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The JLAPACK project provides the LAPACK numerical sub-
routines translated from their subset FORTRAN 77 source
into class files, executable by the Java Virtual Machine
(JVM) and suitable for use by Java programmers. This makes
it possible for Java applications or applets, distributed on the
World Wide Web (WWW) to use established legacy numeri-
cal code that was originally written in FORTRAN. The trans-
lation is accomplished using a special purpose FORTRAN-to-
Java (source-to-source) compiler. The LAPACK API will be
considerably simplified to take advantage of Java’s object-
oriented design. This report describes the research issues in-
volved in the JLAPACK project, and its current implementa-
tion and status.

1. Introduction

Real programmers program inFORTRAN, and can
do so in any language. – Ian Graham, 1994 [1]

Popular opinion seems to hold the somewhat erro-
neous view that Java is “too slow” for numerical pro-
gramming. However, the Java Linpack benchmark [2]
has recorded excellent floating point arithmetic speeds
(68.6 Mflop) on a PC resulting from Just-In-Time (JIT)
compilation of Java class files. Also, there are many
small to intermediate scale problems where speed is
not an issue. For instance, physical quantities such
as permeability, stress and strain are commonly rep-
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resented by ellipsoids [3,4], a graphical representa-
tion of an underlying tensor. The tensor is mathemati-
cally represented by a symmetric positive definite ma-
trix. Ellipsoid axes are computed from the root inverse
of the matrix eigenvalues, directed along the eigen-
vectors. A LAPACK eigenproblem subroutine such as
SSYTRD, available as a Java class file, provides a
portable solution with known reliability. Since future
execution speeds of Java will increase as JIT and na-
tive code compilers are developed, the scale of feasible
numerical programming will increase as well.

The JLAPACK project provides Application Pro-
gramming Interfaces (APIs) to numerical libraries
from Java programs. The numerical libraries will be
distributed as class files produced by a FORTRAN-to-
Java translator, f2j. The f2j translator is a formal com-
piler that translates programs written using a subset of
FORTRAN 77 into a form that may be compiled or as-
sembled into Java class files. The first priority for f2j is
to translate the BLAS [5–7] and LAPACK [8] numer-
ical libraries from their FORTRAN 77 reference source
code to Java class files. The subset of FORTRAN 77
translated by f2j matches the Fortran source used by
BLAS and LAPACK. These libraries are established,
reliable and widely used linear algebra packages, and
are therefore a reasonable first testbed for f2j. Many
other libraries of interest are expected to use a very
similar subset of FORTRAN 77.

A similar previous translation effort provided LA-
PACK in the C language, using the f2c program [9],
and has proven to be very popular and widely used.
The BLAS and LAPACK class files will be provided
as a service of the Netlib repository. f2j also provides
a base for a more ambitious effort translating a larger
subset of Fortran, and perhaps eventuallyanyFortran
source into Java class files.

The JLAPACK project is composed of three phases:

(1) Phase 1: Writing a FORTRAN compiler front end
to tokenize (lexically analyze), parse and con-
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struct an abstract syntax tree (AST) for FOR-
TRAN 77 input files.

(2) Phase 2: Generating Java source and Jasmin op-
code for use with the JVM from the AST.

(3) Phase 3: Testing, documenting and distributing
BLAS and LAPACK class files.

All phases are now complete with respect to the initial
design criteria (for Java source). The Phase 3 testing
for BLAS and LAPACK resulted in some changes to
the initial code design, requiring the Fortran front-end
to be significantly extended.

2. Design of the f2j compiler

Design issues come in two categories: (1) software
design, (2) software implementation. Software design
specifies how FORTRAN translates to Java indepen-
dent of any implementation. This includes dealing
with general issues such as translating FORTRAN in-
trinsics (e.g.,sqrt, dabs ) to Java methods (e.g.,
Math.sqrt, Math.abs ), and LAPACK specific
decisions about array access and argument passing.
The software implementation executes the translation.
f2j is written as a formal compiler consisting of a lex-
ical analysis and parser front end, and a code genera-
tion back end. The parser consists of a yacc specifica-
tion, which is translated to C by bison, a parser gener-
ator. The rest of the code is written in C. The following
notes provide a general overview of the f2j software
design and implementation.

2.1. Translating LAPACKFORTRAN to Java

2.1.1. Basic argument passing
Parameters passed to the LAPACK driver routines

consist of arrays, floating point numbers, integers, and
arrays of one or more characters. Arrays are objects in
Java and are passed by reference similar to how they
are passed in FORTRAN. Character arrays are similar
to String objects in Java, which are passed by refer-
ence (details in Section 2.1.4). Primitive types such
as integers and floats are passed by value only in
Java and by reference only in FORTRAN. Since ob-
jects require more overhead than primitives, the num-
ber of primitives passed as objects should be mini-
mized.

All primitives that are documented as “input/output”
or “output” variables in the LAPACK code can be han-
dled by wrapping the value in a class definition and in-
stantiating an object for initializing the value. A simple

experiment showed that instantiating an object of type
Double requires 280 bytes in Java (Sun Microsystems
JDK-1.1), but a simple wrapper such as

class DoubleWrapper {
double d;

}

only requires 56 bytes. Using the appropriate object
variables (input/output and output variables) should
not be an excessive burden on the user: programmers
calling LAPACK from C must declare, initialize and
pass a pointer to these variables.

2.1.2. Array access
Arrays in Java differ from arrays in FORTRAN in

several ways. In Java, arrays are objects that contain
methods as well as data, thus increasing overhead.
In FORTRAN, arrays are named contiguous blocks of
memory. Java allows arrays as large 255 dimensions;
FORTRAN allows a maximum of 3 dimensions. Array
indices must start at 0 in Java but can start at any ar-
bitrary integer, say−43, in FORTRAN. Java is imple-
mented as row major access, FORTRAN as column ma-
jor access. FORTRAN also allows sections of arrays to
be passed as subarrays.

For instance, in FORTRAN a reference to an arbi-
trary point in an array may be passed to a subroutine.
A call such asmatmult(A(i,j),B(i,j)) would
pass in the arraysA and B to the matmult proce-
dure, which would start indexing the arraysA andB
at the locationi,j . Java would dereference and pass
the value in the array at positioni,j . Similarly, one
can pass in a single reference that marks a location in
a particular array, which is declared 2D when typed in
the called subroutine. These and similar conventions
allow numerical analysts to construct efficient algo-
rithms.

In the JLAPACK subroutines, all arrays are declared
1D. For JLAPACK vectors, array access is identical
to FORTRAN. Since the vector may be accessed at a
point other than the initial point, an index is passed
along with the array. For 2D arrays, the index is passed
as a parameter indicating an offset from the 0-th ele-
ment. The leading dimension is also passed as a pa-
rameter. To enable future optimization by minimizing
index arithmetic, arrays are accessed in column order
in JLAPACK.

For example, a FORTRAN call such as

matrixop(A(i,j,), LDA)

would be translated to Java as
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matrixop(A, i+j*LDA, LDA),

wherei,j are the array indices, andLDA is the pre-
viously declared leading dimension. Thematrixop
method would receive arguments thusly:(double
[] A, int k, int LDA) , k indicating the off-
set. Elements in the subarray starting at the location
i,j would be accessed byA[k + m + n*LDA] ,
wherem,n are loop counters. In column order access,
part of the index arithmetic could be moved outside the
inner loop, reducing the number of operations per iter-
ation.

Three timing loops (Appendix B) written to com-
pare the execution speed of 1D versus 2D arrays re-
turned mean speeds (n = 32) of 482 for 2D arrays, 592
for 1D row access arrays and 462 for 1D column ac-
cess arrays. The column access array moved an index
product term to a dummy variable between the outer
and inner loops. Single dimension arrays also provide
an easy way to deal with assumed-size array declara-
tors (asterisks) in FORTRAN. Subroutine and function
arguments in FORTRAN must be typed after the argu-
ments are declared, as the following code illustrates:

SUBROUTINE DLASSQ( N, X, INCX, SCALE,
SUMSQ )

...
DOUBLE PRECISION X( * )

But DLASSQ is called from DLANSB with the 2D ar-
rayAB:

CALL DLASSQ( N, AB( L, 1 ), LDAB,
SCALE, SUM )

Since there is no similar syntax in Java, 1D arrays
provide equivalent functionality.

2.1.3. Translating functions and subroutines
Translating functions and subroutines from FOR-

TRAN to Java can be broken down into various cases:

– Subroutines and functions declared EXTERNAL
are assumed, for the purpose of translating BLAS
and LAPACK, to be BLAS or LAPACK calls.
These are translated during the code generation
pass of f2j. Note that these are tailored to LA-
PACK: the generated code assumes one static
method per class.

– Some functions and subroutines in BLAS and
LAPACK correspond to methods intrinsic to Java.
The LSAME procedure, which compares char-
acters independent of case, is an example corre-
sponding to the JavaregionMatches method.

– Functions declared INTRINSIC in the BLAS and
LAPACK FORTRAN source are mapped to the
corresponding Java method using a table initial-
ized in a header file. In the event that a FORTRAN

intrinsic procedure has no Java correspondence
(e.g., complex arithmetic operations), such meth-
ods will have to be programmed in Java.

