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ADAPTIVE SCHEDULING FOR TASK
FARMING WITH GRID MIDDLEWARE

Henri Casanova'
MyungHo Kim?®
James S. Plank®
Jack J. Dongarra*

Summary

Scheduling in metacomputing environments is an active
field of research as the vision of a Computational Grid be-
comes more concrete. An important class of Grid applica-
tions are long-running parallel computations with large
numbers of somewhat independent tasks (Monte Carlo
simulations, parameter-space searches, etc.). A number
of Grid middleware projects are available to implement
such applications, but scheduling strategies are still open
research issues. This is mainly due to the diversity of both
Grid resource types and their availability patterns. The
purpose of this work is to develop and validate a general
adaptive scheduling algorithm for task farming applica-
tions along with a user interface that makes the algorithm
accessible to domain scientists. The authors’ algorithm is
general in that it is not tailored to a particular Grid middle-
ware and it requires very few assumptions concerning the
nature of the resources. Their first testbed is NetSolve as it
allows quick and easy development of the algorithm by
isolating the developer from issues such as process con-
trol, 1/0, remote software access, or fault-tolerance.
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1 Introduction

The concept of &omputational Gricenvisioned in Fos

ter and Kesselman (1998) has emerged to capture the vi
sion of a network computing system that provides broad
access not only to massive information resources but also
to massive computational resources. Such Computational
Grids will use high performance network technology to
connect hardware, software, instruments, databases, and
people into a seamless web that supports a new generation
of computation-rich problem-solving environments for
scientists and engineers. Grid resources will be ubiqui
tous, thereby justifying the analogy to the Power Grid.

Those features have generated interest among many
domain scientists, and new classes of applications arise as
being potentiallygriddable Grid resources and their-ac
cess policies are inherently very diverse, ranging from di
rectly accessible single workstations to clusters of work
stations managed by Condor (Litzkow, Livny, and Mutka,
1988), or massively parallel processor (MPP) systems
with batch queuing management. Furthermore, the-avail
ability of these resources changes dynamically in a way
thatis close to unpredictable. Last, predicting networking
behavior on the Grid is an active but still open research
area. Scheduling applications in such a chaotic environ-
ment according to the end-users’ need for fast response-
time is not an easy task. The concept of a universal sched-
uling paradigm for any application at the current time is
intractable, and the current trend in the scheduling re-
search community is to focus on schedulers for broad
classesof applications. Given the characteristics of the
Grid, it is not surprising that even applications with ex-
tremely simple structures raise many challenges in terms
of scheduling.

In this paper, we address applications that have simple
task-parallel structures (master-slave) but require a large
number of computational resources. We call such applica
tionstask farming applicationaccording to the terminel
ogy introduced in Silva, Veer, and Silva (1993). Examples
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“Our goal is not only to design a
scheduling algorithm but also to provide a
convenient user interface that can be used
by domain scientists who have no
knowledge about the Grid structure.”

of such applications include Monte Carlo simulations and
parameter-space searches. Our goalis not only to design a
scheduling algorithm but also to provide a convenient
user interface that can be used by domain scientists who
have no knowledge about the Grid structure.

Section 2 shows how some of the challenges canbe ad
dressed by using a class of Grid middleware projects as
underlying operating environments, while others need to
be addressed specifically with adaptive scheduling-algo
rithms. Section 3 gives an overview of related research
work and highlights the original elements of this work.
Section 4 contains a brief overview of NetSolve, the Grid
middleware that we used as a testbed. Sections 5 and 6 de
scribe the implementation of the task farming interface
and the implementation of the adaptive scheduling-algo
rithm underneath that interface. Section 7 presents ex
perimental results to validate the scheduling strategy.
Section 8 concludes with future research and software de
sign directions.

