
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/13/3/231
The online version of this article can be found at:

DOI: 10.1177/109434209901300306

 1999 13: 231International Journal of High Performance Computing Applications
Henri Casanova, MyungHo Kim, James S. Plank and Jack J. Dongarra
Adaptive Scheduling for Task Farming with Grid Middleware

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/13/3/231.refs.htmlCitations:

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/13/3/231
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/13/3/231.refs.html
http://hpc.sagepub.com/

COMPUTING APPLICATIONS
ADAPTIVE SCHEDULING FOR TASK FARMING

ADAPTIVE SCHEDULING FOR TASK
FARMING WITH GRID MIDDLEWARE

Henri Casanova1

MyungHo Kim2

James S. Plank3

Jack J. Dongarra4

Summary

Scheduling in metacomputing environments is an active
field of research as the vision of a Computational Grid be-
comes more concrete. An important class of Grid applica-
tions are long-running parallel computations with large
numbers of somewhat independent tasks (Monte Carlo
simulations, parameter-space searches, etc.). A number
of Grid middleware projects are available to implement
such applications, but scheduling strategies are still open
research issues. This is mainly due to the diversity of both
Grid resource types and their availability patterns. The
purpose of this work is to develop and validate a general
adaptive scheduling algorithm for task farming applica-
tions along with a user interface that makes the algorithm
accessible to domain scientists. The authors’ algorithm is
general in that it is not tailored to a particular Grid middle-
ware and it requires very few assumptions concerning the
nature of the resources.Their first testbed is NetSolve as it
allows quick and easy development of the algorithm by
isolating the developer from issues such as process con-
trol, I/O, remote software access, or fault-tolerance.

1 Introduction

The concept of aComputational Gridenvisioned in Fos-
ter and Kesselman (1998) has emerged to capture the vi-
sion of a network computing system that provides broad
access not only to massive information resources but also
to massive computational resources. Such Computational
Grids will use high performance network technology to
connect hardware, software, instruments, databases, and
people into a seamless web that supports a new generation
of computation-rich problem-solving environments for
scientists and engineers. Grid resources will be ubiqui-
tous, thereby justifying the analogy to the Power Grid.

Those features have generated interest among many
domain scientists, and new classes of applications arise as
being potentiallygriddable. Grid resources and their ac-
cess policies are inherently very diverse, ranging from di-
rectly accessible single workstations to clusters of work-
stations managed by Condor (Litzkow, Livny, and Mutka,
1988), or massively parallel processor (MPP) systems
with batch queuing management. Furthermore, the avail-
ability of these resources changes dynamically in a way
that is close to unpredictable. Last, predicting networking
behavior on the Grid is an active but still open research
area. Scheduling applications in such a chaotic environ-
ment according to the end-users’ need for fast response-
time is not an easy task. The concept of a universal sched-
uling paradigm for any application at the current time is
intractable, and the current trend in the scheduling re-
search community is to focus on schedulers for broad
classesof applications. Given the characteristics of the
Grid, it is not surprising that even applications with ex-
tremely simple structures raise many challenges in terms
of scheduling.

In this paper, we address applications that have simple
task-parallel structures (master-slave) but require a large
number of computational resources. We call such applica-
tionstask farming applicationsaccording to the terminol-
ogy introduced in Silva, Veer, and Silva (1993). Examples

ADAPTIVE SCHEDULING FOR TASK FARMING 231

The International Journal of High Performance Computing Applications,
Volume 13, No. 3, Fall 1999, pp. 231-240
 1999 Sage Publications, Inc.

Address reprint requests to Jack J.Dongarra, Department of Com-
puter Science, University of Tennessee, 104 Ayres Hall, Knoxville,
TN 37996-1301, U.S.A.; e-mail: dongarra@cs.utk.edu.

1DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
UNIVERSITY OF CALIFORNIA AT SAN DIEGO, LA JOLLA, CALI-
FORNIA, U.S.A.
2SCHOOL OF COMPUTING, SOONGSIL UNIVERSITY, SEOUL,
KOREA
3DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TEN-
NESSEE, KNOXVILLE, TENNESSEE, U.S.A.
4DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TEN-
NESSEE, KNOXVILLE, and MATHEMATICAL SCIENCE SECTION,
OAK RIDGE NATIONAL LABORATORY, TENNESSEE, U.S.A.

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

of such applications include Monte Carlo simulations and
parameter-space searches. Our goal is not only to design a
scheduling algorithm but also to provide a convenient
user interface that can be used by domain scientists who
have no knowledge about the Grid structure.