2.1.4. Translating characters and strings
LAPACK uses alphabetic characters as flags to con-

trol the behavior of some subroutines and character ar-
rays to print out diagnostic information such as which
subroutines or functions encountered an error. Java
uses String objects instead of character arrays. For the
purpose of translating LAPACK into Java, all FOR-
TRAN character variables, whether single characters or
character arrays, are translated to Java String objects.
Subroutines in LAPACK, such as LSAME which com-
pares characters independent of case, can be emulated
with methods intrinsic to the native Java String class.

2.1.5. The PARAMETER keyword
The PARAMETER declaration in FORTRAN is trans-

lated to apublic static final declaration in
Java.

2.1.6. Variable initialization and SAVE statements
One problem that has cropped up for emitting Java

source code is theINCX problem.INCX is passed in
as a parameter to certain routines and used to set the
values of variablesKX. The problem occurs after the
following test:

if (INCX <= 0)
{

KX = 1 - (N - 1) * INCX;
} // Close if()

else if (INCX != 1)
{

KX = 1;
} // Close else if()

KX is not initialized, and is not required to be initial-
ized according to the FORTRAN77 specification. The
problem occurs whenINCX = 1. The Java compiler
refuses to compile any code following this that uses
KX. A solution is implemented in the compiler by set-
ting the value ofKX to zero. Since variable initializa-
tion is implementation dependent in FORTRAN, the f2j
implementation initializes all integer variables to zero.
Additionally, we can simplify the code generator by
emitting all variables asstatic , similar to the way
f2c handles variable declarations. This also means that
the code generator can ignore SAVE statements since
every variable is already declaredstatic .
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2.1.7. Methods versus functions and subroutines
f2j treats names that are not recognized as intrinsics

or local variables as functions or subroutines available
in the netlib packages. For instance, the function ddot
is translated toDdot.ddot() , that is, the method
ddot of the classDdot . This is not a portable solution
and will break if the called function isnot in the BLAS
or LAPACK packages or otherwise recognized by f2j.

In FORTRAN functions, the function name may be
initialized to a value as a variable would be, then the
function name is the implicit argument whenreturn
is called. FORTRAN functions return a typed (double,
etc.) value. Subroutines are analogous to void func-
tions. Both are handled by methods in Java.

2.1.8. GOTO translation
It is preferable to translate FORTRAN programs to

Java source code rather than Jasmin opcode for many
reasons, but there has been a major obstacle to do-
ing this: the GOTO statement. The FORTRAN GOTO
is hard to translate to Java source code because Java
does not support agoto statement at all. The devel-
opers of the Java language deliberately omitted the
goto statement because they felt it would simplify
the language and eliminate some common misuses of
the goto [10]. Their replacement for thegoto in-
cludes the multi-levelbreak and continue state-
ments. This section describes our approach to translat-
ing FORTRAN to Java source code while still allowing
the use of GOTOs.

For our purposes, a GOTO statement in FORTRAN

falls into one of two categories: (1) one that can be
translated into an equivalent Java construct free of
GOTOs (such aswhile , break , continue , etc.) or
(2) one that cannot be translated into such a construct.

First, we examine some examples from the first cat-
egory. The following segment of code from dlamch.f
shows a simulated while loop written using an IF state-
ment and a GOTO.

10 CONTINUE
IF( C.EQ.ONE ) THEN

A = 2*A
C = DLAMC3( A, ONE )
C = DLAMC3( C, -A )
GO TO 10

END IF

To recognize this type of construct, f2j looks for two
characteristics: (1) an IF statement with a labeled
CONTINUE preceding it and (2) a GOTO statement at
the end of the IF block whose target is the top of the
IF block. Nested simulated while loops are recognized

by pushing the label of the most enclosing IF block on
a stack and comparing the destination of an enclosed
GOTO with that label. The label is then popped off af-
ter emitting the IF block. The Java translation for the
above loop would be:

while (c == one) {
a = 2*a;
c = Dlamc3.dlamc3(a,one);
c = Dlamc3.dlamc3(c,-a);

} // Close if()

Frequently FORTRAN programs contain GOTO state-
ments within DO loops. This includes many different
situations, but we may roughly categorize them as fol-
lows:

– The GOTO branches to the CONTINUE state-
ment of this DO loop.

– The GOTO branches to the CONTINUE state-
ment of some other enclosing DO loop.

– The GOTO branches to the statement following
this DO loop.

– The GOTO branches to the statement following
some other enclosing DO loop.

– The GOTO branches somewhere else (this equates
to the second category of GOTO statements as de-
scribed above).

The first two cases correspond to Java’scontinue
and labeledcontinue respectively. In Java, the la-
beledcontinue is used in cases where there are mul-
tiple nested loops and the programmer needs to distin-
guish which loop to continue. The following code seg-
ment from idamax.f shows a GOTO that can be trans-
lated to a Javacontinue statement.

do 30 i = 2,n
if(dabs(dx(i)).le.dmax) go to 30
idamax = i
dmax = dabs(dx(i))

30 continue

Detecting this kind of construct is similar to detecting
a simulated while loop. Each time f2j starts generat-
ing a loop, the label of that loop’s CONTINUE state-
ment is pushed onto a stack. Then when a GOTO is
encountered, f2j examines the stack to determine if the
GOTO is branching to the CONTINUE statement of
an enclosing DO loop. The difference between trans-
lating continue statements and simulated while state-
ments is that with continue statements, we need to ex-
amine all labels on the stack, not just the top. Notice
in the following Java translation that even though we
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could have generated an unlabeledcontinue state-
ment, we chose to generate labeledcontinue state-
ments in all cases to help ensure clarity.

forloop30:
for (i = 2; i <= n; i++) {

if (Math.abs(dx[(i)- 1]) <= dmax)
continue forloop30;

idamax = i;
dmax = Math.abs(dx[(i)- 1]);

} // Close for() loop.

The third and fourth cases from above correspond to
Java’s break and labeledbreak respectively. f2j
does not currently detect or translate these cases, but
they would be handled very similarly to the transla-
tion of continue statements. The main exception is that
labeledbreak statements in Java may “break out”
of any enclosing statement, while labeledcontinue
statements are restricted to loops (while , for , or
do). Thus, there may be a much wider range of con-
structs in which a GOTO can be converted to a labeled
break . The following segment of code is a modi-
fied version of the previous segment from idamax.f in
which the GOTO now branches to the statement fol-
lowing the DO loop.

do 40 i = 2,n
if(dabs(dx(i)).le.dmax) go to 50
idamax = i
dmax = dabs(dx(i))

40 continue
50 a = 1

Future versions of f2j will translate the “go to 50” to
a break statement.

The final case from the above list (that is, the GOTO
branches somewhere else) has been the most difficult
to deal with – it does not correspond to any equiva-
lent Java construct. Our goal is to restructure as many
FORTRAN constructs containing GOTOs as possible
into equivalent Java constructs. But there will always
be some GOTOs that cannot be translated in this way.
To handle these cases, we have developed a method
to insert GOTO statements into Java bytecode (see
Fig. 1).

First, we use f2java to translate the FORTRAN code
to Java. GOTOs are automatically translated as calls
to a dummy class. So,go to 100 would be trans-
lated asDummy.go_to(100) . The labels in the
FORTRAN source are also translated as calls to the
dummy class (for example, the label100 becomes
Dummy.label(100) in the Java source).

Fig. 1. Translation of GOTO statements.

Next we compile the java file as usual (using javac).
At this point, we could run the resulting class

file (bytecode), but instead of branching, the Dummy
methods would be called. The program would, al-
most invariably, run incorrectly. The dummy calls
act only as placeholders in the bytecode to signify
where real goto instructions should be inserted. We
have developed a bytecode translation tool to per-
form these insertions. Since JVM instructions have
variable widths (and for other reasons), we must
parse the class file in order to identify the dummy
method calls. For this, we borrowed parsing code from
javab , a bytecode parallelizing tool [11]. After the
bytecode has been parsed, we scan it for calls to
Dummy.label() , recording the label and address in
a hash table. We then zero the entire instruction se-
quence for the method call so that the resulting byte-
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code does not attempt to callDummy.label() (in
the JVM, a zero byte corresponds to thenop instruc-
tion – i.e., it does nothing). On the second pass, we
scan for calls toDummy.go_to() . For each call,
we look up the target label of the goto in the hash
table to obtain the actual bytecode address of the
label. Then we may replace theDummy.go_to()
method invocation with an actualgoto instruction.
Since the method invocation instruction sequence is
longer than the goto instruction, we zero out the re-
maining bytes.

So far, this method has been successful in translat-
ing GOTO statements in the BLAS/LAPACK source
code and testing routines. There may be some cases
in which “hacking” the compiler-produced bytecode as
we have done will produce unexpected results, possi-
bly putting the JVM into an unusual state. The Java
compiler generates code under certain assumptions,
one example of which is that the program should not
branch to a statement within a loop from outside the
loop. Our GOTO translation method has the poten-
tial to violate these assumptions, although we have not
yet come across a specific instance in the BLAS or
LAPACK source.