2 Motivation and
Challenges for Farming

Our intent is to design and build an easily accessible
computational framework for task farming applications.
An obvious difficulty, then, is to isolate the users from de-
tails such as I/O, process control, connections to remote
hosts, fault-tolerance, and so on. Fortunately, an emerg-
ing class of Grid middleware projects provides the neces-
sary tools and features to transparently handle most of the
low-level issues on behalf of the user. We call these mid-
dleware projectfunctional metacomputing environ-
ments. The user’s interface to the Grid is a functional re
mote procedure call (i.e., a call without side effects). The
middleware intercepts the procedure call and treats it as a
request for service. The procedure call arguments are
wrapped up and sent to the Grid resources that are cur
rently best able to service the request, and when the re
guest has been serviced, the results are shipped back to
the user, and his or her procedure call returns. The middle
ware is responsible for the details of managing the service
on the Grid—resource selection and allocation, data
movement, I/O, and fault-tolerance.

There are two main functional metacomputing envi
ronments available today. These are NetSolve (see Sec
tion 4) and Ninf (Sekiguchi et al., 1996). Building our
framework on top of such architectures allows us to focus
on meaningful issues like the scheduling algorithm rather
than building a whole system from the ground up. Our
choice of NetSolve as a testbed is motivated by the
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authors’ experience with that system. Section 5 describes
our first attempts at an application programming interface
(API).

Of course, the main challenge is scheduling. Indeed,
for long-running farming applications, itis to be expected
that the availability and workload of resources within the
server pool will change dynamically. We must therefore
design and validate an adaptive scheduling algorithm (see
Section 6). Furthermore, that algorithm should be general
and applicable not only for a large class of applications
but also for any operating environment. The algorithm is
therefore designed to be portable to other metacomputing
environments (Sekiguchi et al., 1996; Foster and Kessel
man, forthcoming; Grimshaw et al., 1994; Litzkow,
Livny, and Mutka, 1988; Abramson et al., 1997).

3 Related Work

Nimrod (Abramson et al., 1997) is targeted to compu
tational applications based on the “exploration of a range
of parameterized scenarios,” which is similar to our defi
nition of task farming. The user interfaces in Nimrod are
at the moment more evolved than the API described in
Section 5. However, we believe that our API will be a
building block for high-level interfaces (see Section 8).
The current version of Nimrod (or Clustor, the commer-
cial version available from http://www.activetools.com)
does not use any metacomputing infrastructure project,
whereas our task farming framework is built on top of
Grid middleware. However, a recent effort, Nimrod/G
(Abramson and Giddy, 1997), plans to build Nimrod di-
rectly on top of Globus (Foster and Kesselman, forthcom-
ing). We believe that a project like NetSolve (or Ninf) is a
better choice for this research work. First, NetSolve is
freely available. Second, NetSolve provides a very simple
interface, letting us focus on scheduling algorithms rather
than Grid infrastructure details. Third, NetSolve can and
probably will be implemented on top of most Globus
services and will then leverage the Grid infrastructure
without modifications of our scheduling algorithms.-An
other distinction between this work and Nimrod is that the
latter does not contain adaptive algorithms for scheduling
like the one described in Section 6. In fact, itis not incon
ceivable that the algorithms eventually produced by this
work could be incorporated seamlessly into Nimrod.

Calypso (Baratloo , Dasgupta, and Kedem, 1995) is a
programming environment for a loose collection of-dis
tributed resources. Itis based on C++ and shared memory
but exploits task-based parallelism of relatively inde
pendent jobs. It has an eager scheduling algorithm and,

like the functional metacomputing environments- de
scribed in this paper, uses the idempotence of the tasks to
enable a replication-based fault-tolerance.

A system implemented on top of the Helios OS that al
lows users to program master-slave programs using a
“Farming” API is described in Silva, Veer, and Silva
(1993) and Silva et al. (1995). Like in Calypso, the idem
potence of tasks is used to achieve fault-tolerance. They
do not focus on scheduling.