Section 2 shows how some of the challenges can be ad-
dressed by using a class of Grid middleware projects as
underlying operating environments, while others need to
be addressed specifically with adaptive scheduling algo-
rithms. Section 3 gives an overview of related research
work and highlights the original elements of this work.
Section 4 contains a brief overview of NetSolve, the Grid
middleware that we used as a testbed. Sections 5 and 6 de-
scribe the implementation of the task farming interface
and the implementation of the adaptive scheduling algo-
rithm underneath that interface. Section 7 presents ex-
perimental results to validate the scheduling strategy.
Section 8 concludes with future research and software de-
sign directions.

2 Motivation and
Challenges for Farming

Our intent is to design and build an easily accessible
computational framework for task farming applications.
An obvious difficulty, then, is to isolate the users from de-
tails such as I/O, process control, connections to remote
hosts, fault-tolerance, and so on. Fortunately, an emerg-
ing class of Grid middleware projects provides the neces-
sary tools and features to transparently handle most of the
low-level issues on behalf of the user. We call these mid-
dleware projectsfunctional metacomputing environ-
ments. The user’s interface to the Grid is a functional re-
mote procedure call (i.e., a call without side effects). The
middleware intercepts the procedure call and treats it as a
request for service. The procedure call arguments are
wrapped up and sent to the Grid resources that are cur-
rently best able to service the request, and when the re-
quest has been serviced, the results are shipped back to
the user, and his or her procedure call returns. The middle-
ware is responsible for the details of managing the service
on the Grid—resource selection and allocation, data
movement, I/O, and fault-tolerance.

There are two main functional metacomputing envi-
ronments available today. These are NetSolve (see Sec-
tion 4) and Ninf (Sekiguchi et al., 1996). Building our
framework on top of such architectures allows us to focus
on meaningful issues like the scheduling algorithm rather
than building a whole system from the ground up. Our
choice of NetSolve as a testbed is motivated by the

232 COMPUTING APPLICATIONS

“Our goal is not only to design a
scheduling algorithm but also to provide a
convenient user interface that can be used
by domain scientists who have no
knowledge about the Grid structure.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

authors’ experience with that system. Section 5 describes
our first attempts at an application programming interface
(API).

Of course, the main challenge is scheduling. Indeed,
for long-running farming applications, it is to be expected
that the availability and workload of resources within the
server pool will change dynamically. We must therefore
design and validate an adaptive scheduling algorithm (see
Section 6). Furthermore, that algorithm should be general
and applicable not only for a large class of applications
but also for any operating environment. The algorithm is
therefore designed to be portable to other metacomputing
environments (Sekiguchi et al., 1996; Foster and Kessel-
man, forthcoming; Grimshaw et al., 1994; Litzkow,
Livny, and Mutka, 1988; Abramson et al., 1997).

3 Related Work

Nimrod (Abramson et al., 1997) is targeted to compu-
tational applications based on the “exploration of a range
of parameterized scenarios,” which is similar to our defi-
nition of task farming. The user interfaces in Nimrod are
at the moment more evolved than the API described in
Section 5. However, we believe that our API will be a
building block for high-level interfaces (see Section 8).
The current version of Nimrod (or Clustor, the commer-
cial version available from http://www.activetools.com)
does not use any metacomputing infrastructure project,
whereas our task farming framework is built on top of
Grid middleware. However, a recent effort, Nimrod/G
(Abramson and Giddy, 1997), plans to build Nimrod di-
rectly on top of Globus (Foster and Kesselman, forthcom-
ing). We believe that a project like NetSolve (or Ninf) is a
better choice for this research work. First, NetSolve is
freely available. Second, NetSolve provides a very simple
interface, letting us focus on scheduling algorithms rather
than Grid infrastructure details. Third, NetSolve can and
probably will be implemented on top of most Globus
services and will then leverage the Grid infrastructure
without modifications of our scheduling algorithms. An-
other distinction between this work and Nimrod is that the
latter does not contain adaptive algorithms for scheduling
like the one described in Section 6. In fact, it is not incon-
ceivable that the algorithms eventually produced by this
work could be incorporated seamlessly into Nimrod.

Calypso (Baratloo , Dasgupta, and Kedem, 1995) is a
programming environment for a loose collection of dis-
tributed resources. It is based on C++ and shared memory
but exploits task-based parallelism of relatively inde-
pendent jobs. It has an eager scheduling algorithm and,

like the functional metacomputing environments de-
scribed in this paper, uses the idempotence of the tasks to
enable a replication-based fault-tolerance.

A system implemented on top of the Helios OS that al-
lows users to program master-slave programs using a
“Farming” API is described in Silva, Veer, and Silva
(1993) and Silva et al. (1995). Like in Calypso, the idem-
potence of tasks is used to achieve fault-tolerance. They
do not focus on scheduling.