2.1.9. The need for code restructuring
Even though we now have a way to translate any ar-

bitrary GOTO statement into Java source, there is still
another problem caused by Java’s lack of agoto state-
ment. Consider the following segment of code from
ddot.f:

if(incx.eq.1.and.incy.eq.1)
go to 20

c
[...code for unequal

increments...]
c

ddot = dtemp
return

c
c code for both increments

equal to 1
c

20 m = mod(n,5)

The first line of code checks whether both increments
are equal to 1 and if so, skips the section of code to deal
with unequal increments. We can see by looking at the
FORTRAN code (and so can the FORTRAN compiler)
that statement 20 can be reached. However, looking at
the Java source code produced by f2j, it is easy to see
why the Java compiler does not recognize that fact:

if (incx == 1 && incy == 1)
Dummy.go_to("Ddot",20);

[...code for unequal increments...]

ddot = dtemp;
return ddot;

Dummy.label("Ddot",20);
m = (n)%(5) ;

When the Java compiler analyzes this program, it
views the call toDummy.go_to as a normal method
call. So, as far as javac is concerned, execution resumes
with the code immediately following the method call.
Since the segment of code following the method call
ends with a return statement, javac determines
that any statements following thereturn cannot be
reached. Normally this would be a perfectly reason-
able determination, but in this case we know that the
call to Dummy.go_to will really cause the program
to branch to statement 20.

Currently, there are a few ways to handle this. We
could manually change the FORTRAN source code
such that the IF expression is reversed and put the equal
increments code ahead of the unequal increments code.
There are code restructuring tools that can recognize
and restructure these constructs automatically, remov-
ing the GOTO in the process. We could restructure the
Java source code after translation (not a great idea). Fu-
ture versions of f2j may have some code restructuring
ability built in, so that they can generate correct Java
source code without the need for manual restructuring
or external tools. Our current approach is to generate
one “real”return statement at the end of the function
or subroutine, with a unique label. All otherreturn
statements are translated into dummy gotos, with the
target being the “real”return . Using this approach,
the java compiler views all return statements as func-
tion calls, so it no longer thinks that subsequent state-
ments cannot be reached. This approach is much sim-
pler and less error-prone than code restructuring.

2.1.10. DATA statements
FORTRAN DATA statements are generated as vari-

able declarations combined with initializations. They
must be combined since all variables are now gener-
ated as static class variables and therefore cannot have
separate assignment statements mixed in. For example,
the following DATA statement:

integer z(4)
DATA z/1,2,3,4/
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would be translated to Java as:

static int [] z = {1, 2, 3, 4 };

Some DATA statements would be difficult to trans-
late in this way. For example, when an array element is
used in several DATA statements:

integer X(10)
integer Y
DATA X(3),X(8)/1,2/
DATA Y/123/
DATA X(5)/44/

We cannot generate declarations on a statement-by-
statement basis since, in this case, we would redeclare
X:

static int [] x = { 0, 0, 1, 0,
0, 0, 0,
2, 0, 0 };

static int y = 123;
static int [] x = { 0, 0, 0, 0, 44,

0, 0, 0, 0, 0 };

We could attempt to consolidate all DATA statements
related to the array X and generate one declaration:

static int [] x = { 0, 0, 1, 0, 44,
0, 0, 2, 0, 0 };

Instead, we take a simpler approach. Usingstatic
initialization blocks, f2j can assign the values to the
individual array elements one-by-one:

static int [] x = new int [10];
static {

x[(3)- 1] = 1;
x[(8)- 1] = 2;

}

static int y = 123;

static {
x[(5)- 1] = 44;

}

2.1.11. EQUIVALENCE statements
The EQUIVALENCEstatement is one of the most

difficult FORTRAN language features to translate into
Java. We do not have a general solution nor do we ex-
pect to develop one, however we can support a limited
form of equivalence as long as the following two con-
ditions are met:

– The data types of the variables to be equivalenced
must be exactly the same.

– If the variables are arrays, the indices, if present,
must be 1.

The second condition prohibits the beginning of one
array being equivalenced to the middle of another ar-
ray. Arrays of different dimensions may be equiva-
lenced, though, provided that they have the same data
type.

2.1.12. Input/Output
Since our primary focus at this stage in the devel-

opment of f2j is to produce a reliable Java imple-
mentation of BLAS/LAPACK, we have not empha-
sized the translation of Input/Output statements such as
WRITE, READ, FORMAT, etc. However, it has been
necessary to partially implement WRITE/FORMAT
and unformatted READ in order to compile and ex-
ecute the BLAS and LAPACK test routines. File de-
scriptors are ignored, as are field widths in FOR-
MAT statements. Thus, the output often will not look
exactly the same once the program is converted to
Java, but it is close enough to verify that the numer-
ical routines are working. Until the BLAS/LAPACK
class libraries are tested and released, we do not plan
to extend the implementation of I/O statements be-
yond what is necessary for testing the numerical code.
To fully implement FORTRAN I/O in Java would
probably require taking a similar approach to that
used in f2c (possibly involving portinglibI77 to
Java).

2.1.13. COMMON blocks
As with Input/Output, our primary motivation for

implementing COMMON blocks is to get the test rou-
tines translated. The BLAS and LAPACK source files
do not use COMMON blocks, but they occur quite fre-
quently in the test routines. Since our goal is to pro-
duce a reliable, thoroughly tested Java implementation
of the BLAS and LAPACK libraries, it is very impor-
tant to get the test routines running. Thus, f2j must
provide some basic level of translation for COMMON
statements.

The following segment of code from dblat1.f, the
level 1 BLAS tester, illustrates a typical use of the
COMMON statement:

INTEGER ICASE, INCX, INCY, MODE, N
LOGICAL PASS
COMMON /COMBLA/ICASE, N, INCX,

INCY, MODE, PASS

Each COMMON block in the FORTRAN source is
translated to a separate Java class:
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public class dblat1_combla
{

static int icase = 0;
static int n = 0;
static int incx = 0;
static int incy = 0;
static int mode = 0;
static boolean pass = false;

}

Multiple COMMON blocks are supported and vari-
ables need not have the same names in each common
block declaration. However, if the variables names
do differ, f2j attempts to merge the names into one.
Thus, if one common block has many different dec-
larations, the merged names could become large. This
is generally not a problem with the BLAS and LA-
PACK testers, but could become cumbersome with
other code. Eventually, we may change to a different
scheme, in which we choose one set of variable names
to use consistently for every common block declara-
tion.

2.1.14. Reserved words in Java
The Java language has over 50 reserved words, so

it is inevitable that a FORTRAN program will have a
variable with the same name as a Java keyword. Such
a variable name cannot be retained because the Java
source would not compile. Therefore, f2j maintains a
table of all the Java keywords. When it comes across a
variable name matching one of these keywords, it must
transform the name into a new unique name that does
not conflict with any Java keyword or any other cur-
rently defined variable name. Since f2j currently gen-
eratesall FORTRAN variable names in lowercase, any
conflicting name can be transformed by converting the
first letter to uppercase (e.g.,try becomesTry ).

2.1.15. Object wrappers and optimization
As mentioned in Section 2.1.1, we must encapsulate

primitives in object wrappers in order to emulate pass-
by-reference. However, wrappingeveryscalar would
result in much lower performance than using the prim-
itive types, but it is simple to implement in the code
generator and it allows f2j to generate correct Java code
automatically. Looking at the LAPACK source code,
it is apparent that most of the scalar parameters are
not modified within the routines. Our experience shows
that a substantial performance gain can be realized by
optimizing the use of object wrappers in the gener-
ated code. To perform this “optimization”, we added
another pass to the translator. This extra pass starts at
the head of the abstract syntax tree and analyzes ev-

ery variable in each program unit to determine which
variables must be wrapped. The determination is made
based on the following rules:

– If the variable is a parameter to the current pro-
gram unit and it is on the LHS of an assignment
statement, then it must be wrapped.

– If the variable is a parameter to the current pro-
gram unit and it is an argument to a READ state-
ment, then it must be wrapped.

– If the variable is an argument to some function
and that function modifies the corresponding for-
mal parameter as described in the first two rules,
then it must be wrapped.

To optimize a given program unit in this way requires
first optimizing all units that this one calls because
we need to know whether the function parameters are
wrapped or not.

Wrapping scalars in objects brings up a parameter
passing issue. Consider the following function decla-
ration:

double precision
function ddot(n,dx,incx,dy,incy)

double precision dx(*),dy(*)
integer n,incx,incy

Assuming for a moment thatn, incx , and incy
are all modified within ddot, the declaration would be
translated into Java as:

public static double ddot (intW n,
double [] dx, int _dx_offset,
intW incx,
double [] dy, int _dy_offset,
intW incy)

As the Java code illustrates, the integer arguments are
translated to object references to provide the pass-by-
reference functionality discussed previously (intW is
the name of the integer wrapper). The two double
precision vectors are translated as<array reference,
offset> pairs (see Section 2.1.2). Let us suppose that in
some call toddot , some of the integer parameters are
constants. For example:

X = DDOT(5,SX,1,SY,1)

To correctly translate this function call, f2j must know
the data types of the arguments thatddot expects so
that the constants can be wrapped in the appropriate
objects. This would not be such a problem in languages
like FORTRAN and C, but with Java’s strict typecheck-
ing, the resulting Java code will not compile unless all



D.M. Doolin et al. / JLAPACK – compiling LAPACK FORTRAN to Java 119

the data types match exactly. This, and other issues,
necessitated the integration of a simple type analysis
phase into f2j.