The AppLeS project (Berman etal., 1996; Berman and
Wolski, 1997) develops metacomputing scheduling
agents for broad classes of computational applications.
Part of the effort targets scheduling master-slave applica
tions (Berman, Wolski, and Shao, 1998) (task-farming
applications with our terminology). A collaboration-be
tween the NetSolve and the AppLeS team has been initi
ated, and integration of AppLeS technology, the Network
Weather Service (NWS) (Wolski, 1996), NetSolve-like
systems, and the results in this document is under way.

As mentioned earlier, numerous ongoing projects are
trying to establish the foundations of the Computational
Grid envisioned in Foster and Kesselman (1998). Ninf
(Sekiguchi et al., 1996) is similar to NetSolve in that it is
targeted to domain scientists. Like NetSolve, Ninf pro-
vides simple computational services, and the develop-
ment teams are collaborating to make the two systems in-
teroperate and standardize the basic protocols. At a lower
level are Globus (Foster and Kesselman, forthcoming)
and Legion (Grimshaw et al., 1994), which aim at provid-
ing basic infrastructure for the Grid. Condor (Litzkow,
Livny, and Mutka, 1988; Litzkow and Livny, 1990) de-
fines and implements a powerful model for Grid compo-
nents by allowing the idle cycles of networks of worksta
tion to be harvested for the benefit of Grid users without
penalizing local users.

4 Brief Overview of NetSolve

The NetSolve projectis under development at the Uni
versity of Tennessee and the Oak Ridge National Labora
tory. Its original goal is to alleviate the difficulties that-do
main scientists usually encounter when trying to
locate/install/use numerical software, especially on-mul
tiple platforms. With NetSolve, the user does not need to
be concerned with the location/type of the hardware re
sources being used or with the software installation- Fur
thermore, NetSolve provides transparent fault-tolerance
mechanisms and implements scheduling algorithms to
minimize overall response time. As seen in Figure 1;Net
Solve has athree-tiered design in thatiantconsults an
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Fig.1 The NetSolve System

agentprior to sending requests tesarverLet us give ba-
sic concepts about those three components as well as in-
formation about the current status of the project.

The NetSolve Server A NetSolve server can be
started on any hardware resource (single workstation,
cluster of workstations, MPP). It can then provide access
to arbitrary software installed on that resource (NetSolve
provides mechanisms to integrate any software compo-
nent into a server so that it may become available to Net-
Solve clients; Casanova and Dongarra, 1998a).

The NetSolve Agent. The NetSolve agentis the key to
the computation-resource mapping decisions as it main
tains a database about the statuses and capabilities of
servers. It uses that database to make scheduling deci
sions forincoming user requests. The agentis also the pri
mary participant in the fault-tolerance mechanisms. Note
that there can be multiple instances of the NetSolve agent
to manage a confederation of servers.

The NetSolve Client. The user can submit (possibly
simultaneous) requests to the system and retrieve results
with one of the provided interfaces (C, Fortran, Matlab
[see Math Works, 1992], Mathematica [see Wolfram,
1996], Java APIs, or Java GUI).

Current Status of NetSolve. At this time, a prever
sion of NetSolve 1.2, containing full-fledged software for
all UNIX flavors, Win32 C, and Matlab APIs, can be
downloaded from the homepage at

http://www.cs.utk.edu/netsolve.
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The NetSolve users’ guide (Casanova, Dongarra, and
Seymour, 1996) contains general purpose information
and examples. Details about the NetSolve agent can be
found in Casanova and Dongarra (1997). Recent develop
ments and applications of NetSolve are described in
Casanova and Dongarra (1998b). Last, technical details
about the current NetSolve implementation are to be
found in (Casanova and Dongarra, 1998c).