The AppLeS project (Berman et al., 1996; Berman and
Wolski, 1997) develops metacomputing scheduling
agents for broad classes of computational applications.
Part of the effort targets scheduling master-slave applica-
tions (Berman, Wolski, and Shao, 1998) (task-farming
applications with our terminology). A collaboration be-
tween the NetSolve and the AppLeS team has been initi-
ated, and integration of AppLeS technology, the Network
Weather Service (NWS) (Wolski, 1996), NetSolve-like
systems, and the results in this document is under way.

As mentioned earlier, numerous ongoing projects are
trying to establish the foundations of the Computational
Grid envisioned in Foster and Kesselman (1998). Ninf
(Sekiguchi et al., 1996) is similar to NetSolve in that it is
targeted to domain scientists. Like NetSolve, Ninf pro-
vides simple computational services, and the develop-
ment teams are collaborating to make the two systems in-
teroperate and standardize the basic protocols. At a lower
level are Globus (Foster and Kesselman, forthcoming)
and Legion (Grimshaw et al., 1994), which aim at provid-
ing basic infrastructure for the Grid. Condor (Litzkow,
Livny, and Mutka, 1988; Litzkow and Livny, 1990) de-
fines and implements a powerful model for Grid compo-
nents by allowing the idle cycles of networks of worksta-
tion to be harvested for the benefit of Grid users without
penalizing local users.

4 Brief Overview of NetSolve

The NetSolve project is under development at the Uni-
versity of Tennessee and the Oak Ridge National Labora-
tory. Its original goal is to alleviate the difficulties that do-
main scientists usually encounter when trying to
locate/install/use numerical software, especially on mul-
tiple platforms. With NetSolve, the user does not need to
be concerned with the location/type of the hardware re-
sources being used or with the software installation. Fur-
thermore, NetSolve provides transparent fault-tolerance
mechanisms and implements scheduling algorithms to
minimize overall response time. As seen in Figure 1, Net-
Solve has a three-tiered design in that aclientconsults an

ADAPTIVE SCHEDULING FOR TASK FARMING 233

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

agentprior to sending requests to aserver. Let us give ba-
sic concepts about those three components as well as in-
formation about the current status of the project.

The NetSolve Server. A NetSolve server can be
started on any hardware resource (single workstation,
cluster of workstations, MPP). It can then provide access
to arbitrary software installed on that resource (NetSolve
provides mechanisms to integrate any software compo-
nent into a server so that it may become available to Net-
Solve clients; Casanova and Dongarra, 1998a).

The NetSolve Agent. The NetSolve agent is the key to
the computation-resource mapping decisions as it main-
tains a database about the statuses and capabilities of
servers. It uses that database to make scheduling deci-
sions for incoming user requests. The agent is also the pri-
mary participant in the fault-tolerance mechanisms. Note
that there can be multiple instances of the NetSolve agent
to manage a confederation of servers.

The NetSolve Client. The user can submit (possibly
simultaneous) requests to the system and retrieve results
with one of the provided interfaces (C, Fortran, Matlab
[see Math Works, 1992], Mathematica [see Wolfram,
1996], Java APIs, or Java GUI).

Current Status of NetSolve. At this time, a prever-
sion of NetSolve 1.2, containing full-fledged software for
all UNIX flavors, Win32 C, and Matlab APIs, can be
downloaded from the homepage at

http://www.cs.utk.edu/netsolve.

234 COMPUTING APPLICATIONS

Fig. 1 The NetSolve System

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The NetSolve users’ guide (Casanova, Dongarra, and
Seymour, 1996) contains general purpose information
and examples. Details about the NetSolve agent can be
found in Casanova and Dongarra (1997). Recent develop-
ments and applications of NetSolve are described in
Casanova and Dongarra (1998b). Last, technical details
about the current NetSolve implementation are to be
found in (Casanova and Dongarra, 1998c).

5 Task Farming API

5.1 BASICS

In this work, we assume that a functional metacomput-
ing environment is available (see Section 2). That envi-
ronment provides an API that contains two functions: (i)
submit() to send a request asynchronously for compu-
tation and (ii)poll() to poll asynchronously for the
completion of a request. Polling returns immediately with
the status of the request. If the computation is complete,
the result is returned as well. The NetSolve and Ninf APIs
satisfy these requirements. In addition, the environment
provides access to preinstalled software and hardware re-
sources. The user just provides input data and a way to
identify which software should be used to process that
data. Again, both NetSolve and Ninf comply.