The previous paragraph illustrated the need for
checking function arguments when passing constants,
but that is not the only case in which typechecking is
required. Let us consider the example FORTRAN sub-
routine call from Section 2.1.2,

matrixop(A(i,j,), LDA).

But in this case, imagine thatmatrixop is actually
defined as follows:

SUBROUTINE MATRIXOP(A, LDA)
DOUBLE PRECISION A
INTEGER LDA

Given this definition, the translation of the subrou-
tine call provided in section 2.1.2 (matrixop(A,
i+j*LDA, LDA) ) would be incorrect and the result-
ing Java code would fail compilation. If f2j did not
know the data types of the arguments expected byma-
trixop , it would have to assume that an array sub-
section was expected and pass the<array reference,
offset> pair, as shown above. However, if f2j can de-
termine thatmatrixop expects scalar arguments, the
subroutine call can be generated correctly by passing
the array item itself:

matrixop(a[i+j*LDA],LDA).

Java only passes objects and arrays (which techni-
cally are considered objects) by reference. Thus, f2j
could implement scalar pass by reference in either of
two ways: (1) by wrapping the scalar element in an ob-
ject or (2) by using a single element array containing
the scalar value. Some quick timings indicate that ac-
cessing a class element is around 10% faster than ac-
cessing an array element, while accessing a primitive
is around 20% faster than accessing a class element.
Examining the instructions produced by the Java com-
piler (Sun JDK 1.1) shows why this is the case. The
following is the code to access the first element of an
array:

aload_1
iconst_0
iaload

The code to access a class element:

aload_1
getfield intW/val I

The code to access a primitive:

iload_1

2.1.16. Passing array elements by reference
In the previous section, we mentioned an example of

a FORTRAN call, matrixop(A(i,j,), LDA) , to
a subroutine declared as follows:

SUBROUTINE MATRIXOP(A, LDA)
DOUBLE PRECISION A
INTEGER LDA

That example illustrated the need to determine
whether an array should be passed as an<array refer-
ence, offset> pair or as an array element. As mentioned
before, the array element should be passed. However,
the Java method call we suggested,

matrixop(a[i+j*LDA],LDA),

is not the complete answer. It does not take into ac-
count the fact that in FORTRAN the array element is
passed by reference while in Java it is passed by value.
We take a simplistic approach to solving this problem.
Before the call, we encapsulate the array element in
an object. That object is then passed to the subroutine.
After the call, we assign the object’s value back to the
array element.

tmp = new doubleW(a[i+j*LDA]);
Matrixop.matrixop(tmp,LDA);
a[i+j*LDA] = tmp.val;

This would work fine for subroutines, since in FOR-
TRAN there may be only one subroutine call per
line. Function calls, however, may be embedded in
other calls or in other constructs making such assign-
ments inconvenient. Therefore, we create anadapterto
the function. An adapter merely encapsulates the real
function call and the assignment statements into one
method. For example, instead of callingmatrixop
directly, now we call an adapter formatrixop :

matrixop_adapter(a,i+j*LDA,LDA);

Then we declare the adapter as follows, see Program
Code 1.

Alternately, We could have defined the matrixop
method twice in the Matrixop class, with the second
declaration acting as the adapter. However, depend-
ing on the parameters, there could be several adapters
for one function or subroutine and we did not want to
add to the size of the library any more than necessary.
Placing the adapters in the calling class allows us to
only generate those adapters that will be used, rather
than generating all possible adapters that could ever be
used.
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private static void matrixop_adapter(double [] arg0, int arg0_offset, intW arg1)
{

doubleW _f2j_tmp0 = new doubleW(arg0[arg0_offset]);

Matrixop.matrixop(_f2j_tmp0,arg1);

arg0[arg0_offset] = _f2j_tmp0.val;
}

Program Code 1.

2.1.17. Type analysis
Section 2.1.15 mentioned the need for type analysis

in f2j by giving two examples of FORTRAN code that
would not translate correctly otherwise. However, f2j
does not implement typechecking,per se. That is, not
in the traditional sense of the word. It does not attempt
to warn the user of any type mismatches or other se-
mantic errors. What f2j really does is fully traverse the
AST and assign type information to every node, which
is then used during code generation. This usually re-
quires propagating type information from child nodes
back up the tree to the parent nodes. Once the type as-
signment pass has completed, the code generator can
use this information to compare arguments/parameters
and generate the correct function calls. In order for the
code generator to compare the actual arguments in a
function call to the parameters expected by the func-
tion, the function must be parsed and analyzed by f2j.
This means that to generate correct Java code, it is
sometimes necessary to append external functions and
subroutines to the FORTRAN program that f2j is trans-
lating. This is because the function/subroutine decla-
ration needs to be parsed and stored in a hash table. If
f2j needs to generate a function call, but cannot find the
parameter information in the hash table, it will “guess”
about the expected data types. That is the reason we say
that it is “sometimes” necessary to append the function
– because sometimes f2j will guess correctly and other
times it will not. To eliminate the need for appending
all the functions into one file, we may extend the f2j
parser to deal with multiple files provided on the com-
mand line.

Parameter passing is not the only situation in which
we might need to use information gained during the
type analysis phase. Consider the following segment of
code from dlamch.f:

INTEGER LBETA, LT
DOUBLE PRECISION A, B, C, F,
ONE, QTR, SAVEC, T1, T2

*
[...]

*
LBETA = C + QTR

*
[...]

Java does not allow assigning a double precision value
to an integer variable without an explicit cast. Conse-
quently, when f2j generates an assignment statement,
it needs to determine the data type of the right hand
side expression and the data type of the left hand side
variable. If the data types differ, f2j must generate an
explicit cast, as follows:

int lbeta;
double c, qtr;
[...]
lbeta = (int) (c+qtr);
[...]

2.1.18. Functions as arguments
FORTRAN allows passing the name of a function

or subroutine as an argument to another function or
subroutine. In Java, however, passing a method as an
argument is not possible. The recommended way to
achieve the same effect in Java is by usinginterfaces.
The prototype of the method to be passed is placed
in an interface. The data type of the parameter in the
called method should be the name of the interface. The
method to be passed must be in a class that implements
the interface.

The problem with using this approach in f2j-gener-
ated code is one of naming. When compiling a function
that takes another function as a parameter, f2j does not
know the name of the original function, only the name
of the local parameter. So f2j cannot decide how to call
the method.

Instead of using interfaces, we chose to use there-
flectionmechanism built into version 1.1 of the Java
language. Reflection allows a Java program to discover
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public static void sort (int [] a, int _a_offset, Object cfun) {

java.lang.reflect.Method _cfun_meth = cfun.getClass().getDeclaredMethods()[0];

Program Code 2.

if(cfun_methcall(_cfun_meth,a[(i)- 1+ _a_offset],a[(j)- 1+ _a_offset]) > 0)

Program Code 3.

private static int cfun_methcall( java.lang.reflect.Method _funcptr,
int _arg0, int _arg1 )

throws java.lang.reflect.InvocationTargetException,
java.lang.IllegalAccessException

{
Object [] _funcargs = new Object [2];
int _retval;

_funcargs[0] = new Integer(_arg0);
_funcargs[1] = new Integer(_arg1);

_retval = ( (Integer) _funcptr.invoke(null,_funcargs)).intValue();

return _retval;
}

Program Code 4.

information about an object (such as public meth-
ods and public class variables) at run-time. The first
method in all f2j-generated classes is the translated
FORTRAN routine. After that, the only other methods
that should be contained in the class are adapters (see
Section 2.1.16). Therefore, the generated Java code can
get a reference to the correct method by simply using
reflection to access the first method in the class.

With this technique, the code in the calling method
is simple. The user just passes a new instance of the
class containing the method:

Sort.sort(x, 0, new Comp() );

It is necessary to create a new instance of the class
because reflection requires a reference to the object.
All methods in f2j-generated classes are static and nor-
mally there is not already an instance of the class, so
we create one on-the-fly.

The code in the called method is a little more com-
plex since it has to perform the reflection. First, the
routine gets a reference to the method, see Program
Code 2.

Note that the data type of the class isObject be-
cause f2j does not know what kind of object is going
to be passed in. Before calling the method, the argu-
ments must be placed into an array ofObject . Since
this may take several statements and the original call
may be embedded in some construct like a conditional
expression, f2j generates an adapter function. The first
argument to the adapter is the reference to the method.
The remaining arguments mirror the parameters of the
original function (Program Code 3).

Then the adapter makes the actual call, see Program
Code 4.

2.2. Implementation of the f2j compiler

The program f2c is a horror, based on ancient code
and hacked unmercifully. Users are only supposed
to look at its C output, not at its appalling inner
workings. – Stuart Feldman [9]

The f2j compiler system was written in ANSI C, us-
ing a C parser generated by the Bison parser gener-
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ator. The code was written from scratch after deter-
mining that existing FORTRAN tools such as f2c and
g77 would be difficult to modify. Similarly, the Bison
grammar was derived from the FORTRAN 77 standard
since available parse files would have needed extensive
rewriting to produce an abstract syntax tree (AST). The
BLAS and LAPACK source code are assumed to be
syntactically correct FORTRAN. Comments in the com-
piler source are written as complete sentences, starting
with a capital letter and ending with a period. Com-
ments from the FORTRAN source are preserved in the
translation as Java comments. The f2java executable
may generate either Java source code or Jasmin op-
code, depending on the command-line options (-java
or -jas ).