5 Task Farming API

5.1 BASICS

In this work, we assume that a functional metacomput
ing environment is available (see Section 2). That-envi
ronment provides an API that contains two functions: (i)
submit() tosend arequestasynchronously for compu
tation and (ii)poll()  to poll asynchronously for the
completion of arequest. Polling returns immediately with
the status of the request. If the computation is complete,
the resultis returned as well. The NetSolve and Ninf APIs
satisfy these requirements. In addition, the environment
provides access to preinstalled software and hardware re-
sources. The user just provides input data and a way to
identify which software should be used to process that
data. Again, both NetSolve and Ninf comply.

Afarming job is one composed of a large number of in-
dependent requests that may be serviced simultaneously.
This is sometimes referred to as the “bag-of-tasks” model
(Bakken and Schilchting, 1995; Gelernter and Kaminsky,
1992). Farming jobs fall into the class of “embarrassingly
parallel” programs, for which itis very clear how to parti-
tion the jobs for parallel programming environments.
Many important classes of problems, such as Monte Carlo
simulations (e.g., Stiles et al., 1998) and parameter-space
searches (e.g., Abramson et al., 1997) fall into this-cate
gory.

Without a farming API, the user is responsible for
managing the requests himself or herself. One possibility
would be to submit all the desired requests at once and let
the system schedule them. However, we have seen that
scheduling on the Grid is a challenging issue, and as are
sult, the available Grid middleware projects implement
only minimal scheduling capabilities that do not optimize
even this simple class of parallel programs. A seconéd pos
sibility is for the user to manually manage a ready queue
by having at mosh requests submitted to the system at
any pointin time. This solution seems more reasonable; how-
ever, the optimal value efdepends on Grid resource avail
ability, which is beyond the user’s control and is dynamic.

5.2 API

It is difficult to design an API that is both convenient
for the end-user and sophisticated enough to handle many
real applications. Our farming API contains one function,
farm(), with which the user specifies all data for all the
computation tasks. The main idea is to replace multiple
calls tosubmit() by one call todfarm() whose argu
ments are lists of arguments sabmit(). In this first
implementation, we assume that argumenssitamit()
are eitherintegers or pointers (which is consistent with the
NetSolve specification). Extending the call to support
other argument types would be trivial. The first argument
tofarm() specifies the number of requests by declaring
an induction variable and defining its range. The syntax if
“i = %d,%d" (see example below). The second argu
ment is the identifier for the computational functionality
in the metacomputing environment (a string with Ninf
and NetSolve). Then follow a (variable) number of argu
ment lists. Our implementation provides three functions
that need to be called to generate such listexpr()
allows an argument to computatioio be an integer com
puted as an arithmetic expression containjifig) int_
array()allows an integer argument to computationi to
be an element of an integer array indexed by the value of
an arithmetic expression containing(iii) ptr_ar-
ray() is similar toint_array() but handles pointer
arguments. Arithmetic expressions are specified with
Bourne Shell syntax (accessing the valuewith ‘ $i *).

Let us show an example assuming that the underlying
metacomputing environment provides a computational
function called “foo.” The code

double x[10],y[30],z[10];
submit(“foo”,2,x,10);
submit(“foo”,4,y,30);
submit(“foo”,6,z,10);

makes three requests to run the “foo” software with the
following sets of arguments: (2,x,10), (4,y,30), and
(6,2,10). Note that x,y, andz will hold the results of the
NetSolve call. With farming, these calls are replaced by

void *ptrs[3];
int *ints[3];

ptrs[0] = x; ptrs[1] =y; ptrs[2] = z;
ints[0] = 10; ints[1] = 30; ints[2] = 10;

farm(“i=0,2",“foo”,expr(“2*($i+1)"),
ptr_array(ptrs,"$i"),int_array
(ints,"$i");
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“Our farming algorithm manages a ready
gueue and adapts to the underlying
metacomputing environment . .

n = initial guess on the queue size;
a = scheduling factor;
0=1;
while (tasks remaining) {
while (number of pending tasksr) {

submit();

}

foreach (pending task) {
poll();

}

if (n—number of pending tasks n X «) {
if (average task response time has improved) {
n=n+d;
0=0+1;
}

elsef

}

Fig. 2 Adaptive scheduling algorithm

We expect to use this API as a basis for more evolved
interfaces (e.g., graphical or Shell-based). So far, we have
used the APl directly to implement basic example compu
tations (2D block-cyclic matrix-multiply, Mandelbrot set
computation) and to build a Shell interface to MCell (see
Section 7). Section 8 describes how we plan to generalize
this work to automatically generate high-level interfaces.