A farming job is one composed of a large number of in-
dependent requests that may be serviced simultaneously.
This is sometimes referred to as the “bag-of-tasks” model
(Bakken and Schilchting, 1995; Gelernter and Kaminsky,
1992). Farming jobs fall into the class of “embarrassingly
parallel” programs, for which it is very clear how to parti-
tion the jobs for parallel programming environments.
Many important classes of problems, such as Monte Carlo
simulations (e.g., Stiles et al., 1998) and parameter-space
searches (e.g., Abramson et al., 1997) fall into this cate-
gory.

Without a farming API, the user is responsible for
managing the requests himself or herself. One possibility
would be to submit all the desired requests at once and let
the system schedule them. However, we have seen that
scheduling on the Grid is a challenging issue, and as a re-
sult, the available Grid middleware projects implement
only minimal scheduling capabilities that do not optimize
even this simple class of parallel programs. A second pos-
sibility is for the user to manually manage a ready queue
by having at mostn requests submitted to the system at
any point in time. This solution seems more reasonable; how-
ever, the optimal value ofndepends on Grid resource avail-
ability, which is beyond the user’s control and is dynamic.

5.2 API

It is difficult to design an API that is both convenient
for the end-user and sophisticated enough to handle many
real applications. Our farming API contains one function,
farm(), with which the user specifies all data for all the
computation tasks. The main idea is to replace multiple
calls tosubmit() by one call tofarm() whose argu-
ments are lists of arguments tosubmit(). In this first
implementation, we assume that arguments tosubmit()
are either integers or pointers (which is consistent with the
NetSolve specification). Extending the call to support
other argument types would be trivial. The first argument
to farm() specifies the number of requests by declaring
an induction variable and defining its range. The syntax if
“i = %d,%d” (see example below). The second argu-
ment is the identifier for the computational functionality
in the metacomputing environment (a string with Ninf
and NetSolve). Then follow a (variable) number of argu-
ment lists. Our implementation provides three functions
that need to be called to generate such lists: (i)expr()
allows an argument to computationi to be an integer com-
puted as an arithmetic expression containingi; (ii) int_
array()allows an integer argument to computation i to
be an element of an integer array indexed by the value of
an arithmetic expression containingi; (iii) ptr_ar-
ray() is similar toint_array() but handles pointer
arguments. Arithmetic expressions are specified with
Bourne Shell syntax (accessing the value ofi with ‘$i ’).

Let us show an example assuming that the underlying
metacomputing environment provides a computational
function called “foo.” The code

double x[10],y[30],z[10];
submit(“foo”,2,x,10);
submit(“foo”,4,y,30);
submit(“foo”,6,z,10);

makes three requests to run the “foo” software with the
following sets of arguments: (2,x,10), (4,y,30), and
(6,z,10). Note that x ,y , andz will hold the results of the
NetSolve call. With farming, these calls are replaced by

void *ptrs[3];
int *ints[3];

ptrs[0] = x; ptrs[1] = y; ptrs[2] = z;
ints[0] = 10; ints[1] = 30; ints[2] = 10;

farm(“i=0,2”,“foo”,expr(“2*($i+1)”),
ptr_array(ptrs,“$i”),int_array
(ints,“$i”));

ADAPTIVE SCHEDULING FOR TASK FARMING 235

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

We expect to use this API as a basis for more evolved
interfaces (e.g., graphical or Shell-based). So far, we have
used the API directly to implement basic example compu-
tations (2D block-cyclic matrix-multiply, Mandelbrot set
computation) and to build a Shell interface to MCell (see
Section 7). Section 8 describes how we plan to generalize
this work to automatically generate high-level interfaces.

6 Scheduling Strategy

6.1 THE SCHEDULING ALGORITHM

The main idea behind the scheduling algorithm has al-
ready been presented in Section 5.1: managing a ready
queue. We mentioned that the user had no elements on
which to base the choice forn, the size of the ready queue.
Our farming algorithm manages a ready queue and adapts
to the underlying metacomputing environment by modi-
fying the value ofn dynamically according to constant
computation throughput measurement. The algorithm
really sees the environment as an opaque entity that gives
varying responses (request response times) to repeated
occurrences of the same event (the sending of a request).

Let us go through the algorithm shown in Figure 2.
First, the algorithm chooses the initial value ofn. That
choice can be arbitrary, but it may benefit from additional
information provided by the underlying metacomputing
environment. NetSolve provides a way to query the agent
about the number of available servers for a given compu-
tation, and that number is the initial guess forn in this first
implementation. Second, the algorithm sets theschedul-
ing factorα, which takes values in (0,1) and determines
the behavior of the algorithm. Indeed, the value ofn may
be changed only when more thann tasks completed dur-
ing one iteration of the outermost while loop. A value of
α = 1 causes the algorithm to be extremely conservative
(only when alln requests are completed instantly may the
value ofn be changed). The smaller theα, the more often
will the algorithm try to modifyn. The algorithm keeps a
running history of the average request response times for
all requests in the queue. That history is used to detect im-
provements or deterioration in performance and modify
the value ofn accordingly.