2.2.1. LexingFORTRAN

It should be noted that tokenizingFORTRAN is such
an irregular task that it is frequently easier to write
an ad hoc lexical analyzer forFORTRAN in a con-
ventional programming language than it is to use
an automatic lexical analyzer generator. – Alfred
Aho, 1988 [12]

Lexing FORTRAN is somewhat difficult because
keywords (e.g., IF, DO, etc.) are not reserved. Thus
keywords can also be used as variable names. To prop-
erly lex FORTRAN, each statement must be examined
for context, which requires lookahead. Sale published
an algorithm for lexing FORTRAN in CACM in the
1960’s. Fortunately, once FORTRAN is lexed, it is fairly
easy to parse.

In general, the f2j lexer aspires to be a FORTRAN

specific variant of thelex lexical analysis tool. The
compiler uses global variables so that the parser’syy-
parse procedure can communicate with the lexer’s
yylex procedure. Global variables, such asyytext
and yylval , are typed in the header file f2j.h, and
declaredextern in the functions that use them. Line
numbers are counted and provided in error messages
to help identify the erroneous statement.

Lexing in f2j is a two phase process consisting of
a scan phase and a lexical analysis phase. The scan
phase removes whitespace and comments, catenates
continued lines together, marks the end of file and
implements Sale’s algorithm (Appendix 7) to deter-
mine context. The lexical analysis phase implements a
custom-writtenyylex procedure to provide tokens to
the parser,yyparse , which is generated by theBison
parser generator.yylex implements a scan phase at
the beginning of every FORTRAN statement by calling
several procedures to manipulate the statement input

string from the source file into a valid FORTRAN state-
ment. The statement is scanned, lexed, and the next to-
ken, along with its lexical value, is made available to
the parser.

At the beginning of every FORTRAN input state-
ment, prelex() is called to read a line from the
FORTRAN input file, disposing of comment lines until
a valid line is found. Once a valid line is found, the line
buffer is passed tocheck_continued_lines() ,
which does a look-ahead to the sixth column of the
next line. If there is a “continuation” character in the
sixth position, the next line is read and catenated to the
previous line, incrementing the (global) file pointer. If
there is no continuation character, the file pointer is re-
set for the next call toprelex() .

Once check_continued_lines() returns a
complete statement,collapse_white_space()
removes all spaces, tabs and newlines from the state-
ment. Extra newlines embedded between continued
lines would result in a parse error since newlines are
used as FORTRAN’s statement delimiter. This is done
in a loop, incrementing a character pointer that is
dereferenced to compare characters. After all whites-
pace is removed, one newline is catenated to the
very end of the statement which can be passed as a
token to the parser.collapse_white_space()
also changes characters into upper case, with the ex-
ception of FORTRAN character arrays, enclosed be-
tween tick (’) marks, that are passed back as literal text
in the statement buffer as well as in the text buffer.
Also, Sale’s algorithm (Appendix A) is implemented
to determine context. Once the white space is removed,
prelex() increments the line number and control
passes back toyylex() .

In the lexical analysis phase, statements are scanned
for tokens according to the context determined from
the prepass. Theyylex() procedure calls one of
three scanning procedures,keyscan() , name_
scan() , ornumber_scan() to extract tokens from
statements.keyscan() takes tables of keywords
or symbols defined as part of the FORTRAN lan-
guage language, along with the statement buffers re-
turned from the prepass.name_scan and num-
ber_scan() only take the statement buffer argu-
ments. All scanning routines modify the statement
buffers and return tokens along with any lexical values
present.

The keyscan() routine takes one of three ta-
bles defined in an initialization header file. The tables
contain either keywords, types or symbols. The ap-
propriate table is chosen by context determined from
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the prepass. Table scanning is accomplished by deter-
mining the length of the word or symbol string, then
string comparing to determine a match. A successful
match advances a character pointer to the end of the
new token, which is returned along with any lexical
value. The remaining string is copied into the state-
ment buffer. The lexical values are determined from
the matching source code text buffer. The tables are
split into three types: one for FORTRAN key words (IF,
DO, etc.), one for FORTRAN types (REAL, INTEGER,
etc.), and one for symbols (+, =, etc.).

Thename_scan() function is called if there is no
context for a key word, and if the character pointed to
by the statement buffer is alphabetic.name_scan()
loops over the characters in the statement buffer, ad-
vancing a character pointer until a non-alphanumeric
character is seen. Then the statement and text buffers
are updated and the NAME token is passed back to
yylex() . The lexical value is copied into the global
union variableyylval for use byyyparse() when
NAME is reduced.

The number_scan() procedure addresses some
other lexical questions associated with FORTRAN, such
as the look-ahead needed to determine whether the
characters “123” reduce to an integer in the relational
operation123.EQ.I . This is accomplished by ad-
vancing a character pointer over the statement buffer
while the current character is a digit or any of the char-
acters in the set {D, d, E, e, .}. Encountering a “.” dur-
ing the loop causes the required look-ahead to deter-
mine whether the number is an integer or a floating
point number. Encountering any of the letter D, d, E,
or e invokes more look-ahead to determine the sign of
the associated exponent. The procedure returns tokens
and values similarly toname_scan() .

2.2.2. ParsingFORTRAN

One may reasonably ask why anyone would use
FORTRAN today, since experts seem to agree that
the language is obsolete – Stuart Feldman,
1979 [13]

The FORTRAN grammar has been described as nei-
ther LL or LR, or LL and not LR, or LR and not LL, or
both LL and LR. All answers are partly correct. FOR-
TRAN was written before the notion of regular expres-
sions, and before context-free grammars were derived.
FORTRAN predates Knuth’s [14] derivation of LR pars-
ing by about 10 years. Fortunately, the LAPACK subset
of FORTRAN 77 may be parsed LR(1), once the lexical
structure has been determined.

The yacc grammar was written using the FOR-
TRAN77 standard [15]. The grammar was implemented

using theBison parser generator, a yacc work-alike
distributed by the Free Software Foundation. Bison
generates an ANSI C parser, which helps ensure plat-
form independence. The Fortran source code is parsed
into an abstract syntax tree (AST) consisting of tagged
union nodes implementing the equivalent Java struc-
tures. The AST allows easy lookup and connection be-
tween non-adjacent nodes if future code restructuring
is desired. The AST can be passed by its root node to
separate type-checking, code optimizing and code gen-
eration procedures.

The compiler uses global variables to communicate
between the lexer and the parser because the Bison
generated parser routineyyparse() is automatically
generated and takes no arguments. Global variables are
declared in thef2j.h header file and asextern in
the functions that use them. In the parser, tokens that
are associated with a lexical value are immediately re-
duced to store the value. Since Bison reduces on in-
line actions, in-line actions are avoided when possi-
ble.

The abstract syntax tree (AST) contains a single
node type consisting of an enum statement naming
FORTRAN constructions (e.g., do loop), a union of
structs to store data for each type of FORTRAN con-
struction, pointers to attach the nodes, and a token
value. Some of the structs in the union, such as that
used for assignments, can also be used for expres-
sions during the parsing pass. The node would be as-
signed the appropriate tag (enum variable) because
code generation procedures are necessarily different
for assignment statements and expressions. The point-
ers are used to doubly link statement blocks, or in the
case of expressions, parent from child nodes to par-
ent nodes. Since Bison is an LR parser, linked lists
are built in reverse, and must be switched for in-order
traversal. The switching is done before sublists are at-
tached to the main part of the program, and for the
main program, directly after the final grammar re-
duction before the code generation routines are in-
voked.

The AST contains data for all FORTRAN program
units contained in the input file. Each FORTRAN pro-
gram unit consists of statement blocks, which are com-
posed of one or more FORTRAN statements. The state-
ment blocks are connected into a doubly linked list, re-
flecting FORTRAN’s procedural control of flow.

The statement block may consist of a single state-
ment, or a group of statements in a control structure
such as a do-loop or if-then-else block. Statements
within the scope of such structures are linked as a sub-
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list within the block instead of sequentially along the
main flow of the program. Expressions are parsed into
a tree, whose root node is attached in the appropriate
location along the flow of the program or control struc-
ture, as appropriate.

2.2.3. Code generation
Java code. After the parser constructs an AST, the
root of the tree is passed to code generation proce-
dures to generate Java source code or Jasmin opcode.
Since the FORTRAN source is assumed syntactically
and semantically correct, the tree is recursively tra-
versed without formal semantic checking. The Java
source code generation is done in two passes. The first
pass performs basic type assignment and the second
pass emits the source code.

Jasmin opcode. For Jasmin source, two passes are
done: the first to assign opcode by type and context,
the second pass to emit opcode. Jasmin opcode dif-
fers from from Java source primarily in 3 different
ways: (1) The operator syntax is postfix instead of
infix; (2) branching must be handled explicitly; and
(3) arithmetic operations are performed by type spe-
cific instructions, that is different instructions are used
to add integers than to add floats.

