms for sparse matrices, SIAM J. Numer. Anal. 13 (1973) 198–213.
[51] T.A. Manteu�el, An incomplete factorization technique for positive de�nite linear systems, Math. Comp. 34 (1980)

473–497.
[52] J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coe�cient matrix

is a symmetric m-matrix, Math. Comp. 31 (1977) 148–162.
[53] J.M. Ortega, The ijk forms of factorization methods I, Vector computers, Parallel Comput. 7 (1988) 135–147.

514 J.J. Dongarra, V. Eijkhout / Journal of Computational and Applied Mathematics 123 (2000) 489–514

[54] J.M. Ortega, C.H. Romine, The ijk forms of factorization methods II, Parallel systems, Parallel Comput. 7 (1988)
149–162.

[55] S.V. Parter, The use of linear graphs in Gaussian elimination, SIAM Rev. 3 (1961) 119–130.
[56] A. Pothen, H.D. Simon, Kang-Pu Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix

Anal. Appl. 11 (3) (1990) 430–452.
[57] J.W. Ruge, K. St�uben, Algebraic multigrid, in: S.F. McCormick (Ed.), Multigrid Methods, SIAM, Philadelphia, PA,

1987, (Chapter 4).
[58] Y. Saad, M.H. Schultz, GMRes: a generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.
[59] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10

(1989) 36–52.
[60] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.
[61] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cli�s, NJ, 1962.
[62] J.J.H. Wang, Generalized Moment Methods in Electromagnetics, Wiley, New York, 1991.
[63] O. Widlund, On the use of fast methods for separable �nite di�erence equations for the solution of general elliptic

problems, in: D.J. Rose, R.A. Willoughby (Eds.), Sparse Matrices and their Applications, Plenum Press, New York,
1972, pp. 121–134.

[64] J. Wilkinson, C. Reinsch, Handbook for Automatic Computation: Vol. II – Linear Algebra, Springer, New York,
1971.

[65] D.M. Young, K.C. Jea, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear
Algebra Appl. 34 (1980) 159–194.