This algorithm is rather straightforward at the mo-
ment, but it will undoubtedly be improved after more ex-
periments have been conducted. However, early experi-
mental results shown in Section 7 are encouraging.

6.2 CURRENT IMPLEMENTATION

In our testbed implementation of farming for Net-
Solve, we implementfarm() as an additional layer on

236 COMPUTING APPLICATIONS

n = initial guess on the queue size;
α = scheduling factor;
δ = 1;
while (tasks remaining) {

while (number of pending tasks <n) {
submit();

}
foreach (pending task) {

poll();
}
if (n – number of pending tasks≥ n × α) {

if (average task response time has improved) {
n = n + δ;

δ = δ + 1;
}
else{

n = n – δ;
δ = 1;

}
}

}

Fig. 2 Adaptive scheduling algorithm

“Our farming algorithm manages a ready
queue and adapts to the underlying
metacomputing environment . . .”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

top of the traditional NetSolve API, exactly as detailed in
Section 5.2. A similar implementation would be valid for
a system like Ninf. In other metacomputing environ-
ments, placing the scheduling algorithm within the client
library might not be feasible, in which case the algorithm
needs to be implemented in other parts of the system (cen-
tral scheduler, client proxy, etc.). However, the algorithm
is designed to rest on top of the metacomputing system,
rather than to be merged with the internals of the system.

6.3 POSSIBLE EXTENSIONS

The NetSolve farming interface is very general, and
we believe that it can serve as a low-level building-block
for deploying various classes of applications. However,
this generality leads to shortcomings. The embedded
scheduler cannot take advantage of application-specific
features, such as exploitable data patterns. Real applica-
tions are likely to manipulate very large amounts of data,
and it may be possible for the scheduler to make decisions
based on I/O requirements. For instance, one can imagine
that a subset of the tasks to farm makes use of one or more
constant input data. This is a frequent situation in MCell
(see Section 7.1), for example. Such input data could then
beshared(via files, for instance) by multiple resources, as
opposed to being replicated across all the resources. An-
other possibility would be for the farming application to
contain simple data dependencies between tasks. In that
case, our framework could detect those dependencies and
schedule the computations accordingly. Another short-
coming of the farming interface that is a direct cause of its
generality is that the call tofarm() is completely
atomic. This is an advantage from the point of view of
ease-of-use, but it prevents such things as visualization of
results as they become available, for instance. Once again,
such a feature would be desirable for MCell. Section 8
lays the ground for research in these directions, and work
is under way in the context of MCell.

7 Preliminary Experimental Results

7.1 MCELL

MCell (Stiles et al., 1998; Stiles et al., 1996) is a gen-
eral Monte Carlo simulator of cellular microphysiology.
MCell uses Monte Carlo diffusion and chemical reaction
algorithms in 3D to simulate the complex biochemical in-
teractions of molecules inside and outside of living cells.
MCell is a collaborative effort between the Terry
Sejnowski lab at the Salk Institute and the Miriam Salpe-
ter lab at Cornell University. Like any Monte Carlo simu-

lation, MCell must run large numbers of identical, inde-
pendent simulations for different values of its random
number generator seed. It therefore qualifies as a task
farming application and was our first motivation to de-
velop a farming API along with a scheduling algorithm.

As mentioned earlier, we developed for MCell a
Shell-based interface on top of the C farming API. This
interface takes as input a user-writtenscriptand automati-
cally generates the call tofarm(). The script is very in -
tuitive as it follows the MCell command-line syntax by
just adding the possibility forrangesof values as opposed
to fixed values. For instance, instead of calling MCell

mcell foo1 1
mcell foo1 2
….
mcell foo1 100

it is possible to call MCell

mcell foo1 [1-100]

which is simpler, uses Grid computational resources from
NetSolve, and ensures good scheduling with the use of the
algorithm described in Section 6.

7.2 RESULTS

The results presented in this section were obtained by
using a NetSolve system spanning 5 to 25 servers on a net-
work of Sun workstations (Sparc ULTRA 1) intercon-
nected via 100Mb Ethernet. The farming application uses
MCell to compute the shape of the parameter space,
which describes the possible modes of operation for the
process of synaptic transmission at the vertebrate neuro-
muscular junction. Since MCell’s results include the true
stochastic noise in the system, the signal must be aver-
aged at each parameter space point. This is done by run-
ning each point 10 times with 10 different values of the
random number generator seed. In this example, three
separate 3D parameter spaces are sampled, each parame-
ter space is of dimension 3× 3× 3. The number of tasks to
farm is therefore 3× 3 × 3 × 3 × 10 = 810, and each task
generates 10 output files.