The most challenging aspect of generating op-
code for Jasmin is correctly implementing execution
branching. Branching takes the formjump -> la-
bel where the jump may be a result of a comparison
of two values on the stack, or simply agoto state-
ment. Labels are the target of all jumps. Different con-
trol flow structures have different requirements for la-
beling. Appendix 7 illustrates branching constructions
in Jasmin generated by the f2jas program.

3. Using the f2j compiler

Synopsis

Usage: f2java [-java/-jas]
[-p package name] [-w]
[-i] [-s] <filename>

The f2j system currently consists of C source files
that are compiled into a single executable:f2java .
This executable can generate either Java or Jasmin
code depending on the command-line arguments:
-java for Java source code or-jas for Jasmin op-
code.

Using f2java from the command line requires only
the filename of the FORTRAN program to translate. By

Fig. 2. Translation strategies in the f2j project.

default, the FORTRAN program is translated to Java
source code, but the-jas switch will direct f2java
to generate Jasmin opcode instead. The name of the
FORTRAN file is transformed into the class name, with
appropriate capitalizations following established Java
programming conventions. Thus, the LAPACK driver
dgesv.f is translated to Dgesv.java.

The -p option allows the user to specify a package
name for the generated source code. For example,

f2java -p org.netlib.blas file.f

would generate a file named File.java, as usual, with
the following package specification:

package org.netlib.blas;

The package option is used when generating Java
source that will be part of a library. For example, when
translating ddot.f, which will be part of the Java BLAS
library, we would specify “-p org.netlib.blas ”.

The -w option turns off the optimization of wrap-
pers, as discussed in Section 2.1.15. By default, wrap-
per usage is optimized. With-w specified,everyscalar
variable will be wrapped in an object.

The-i option causes f2j to generate a high-level in-
terface to each subroutine and function. The interface
provides a more Java-like API to the underlying nu-
merical routines.

The -s option causes f2j to simplify the interfaces
by removing the offset parameter and using a zero off-
set. It isn’t necessary to specify the-i flag in addition
to the-s .

4. User interface to JLAPACK

In JLAPACK, the API is separated into theuserAPI,
and thelow-levelAPI.
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The user-level interfaces are built on top of the low-
level routines. This separation provides several bene-
fits. User supplied 2D arrays can be turned into 1D ar-
rays, then back to 2D arrays. Offset and leading dimen-
sion arguments can be omitted to simplify the calling
sequence. Certain variables must be wrapped in objects
to emulate pass-by-reference, though.

The lower level interface consists of the same proce-
dural type calls as in LAPACK. At this level, the driver
routines are called as static methods. Since the static
methods “shadow” the class name, the syntax for call-
ing a driver is easy to remember. For example, calling
dgesv will be done in JLAPACK by Dgesv.dgesv(. . .
arglist . . . ).

Consult http://www.cs.utk.edu/f2j/
docs/html/packages.html for up to date doc-
umentation on both APIs.

5. Current status of project

The JLAPACK project has now completed all three
Phases (FORTRAN front-end, code generation, and
testing) with respect to the initial design criteria. We
are not putting much emphasis on the Jasmin code gen-
erator anymore since we can translate GOTO state-
ments into Java source.

The current implementation of f2j performs Java
source code generation, and partial Jasmin opcode gen-
eration. The generated Java code will compile as long
as all dependencies compile. Levels 1, 2, and 3 BLAS,
the LAPACK routines, and the BLAS/LAPACK testers
all meet this criterion and will compile and run in the
JVM.

Implicit typing of variables can be done in FOR-
TRAN. By default, variable names starting with I, J, K,
L, M or N are integer variables [16] unless explicitly
typed otherwise. However, f2j assumes all variables in
the FORTRAN source are explicitly typed.

The parser now handles multiple program units
(function, subroutine, program) per input file, however
only one filename may be supplied on the command
line at a time. Extending f2j to handle an arbitrary num-
ber of files would be worthwhile since the code genera-
tor needs to be able to view the function declarations of
all the functions and subroutines called by a program
unit.

Currently, f2j does not do any memory recovery. All
allocated memory is kept by the program and returned
to the operating system only when the program exits.
For the BLAS and LAPACK translation, this is not a

large issue. Any future extensions to f2j, such as the
ability to specify an arbitrary number of files, should
address this issue.

The current version of f2j translates certain DATA
statements. Our primary motivation for implement-
ing DATA statements was to successfully translate the
BLAS testers. Consequently, the set of DATA state-
ments f2j supports directly corresponds to the set of
DATA statements used in the BLAS testers. Future ver-
sions of f2j may fully support DATA statements.

6. Recommendations

The parser generatoryacc was developed in the
1970’s and reflects the programming practices of its
day. For instance, the actual parser produced byyacc
is not easily readable due to the number of goto state-
ments. As the parser takes no arguments, it must in-
teract with its associated lexer using global variables.
The extent of global variable use in the f2j compiler
has reached a point of diminishing returns. The code
generation routines should be rewritten to reference a
structure that keeps count of all relevant variables such
as the name of the current program, line numbers, label
numbers, etc.

Rewriting the type assignment and code generation
routines for emitting Jasmin opcode involves deter-
mining exactly how many global variables are used,
writing an appropriate structure and passing the struc-
ture along through recursive calls. The structure should
be declared and initialized in the initialization routine
called by main() before the parser starts to work.

Previous versions of f2j have used a single pass code
generator for Java source and a two pass generator for
Jasmin source. Currently, f2j uses at least two passes
for both target languages, the first pass traversing the
tree to determine type information and another pass
generating the code. For obvious reasons, the code gen-
eration passes must remain distinct, but the type as-
signment passes could be combined into one common
function.

Many of the FORTRAN intrinsic functions have been
mapped to their Java equivalents, but there are still
many remaining to be mapped.

As previously mentioned, it would be a good idea
to extend f2j to allow multiple file names on the com-
mand line.

The table used to avoid conflicts between Fortran
variables and Java reserved keywords should be up-
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dated to reflect the new version of the Java Develop-
ment Kit (1.1).

Most of the work to date on the f2j system has
been designed from the “bottom up.” Functions per-
formed by the lexer, parser and code generator were
factored into independent procedures and implemented
as building blocks to construct the compiler. Midway
through Phase 2, user interface design issues necessi-
tated a “top down” approach, that is, designing JLA-
PACK from the potential users point of view.

One of Java’s strengths is that its numerical syntax
is similar to C, FORTRAN, and BASIC. Since the me-
chanics of implementing array access differ between
Java and FORTRAN, it seems at once natural and desir-
able to shield JLAPACK users from the internal work-
ings of the JLAPACK code. Two ways of doing this
are: (1) provide completely new wrappers to the driver
routines using object-oriented conventions; (2) provide
the user with a data specification and a set of auxil-
iary routines. The specification would expose the user
to the structure expected by JLAPACK for data. The
auxiliary routines would allow the user to ignore the
specification and transform Java 2D arrays in row or-
der to 1D column order arrays. Option (1) is preferable
from a design standpoint, but option (2) is much easier
to implement, parallels existing LAPACK documenta-
tion, and should expose pitfalls to be avoided in a later
implementation of (1).

7. Summary

FORTRAN still excels for numerical programming,
and is not likely to be challenged anytime in the fore-
seeable future. Indeed, more powerful versions of the
FORTRAN language (HPF, F90) have been developed.
The numerical libraries originally developed in FOR-
TRAN, such as BLAS and LAPACK, arede factoref-
erence implementations of specific numerical algo-
rithms.

Translating FORTRAN directly to Java probably
won’t provide optimal execution speeds. However, it
is a convenient first step. The issue addressed with
JLAPACK is not whether it is possible to derive algo-
rithms implemented in Java that provide the same ef-
ficiency as existing algorithms written in FORTRAN.
This hasn’t been resolved. In some cases, a different al-
gorithm, derived to take advantage of Java’s strengths,
may provide near FORTRAN speeds when used with
a JIT or compiled to native code. The issue is “how
do we express, in Java, algorithms that are well known

and understood, reliable, efficient and thoroughly de-
bugged, currently written in FORTRAN.” The f2j com-
piler is a first step in this direction.

Since these algorithms are applicable for a broad
range of problems over a broad range of scales, provid-
ing reliable implementations in other languages such
as C and Java provides a great benefit to the numerical
computing user community. While numerical analysts
may find FORTRAN the most efficient language for al-
gorithm development, engineers and scientists in other
disciplines may need to use a different language, such
as Java, for application development. The numerical al-
gorithm, instead of being the point of the program, is a
tool useful for accomplishing its specified task.

The f2j compiler provides an excellent base upon
which to build a more general compiler that trans-
lates a larger subset of FORTRAN into Java. For perfor-
mance reasons, it may still be necessary to have some
user control over how variables are passed and ar-
rays accessed, but there are no formal obstacles, other
than fully implementing the EQUIVALENCE state-
ment. Such a tool could also perform code restructur-
ing using the information implicit in the abstract syn-
tax tree constructed during parsing. The popularity of
thef2ctranslator indicates thatf2j will be a popular and
useful tool.
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Appendix A. Sale’s algorithm

Sale’s algorithm (Giles, pers. communication) was
published in CACM in the sixties – with an update
for Fortran 77 republished in the eighties. Sale’s algo-
rithm requires a prepass of each statement to determine
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whether or not the statement begins with a keyword.
The prepass is simple and can be done while scanning
to remove comments and white space, and catenating
continuation statements together, prior to normal lexi-
cal processing.

During the prepass, any characters in a Hollerith,
character string (that is, between quotes or apostro-
phes), and any characters between matching parenthe-
sis are ignored. Those characters are irrelevant to the
purpose of the prepass. Of the remaining characters,
the scanner must keep track of whether there are any
equal signs (=) and whether there are any commas (,).
Given the results of the prepass, the lexer should work
according to the following rules, illustrated with exam-
ples.

1. If there was neither a comma nor an equal sign,
the statement must begin with a keyword:

REAL X No comma or equal sign, so a key-
word must be first and lexer should find the
REAL keyword;

FORMAT(I5,F10.3) No comma or equal sign
(none outside parenthesis), lexer should
find keyword FORMAT.

2. If there was an equal sign, but not a comma, the
statements mustnotbegin with a keyword:

REAL X = 5 No comma, but an equal sign, so
no keyword is allowed, lexer should find
identifier REALX;

FORMAT(I5) = 7 An equal sign, lexer finds
identifier FORMAT;

DO 10 I = 1.10 Famous, no comma but equal
sign is present, identifier DO10I found.

3. If there was a comma (equal sign or not), the
statement must begin with a keyword:

DO 10 I = 1, 10 Both comma and equal sign,
keyword DO found.

However, there are still exceptions, This is re-
solved by collecting more information during the
Sale’s prepass. If the statement contains parentheti-
cal lists or expressions, look at the first non-blank
character after the close of the first parenthetical
list/expression and record whether it’s a letter. Now
add two more rules to the lexer:

4. If there was a letter following a parenthetical,
then the statement must begin with the keyword
IF (very specific rule).

IF(LOGFLG) X = 5.0 Has an equal sign, but
begins with keyword!

5. If there is such a letter, but no equal sign, the
statement must end with the keyword THEN (an-
other very specific rule).

IF(LOGFLG) THEN No comma or equal, so
IF keyword is found, but there is a second
keyword.

Another lexically ambiguous situation occurs with
the FUNCTION keyword. To resolve this, it must be
known whether this is the first statement of a proce-
dure, or whether it’s a subsequent statement. If this is
the first statement in the source, or if it’s the first state-
ment after an END statement, then the form with an
identifier inside the parenthesis is a FUNCTION dec-
laration. In all other circumstances, the statement de-
clares an array.

6. This will always declare an array.

INTEGER FUNCTION A(5) An array decla-
ration FUNCTIONA of length 5 (this is not
ambiguous).

7. If this is the first statement in the source, or if
it’s the first statement after an END statement, a
function is declared.

INTEGER FUNCTION A(I) Either an array or
a function is declared.

Except for the keywords inside of an I/O control list
(not implemented in f2j), these rules specify how to
find all Fortran 77 keywords. Except for THEN and
FUNCTION, all non-I/O keywords must be the first
token of the statement they’re in (with the caveat that
they can be the first token of the sub-statement con-
trolled by a logical IF – to which rules 1 to 3 still ap-
ply).

Sale’s algorithm resolves many of the issues that are
frequently cited as major difficulties of lexically scan-
ning Fortran. The algorithm can be implemented dur-
ing a prepass to quickly identify most of the informa-
tion that would normally require lookahead when dur-
ing lexing. From there on, FORTRAN can be quickly
and efficiently parsed with the same compiler tools
used for more modern languages. The algorithm is easy
to code, fast, and the rest of Fortran’s syntax is fairly
regular once resolved in the lexer.

Appendix B. Timing array index operations

Three timing loops were written in Java to investi-
gate the relative execution speed resulting from initial-
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Table 1

Execution speed of array index operations depends on the number
and type of instructions required to index

2D 1D (row) 1D (column)

integer 480 592 462

double 2127 2268 2116

izing a square matrix,n = 500. The first loop initial-
ized a 2D array, the second a 1D array with row order
indexing, the third a 1D array with column order index-
ing. In the third loop (column order), the index product
term was assigned to a dummy variable between the
outer and inner loops. The timing was done by storing
the system time (in milliseconds) before the loop, then
taking the difference with system time returned after
the loop. Garbage collection was forced before each
timing call in an attempt to provide an identical execu-
tion environment for each loop.

The results of two experiments of 32 trials each are
shown in Table 1. The first experiment initialized ar-
rays with the integer constant 1; the second with a
double constant generated by raising a double to the
power of another double. The 1D column order was the

fastest, followed by the 2D and the 1D row order. The
time differences reflect the both the number of state-
ments and the time required to execute statements ini-
tializing the matrix within the inner loop. Disassem-
bling the class file for the integer testing code (Array-
Ops.java) shows that the 2D and 1D column order ma-
trix indexing requires 6 instructions, while the 1D row
order requires 8, due to the product term located within
the index. Differences between the 2D and 1D column
order are assumed due to variations in time required to
execute different JVM instructions.

As would be expected, the time differences between
initializing an integer and double is significant only in
a relative sense. The absolute values of the differences
are very similar. A better timing loop would measure
time required for a matrix–matrix operation such as
C = AB.

The following Java source code implements timing
for index operations in two dimensional arrays that are
accessed by different indexing methods. Although ini-
tializing array elements is a simple operation, the code
could easily be extended to implement matrix–matrix
operations.

/* This class performs a some simple timing for array
operations.
*/

//

import java.lang. *;
public class ArrayOps
{

public static void main (String[]args)
{

System.out.println (" 2D 1D 1D2");
for (int i = 0; i < 33; i++)

{
twoD ();
oneD ();
oneD2 ();
System.out.println ();

}
}

public static void twoD ()
{

System.gc ();
long time = System.currentTimeMillis ();
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int i, j;
double[][] A = new double[500][500];
for (i = 0; i < 500; i++)

{
for (j = 0; j < 500; j++)

{
A[i][j] = Math.pow (3.14159, 2.718);

}
}

System.out.print (" " + (System.currentTimeMillis () - time));
}

public static void oneD ()
{

System.gc ();
long time = System.currentTimeMillis ();
int i, j, LDA;
double[] A = new double[500 * 500];

LDA = 500;
for (i = 0; i < 500; i++)

{
for (j = 0; j < 500; j++)

{
A[i + j * LDA] = Math.pow (3.14159, 2.718);

}
}

System.out.print (" " + (System.currentTimeMillis () - time));
}

public static void oneD2 ()
{

System.gc ();
long time = System.currentTimeMillis ();
int i, j, LDA;
double[] A = new double[500 * 500];

LDA = 500;
for (j = 0; j < 500; j++)

{
int k = j * LDA;
for (i = 0; i < 500; i++)

{
A[i + k] = Math.pow (3.14159, 2.718);

}
}

System.out.print (" " + (System.currentTimeMillis () - time));
}

} // End class file.

//
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The class file of the ArrayOps class was disassem-
bled into Jasmin opcode to examine the instructions

required by the JVM to implement each type of array
access method.

;
; Output created by D-Java (mailto:umsilve1@cc.umanitoba.ca)
;

;Classfile version:
; Major: 45
; Minor: 3

.source ArrayOps.java

.class public synchronized ArrayOps

.super java/lang/Object

; >> METHOD 1 <<
.method public static main([Ljava/lang/String;)V

.limit stack 2

.limit locals 2
.line 13

getstatic java/lang/System/out Ljava/io/PrintStream;
ldc " 2D 1D 1D2"
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

.line 14
iconst_0
istore_1
goto Label2

.line 16
Label1:

invokestatic ArrayOps/twoD()V
.line 17

invokestatic ArrayOps/oneD()V
.line 18

invokestatic ArrayOps/oneD2()V
.line 19

getstatic java/lang/System/out Ljava/io/PrintStream;
invokevirtual java/io/PrintStream/println()V

.line 14
iinc 1 1

Label2:
iload_1
bipush 33
if_icmplt Label1

.line 11
return

.end method
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; >> METHOD 2 <<
.method public static twoD()V

.limit stack 6

.limit locals 5
.line 25

invokestatic java/lang/System/gc()V
.line 26

invokestatic java/lang/System/currentTimeMillis()J
lstore_0

.line 28
sipush 500
sipush 500
multianewarray [[D 2
astore 4

.line 31
iconst_0
istore_2
goto Label4

.line 33
Label1:

iconst_0
istore_3
goto Label3

.line 35
Label2:

aload 4
iload_2
aaload
iload_3
ldc2_w 3.14159
ldc2_w 2.718
invokestatic java/lang/Math/pow(DD)D
dastore

.line 33
iinc 3 1

Label3:
iload_3
sipush 500
if_icmplt Label2

.line 31
iinc 2 1

Label4:
iload_2
sipush 500
if_icmplt Label1

.line 38
getstatic java/lang/System/out Ljava/io/PrintStream;
new java/lang/StringBuffer
dup
ldc " "
invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V
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invokestatic java/lang/System/currentTimeMillis()J
lload_0
lsub
invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;
invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;
invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 23
return