These preliminary experiments were run on a dedi-
cated network. However, we simulated a dynamically
changing resource pool by linearly increasing and de-
creasing the number of available NetSolve computational
servers. Results are shown in Table 1 for our adaptive
scheduling, a fixed queue size ofn= 25, and a fixed queue
size ofn = 5.

ADAPTIVE SCHEDULING FOR TASK FARMING 237

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The resource availability measures the fraction of
servers available during one run of the experiment. As
this number changes throughout time, the availability is
defined as the sum of the number of servers available over
all time steps (10 seconds). We compare scheduling
strategies by measuringrelative performance, which we
define as a ratio ofadjusted elapsed times, taking the
adaptive scheduling as a reference. Adjusted elapsed
times are computed by assuming a 100% availability and
scaling the real elapsed times accordingly. One can see
that the adaptive strategy performs 15% better than the
strategy withn = 25. Of course, the strategy withn = 5
performs very poorly since it does not take advantage of
all the available resources.

These first results are encouraging but not as satisfac-
tory as expected. This is due to the implementation of
NetSolve and the way the experiment was set up. Indeed,
NetSolve computational tasks are not interrupted when a
NetSolve server is terminated. Terminating a server only
means that no further requests will be answered but that
pending requests are allowed to terminate. Thus, this ex-
periment does not reflect the worst-case scenario of ma-
chines being shut down causing all processes to termi-
nate. We expect our adaptive strategy to perform even
better in an environment where tasks are terminated pre-
maturely and need to be restarted from scratch on remain-
ing available resources. Due to time constraints, this
article does not contain results to corroborate this as-
sumption, but experiments are under way.

8 Conclusion and Future Work

In this paper, we have motivated the need for schedul-
ers tailored to broad classes of applications running on
the Computational Grid. The extreme diversity of Grid
resource types, availabilities, and access policies makes
the design of schedulers a difficult task. Our approach is
to build on existing and available metacomputing envi-
ronments to access the Grid as easily as possible and to
implement an interface and scheduling algorithm for task
farming applications. An adaptive scheduling algorithm
was described in Section 6. That algorithm is independ-
ent from the internal details of the Grid and of the meta-
computing environment of choice. We chose NetSolve as
a testbed for early experiments with the MCell applica-
tion. The effectiveness of our scheduler is validated by
preliminary experimental results in Section 7. Thanks to
our framework for farming, a domain scientist can easily
submit large computations to the Grid in a convenient

238 COMPUTING APPLICATIONS

Table 1
Preliminary Experimental Results

Resource Relative
Scheduling Time Availability (%) Performance (%)

Adaptive 3982 s 64 100
n = 25 4518 s 62 85
n = 5 10,214 s 63 38

“In this article, we have motivated the need
for schedulers tailored to broad classes of
applications running on the Computational
Grid.”

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

manner and have an efficient adaptive scheduler manage
execution on his or her behalf.

There are many ways in which this work can be further
extended. We already mentioned in Section 6.3 that it is
possible to use the farming API to detect data dependen-
cies or shared input data between requests. The adaptive
scheduling algorithm could be augmented to take into ac-
count such patterns. A possibility is for the farming inter-
face to take additional arguments that describe domain-
specific features and that may activate more sophisticated
scheduling strategies if any. A first approach would be to
consider only input or output coming from files (which is
applicable to MCell and other applications) and partition
the request space such as to minimize the number of file
transfers and copies. This will require that the underlying
metacomputing environment provide a feature to de-
scribe such dependencies. Work is being done in synergy
with the NetSolve project to take into account data local-
ity, and the farming interface will undoubtedly take ad-
vantage of these developments (Beck et al., forthcoming).
This will be fertile ground for scheduling and data logistic
research. The scheduling algorithm can also be modified
to incorporate more sophisticated techniques. For in-
stance, if the metacomputing environment provides an
API to access more details about the status of available re-
sources, it might be the case thatn, the size of the ready
queue, can be tuned effectively. The danger, however, is to
lose portability as the requirements for the metacomput-
ing environment (see Section 5.1) would be more strin-
gent. Experiments will be conducted in order to investi-
gate whether such requirements can be used to
significantly improve scheduling.