.end method

; >> METHOD 3 <<
.method public static oneD()V

.limit stack 6

.limit locals 6
.line 43

invokestatic java/lang/System/gc()V
.line 44

invokestatic java/lang/System/currentTimeMillis()J
lstore_0

.line 46
ldc 250000
newarray double
astore 5

.line 47
sipush 500
istore 4

.line 48
iconst_0
istore_2
goto Label4

.line 50
Label1:

iconst_0
istore_3
goto Label3

.line 52
Label2:

aload 5
iload_2
iload_3
iload 4
imul
iadd
ldc2_w 3.14159
ldc2_w 2.718
invokestatic java/lang/Math/pow(DD)D
dastore

.line 50
iinc 3 1

Label3:
iload_3
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sipush 500
if_icmplt Label2

.line 48
iinc 2 1

Label4:
iload_2
sipush 500
if_icmplt Label1

.line 55
getstatic java/lang/System/out Ljava/io/PrintStream;
new java/lang/StringBuffer
dup
ldc " "
invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V
invokestatic java/lang/System/currentTimeMillis()J
lload_0
lsub
invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;
invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;
invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 41
return

.end method

; >> METHOD 4 <<
.method public static oneD2()V

.limit stack 6

.limit locals 7
.line 60

invokestatic java/lang/System/gc()V
.line 61

invokestatic java/lang/System/currentTimeMillis()J
lstore_0

.line 63
ldc 250000
newarray double
astore 5

.line 64
sipush 500
istore 4

.line 65
iconst_0
istore_3
goto Label4

.line 67
Label1:

iload_3
iload 4
imul
istore 6

.line 68



134 D.M. Doolin et al. / JLAPACK – compiling LAPACK FORTRAN to Java

iconst_0
istore_2
goto Label3

.line 70
Label2:

aload 5
iload_2
iload 6
iadd
ldc2_w 3.14159
ldc2_w 2.718
invokestatic java/lang/Math/pow(DD)D
dastore

.line 68
iinc 2 1

Label3:
iload_2
sipush 500
if_icmplt Label2

.line 65
iinc 3 1

Label4:
iload_3
sipush 500
if_icmplt Label1

.line 73
getstatic java/lang/System/out Ljava/io/PrintStream;
new java/lang/StringBuffer
dup
ldc " "
invokenonvirtual java/lang/StringBuffer/<init>(Ljava/lang/String;)V
invokestatic java/lang/System/currentTimeMillis()J
lload_0
lsub
invokevirtual java/lang/StringBuffer/append(J)Ljava/lang/StringBuffer;
invokevirtual java/lang/StringBuffer/toString()Ljava/lang/String;
invokevirtual java/io/PrintStream/print(Ljava/lang/String;)V

.line 58
return

.end method

; >> METHOD 5 <<
.method public <init>()V

.limit stack 1

.limit locals 1
.line 8

aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method
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FORTRAN source Jasmin target
if (x .lt. 3) y = 1

return
; Logical ‘if’ statement.

ldc 3 ; 3
iload 0 ; x
if_icmpge Label1
ldc 1 ; 1
istore 1 ; = y

Label1:
return

Program Code 5.

FORTRAN source Jasmin target
do 10 j = 1, 20

y = y + 1
10 continue

; Initialize counter.
ldc 1 ; 1
istore 4 ; = j
goto Label2

Label1:
; Executable statements.

iload 2 ; y
ldc 1 ; 1
iadd ; +
istore 2 ; = y

; Increment counter.
iinc 4 1 ; Increment counter j.

Label2:
; Compare, jump to Label1 to iterate.

ldc 20 ; 20
iload 4 ; j
if_icmplt Label1

Program Code 6.

Appendix C. JVM instructions for FORTRAN

The following tables illustrate FORTRAN syntax ex-
pressed in terms of JVM instructions.

Logical if FORTRAN logical if statements take the
form of a test/statement on one line. If the test is true,
the statement is executed, if false, execution passes to
the statement on the next line. This is implemented in
jasmin by reversing the relational operator (RO) to skip
the conditional execution if true. For example, consider
Program Code 5.

The FORTRAN source requires settingy = 1 if
x < 3, then returning. In the JVM, ifx > 3, we
jump directly to the return atLabel 1 , else execu-
tions “falls through” the test and 1 is assigned toy be-
fore returning. One unique label is required for each
logical if statement.

Do loops Implementing FORTRAN do loops is done
by first initializing the loop index, testing the index
against the stop value, jumping back to executable
statements, then incrementing the loop counter and
testing its value. See Program Code 6.

For nested loops, the procedure is quite similar. The
interior loops are just treated as executable statements
by the exterior loop, see Program Code 7.

Each instance of a do loop requires two unique la-
bels.

Block if FORTRAN and Java share the same behav-
ior for block if constructions, i.e., if-else-if statements,
only one test may be successfully evaluated. The re-
maining are skipped, execution continues at the first
statement after the last else-if block, or default else if
present. It appears from this code that each if, else if
and else require a unique label. That is, a block if re-
quires as many unique labels as exist if, else if and else
statements in the block.
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FORTRAN source Jasmin target
do 30 j = 1, 321

do 20 i = 1, 54
y = z - 1

20 continue

; do loop.
; Initialize counter.

ldc 1 ; 1
istore 3 ; = i
goto Label5

Label4:
; Executable statements.

iload 1 ; z
ldc 1 ; 1
isub ; -
istore 2 ; = y

; Increment counter.
iinc 3 1 ; Increment counter i.

Label5:
; Compare, jump to Label4 to iterate.

ldc 54 ; 54
iload 3 ; i
if_icmplt Label4

; Increment counter.
iinc 4 1 ; Increment counter j.

Label6:
; Compare, jump to Label3 to iterate.

ldc 321 ; 321
iload 4 ; j
if_icmplt Label3

Program Code 7.

Appendix D. To do list

Although all three Phases of the f2j compiler are
complete, there are still some aspects of the system that
should be done or would help by being done. The fol-
lowing list details some of these.

(1) f2j currently only handles one file at a time. Al-
lowing multiple files could probably be imple-
mented rather easily, but each should be freed
before parsing in new files.

(2) The front-end parser and lexer are adequate for
the BLAS and LAPACK libraries, but they re-
ally should be updated in order for f2j to be use-
ful for a wide variety of libraries.

(3) Need compiler to "automatically" figure how
which package the routine should go into, and
which files to import. This can be hacked by
using the preprocessor, or by command line
switches, etc. Also, may help to switch over to
Solaris for development. That way some simple
java tools can be used to control compiling, etc.

(4) Write an error handling routine for yyparse to
indicate the approximate location of parse errors

in the input file. Lex & yacc book has example.
Note that the hook for this is in the lexer; line
are counted.

(5) Fix the in-line RELOP action in a similar way to
Name<=> NAME, etc. In fact, all in-line ac-
tions should be removed from the grammar file.

(6) Add code to the ‘prelex()’ routine to check
whether there is six spaces of white at the begin-
ning of each non-continued statement.

(7) Testing toolset: suite of tools to test the lexer,
parser and functionality of translated source
code. So far I have two csh scripts:blascheck
andlapackcheck written to see how well src
in the blas and lapack directories lex and parse.

(8) Fix the IF-ELSE shift/reduce error in the parser.
(9) The JVM uses a stack, for which the number of

local variables and the stack depth must be cal-
culated in advance. There needs to be an algo-
rithm derived for this, keeping the track of the
following data:

– Number of locals has be at least the same as
the number of arguments, more if doubles are
used, even more if with typed variables.
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FORTRAN source Jasmin target
if (i .lt. 40) then

i = j
else if (j .lt. 50) then

p = 1234
else if (j .ge. 60) then

p = q
else if (x .gt. z) then

x = z
else

p = d * q
endif
return

; Block ‘if’ statement.
ldc 40 ; 40
iload 1 ; i
if_icmpge Label1
iload 2 ; j
istore 1 ; = i
goto Label5: ; Skip remainder.

Label1:
ldc 50 ; 50
iload 2 ; j
if_icmpge Label2
ldc 1234 ; 1234
istore 4 ; = p
goto Label5: ; Skip remainder.

Label2:
ldc 60 ; 60
iload 2 ; j
if_icmplt Label3
iload 5 ; q
istore 4 ; = p
goto Label5: ; Skip remainder.

Label3:
iload 7 ; z
iload 6 ; x
if_icmple Label4
iload 7 ; z
istore 6 ; = x
goto Label5: ; Skip remainder.

Label4:
iload 0 ; d
iload 5 ; q
imul ; *
istore 4 ; = p

Label5:
return

Program Code 8.

– The size of the stack can be calculated by
keeping a running total of operations that af-
fect the stack.

Appendix E. Known bugs f2java, f2jas

These are the known bugs in f2j. There are undoubt-
edly others.

– FORTRAN character strings used as arguments to
subroutine calls appear to work sometimes, but
not other times. That is, one call using say,. . .,
‘DGFT’, . . . might translate to the appropriate
Java code. . ., “DGFT”, . . ., other times just a pair
of commas is emitted:. . .„ . . .

– If the last line of the input file begins with a TAB,
the parser generates an error.

– The development of the Jasmin code generator
has lagged far behind that of the Java code genera-
tor. There have been so many changes to the AST
that the Jasmin code generator is now broken.

– Similarly, the VCG-compatible graph generator is
broken, too.
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