The farming API can be enhanced so that certain tasks
may be performed upon submitting each request and re-
ceiving each result. For instance, the user may want to
visualize the data as they are coming back, as opposed to
waiting for completion of all the requests. This is not pos-
sible at the moment as the call tofarm() is atomic and
does not provide control over each individual request. A
possibility would be to pass pointers to user-defined func-
tions forfarm() and execute them for events of interest
(e.g., visualization for each reception of a result). Such
functions could take arbitrary arguments for the sake of
versatility. Some of the available metacomputing envi-
ronments provide attractive interactive interface to which
a farming call could be contributed. Examples include
Matlab (NetSolve) and Mathematica (NetSolve, Ninf).
To make our task-farming framework easily accessible to
a growing number of domain scientists, we need to de-
velop ways to use the C farming API as a basis for more

usable high-level interfaces. Steps in that direction have
already been taken with the Shell-interface for MCell (see
Section 7.1). It would be rather straightforward to design
or use an existing specification language to describe spe-
cific farming applications and automatically generate
custom Shell-based graphical interfaces like the ones in
Abramson et al. (1997).

ACKNOWLEDGMENTS

This material is based on work supported by the Na-
tional Science Foundation under grant CCR-9703390, by
NASA/NCSA Project Number 790NAS-1085A, under
Subaward Agreement #790, and by the National Science
Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615.

BIOGRAPHIES

Henri Casanovais a project scientist at the University of
California at San Diego. His research interests include all areas
of metacomputing, and in particular theoretical models and
simulation techniques for predicting and forecasting the per-
formance of globally or locally distributed applications, in a
view to the efficient scheduling of these applications in a com-
putational Grid environment. He received his B.S. in computer
science and applied mathematics from the Ecole Nationale
Supérieure d’Electrotechnique, d’Informatique et d’Hydrau-
lique de Toulouse (ENSEEIHT), his M.S. in parallel architec-
tures and applied mathematics from the University Paul Sa-
batier, Toulouse, and his Ph.D. in computer science from the
University of Tennessee, Knoxville.

MyungHo Kimreceived a B.A. in computer science in 1989
from SoongSil University and M.S. and Ph.D. degrees in com-
puter science from POSTECH in 1991 and 1995, respectively.
Since September 1995, he has been an associate professor in the
School of Computing at SoongSil University, and since July
1998 he has been a visiting scholar in the computer science de-
partment at the University of Tennessee. From November 1994
to August 1995, he was a senior researcher in the computer tech-
nology division at ETRI. His research interests are in parallel
and distributed computing, parallel algorithm, and parallel soft-
ware tools.

James S. Plankreceived his B.S. from Yale University in
1988 and his Ph.D. from Princeton University in 1993. He is cur-
rently an associate professor in the computer science depart-
ment at the University of Tennessee. His research interests are in
fault-tolerance, network computing, and operating systems.

Jack J. Dongarraholds a joint appointment as Distinguished
Professor of Computer Science in the computer science
department at the University of Tennessee (UT) and as
Distinguished Scientist in the Mathematical Sciences Section at
Oak Ridge National Laboratory (ORNL) under the UT/ORNL

ADAPTIVE SCHEDULING FOR TASK FARMING 239

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Science Alliance Program. He specializes in numerical
algorithms in linear algebra, parallel computing, use of
advanced-computer architectures, programming methodology,
and tools for parallel computers. Other current research involves
the development, testing, and documentation of high quality
mathematical software. He was involved in the design and
implementation of the software packages EISPACK,
LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM,
MPI, the National High-Performance Software Exchange,
NetSolve, and ATLAS and is currently involved in the design of
algorithms and techniques for high performance computer
architectures.

REFERENCES

Abramson, D., I. Foster, J. Giddy, A. Lewis, R. Sosic, and R.
Sutherst. 1997. The Nimrod Computational Workbench: A
case study in desktop metacomputing. Paper presented at
Proceedings of the 20th Autralasian Computer Science Con-
ference, February, Sidney, Australia.

Abramson, D., and J. Giddy. 1997. Scheduling large parametric
modelling experiments on a distributed meta-computer. Pa-
per presented at PCW’97, September.

Bakken, D. E., and R. D. Schilchting. 1995. Supporting fault-
tolerant parallel programming in Linda.IEEE Transactions
on Parallel and Distributed Systems6 (3): 287-302.

Baratloo, A., P. Dasgupta, and Z. Kedem. 1995. Calypso: A
novel software system for fault-tolerant parallel processing
on distributed platforms. Paper presented at the 4th IEEE In-
ternational Symposium on High Performance Distributed
Computing, August, Pentagon City, VA.

Berman, F., and R. Wolski. 1997. The AppLeS Project: A status
report. Paper presented at Proceedings of the 8th NEC Re-
search Symposium, May, Berlin, Germany.

Berman, F., R. Wolski, S. Figueira, J. Schopf, and G. Shao.
1996. Application-level scheduling on distributed heteroge-
neous networks. Paper presented at Proceedings of Super-
computing’96, November, Pittsburgh, PA.

Berman, F., R. Wolski, and G. Shao. 1998. Performance effects
of scheduling strategies for master/slave distributed applica-
tions. TR-CS98-598. University of California, San Diego.

Casanova, H., and J. Dongarra. 1997. NetSolve: A network
server for solving computational science problems.The In-
ternational Journal of Supercomputer Applications and
High Performance Computing11 (3): 212-23.

Casanova, H., and J. Dongarra. 1998a. Providing uniform dy-
namic access to numerical software. InIMA volumes in
mathematics and its applications, algorithms for parallel
processing. Vol. 105. Edited by M. Heath, A. Ranade, and
R. Schrieber, 345-55. New York: Springer-Verlag.

Casanova, H., and J. Dongarra. 1998b. NetSolve’s network en-
abled server: Examples and applications.IEEE Computa-
tional Science & Engineering5 (3): 57-67.

Casanova, H., and J. Dongarra. 1998c. NetSolve version 1.2:
Design and implementation, Department of Computer Sci-
ence, University of Tennessee, Knoxville.

Casanova, H., J. Dongarra, and K. Seymour. 1996. Client user’s
guide to NetSolve. CS-96-343. Department of Computer
Science, University of Tennessee, Knoxville.

Foster, Ian, and Carl Kesselman. 1997. Globus: A metacomput-
ing infrastructure toolkit.International Journal of Super-
computer Applications11 (2): 115-28.

Foster, Ian, and Carl Kesselman. 1998.The Grid: Blueprint for a
new computing infrastructure. San Francisco: Morgan Kauf-
mann.

Gelernter, D., and D. Kaminsky. 1992. Supercomputing out of
recycled garbage: Preliminary experience with Piranha. Pa-
per presented at International Conference on Supercomput-
ing, June, Washington, DC.

Grimshaw, A., W. Wulf, J. French, A. Weaver, P. Reynolds Jr.
1994. A synopsis of the Legion Project. CS-94-20. Depart-
ment of Computer Science, University of Virginia, Char-
lottesville.

Litzkow, M., and M. Livny. 1990. Experience with the Condor
Distributed Batch System. Paper presented at Proceedings of
IEEE Workshop on Experimental Distributed Systems,
October, Department of Computer Science, University of
Wisconsin, Madison.

Litzkow, M., M. Livny, and M. W. Mutka. 1988. Condor—A
hunter of idle workstations. Paper presented at Proceedings
of the 8th International Conference of Distributed Comput-
ing Systems, June, Department of Computer Science, Uni-
versity of Wisconsin, Madison.

The Math Works. 1992. MATLAB reference guide. Nitick, MA:
Math Works.

Sekiguchi, S., M. Sato, H. Nakada, S. Matsuoka, and U. Na-
gashima. 1996. Ninf: Network based Information Library
for Globally High Performance Computing. Paper presented
at Proceedings of Parallel Object-Oriented Methods and Ap-
plications (POOMA), February, Santa Fe, NM.

Silva, L., B. Veer, and J. Silva. 1993. How to get a fault-tolerant
farm.World Transputer Congress, September, pp. 923-38.

Silva, L. M., J. G. Silva, S. Chapple, and L. Clarke. 1995. Port-
able checkpointing and recovery. Paper presented at Pro-
ceedings of the HPDC-4, High Performance Distributed
Computing, August, Washington, DC.

Stiles, J. R., T. M. Bartol, E. E. Salpeter, and M. M. Salpeter.
1998. Monte Carlo simulation of neuromuscular transmitter
release using MCell, a general simulator of cellular physio-
logical processes. InComputational neuroscience, ed. J. M.
Bower, 279-84. New York: Plenum.

Stiles, J. R., D. Van Helden, T. M. Bartol, E. E. Salpeter, and M.
M. Salpeter. 1996. Miniature end-plate current rise times
100 microseconds from improved dual recordings can be
modeled with passive acetylcholine diffusion form a synap-
tic vesicle.Proc. Natl. Acad. Sci. U.S.A.93:5745-52.

Wolfram, S. 1996.The mathematica book. 3d ed. Cambridge,
UK: Wolfram Median and Cambridge University Press.

Wolski, R.. 1996. Dynamically forecasting network perform-
ance using the Network Weather Service. TR-CS96-494.
University of California, San Diego.

240 COMPUTING APPLICATIONS

 at UNIV OF TENNESSEE on June 16, 2011hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