6 Scheduling Strategy
6.1 THE SCHEDULING ALGORITHM

The main idea behind the scheduling algorithm has al
ready been presented in Section 5.1: managing a ready
gueue. We mentioned that the user had no elements on
which to base the choice far the size of the ready queue.
Our farming algorithm manages a ready queue and adapts
to the underlying metacomputing environment by rodi
fying the value ofn dynamically according to constant
computation throughput measurement. The algorithm
really sees the environment as an opaqgue entity that gives
varying responses (request response times) to repeated
occurrences of the same event (the sending of arequest).

Let us go through the algorithm shown in Figure 2.
First, the algorithm chooses the initial valuerof That
choice can be arbitrary, but it may benefit from additional
information provided by the underlying metacomputing
environment. NetSolve provides a way to query the agent
about the number of available servers for a given compu-
tation, and that number is the initial guessrian this first
implementation. Second, the algorithm setsgbleedul-
ing factora, which takes values in (0,1) and determines
the behavior of the algorithm. Indeed, the valua ofiay
be changed only when more thatasks completed dur
ing one iteration of the outermost while loop. A value of
o =1 causes the algorithm to be extremely conservative
(only when allnrequests are completed instantly may the
value ofn be changed). The smaller tbhethe more often
will the algorithm try to modifyn. The algorithm keeps a
running history of the average request response times for
allrequests in the queue. That history is used to detectim
provements or deterioration in performance and modify
the value ofh accordingly.

This algorithm is rather straightforward at the mo
ment, but it will undoubtedly be improved after more ex
periments have been conducted. However, early experi
mental results shown in Section 7 are encouraging.

6.2 CURRENT IMPLEMENTATION

In our testbed implementation of farming for Net
Solve, we implemenfarm() as an additional layer on
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top of the traditional NetSolve API, exactly as detailed in
Section 5.2. A similar implementation would be valid for
a system like Ninf. In other metacomputing envifon
ments, placing the scheduling algorithm within the client
library might not be feasible, in which case the algorithm
needs to be implemented in other parts of the system (cen
tral scheduler, client proxy, etc.). However, the algorithm
is designed to rest on top of the metacomputing system,
rather than to be merged with the internals of the system.

6.3 POSSIBLE EXTENSIONS

The NetSolve farming interface is very general, and
we believe that it can serve as a low-level building-block
for deploying various classes of applications. However,
this generality leads to shortcomings. The embedded
scheduler cannot take advantage of application-specific
features, such as exploitable data patterns. Real applica
tions are likely to manipulate very large amounts of data,
and it may be possible for the scheduler to make decisions
based on I/O requirements. For instance, one can imagine
that a subset of the tasks to farm makes use of one or more
constant input data. This is a frequent situation in MCell
(see Section 7.1), for example. Such input data could then
besharedyviafiles, for instance) by multiple resources, as
opposed to being replicated across all the resources. An-
other possibility would be for the farming application to
contain simple data dependencies between tasks. In that
case, our framework could detect those dependencies and
schedule the computations accordingly. Another short-
coming of the farming interface that is a direct cause of its
generality is that the call tdarm() is completely
atomic. This is an advantage from the point of view of
ease-of-use, but it prevents such things as visualization of
results as they become available, forinstance. Once again,
such a feature would be desirable for MCell. Section 8
lays the ground for research in these directions, and work
is under way in the context of MCell.

7 Preliminary Experimental Results

7.1 MCELL

MCell (Stiles et al., 1998; Stiles et al., 1996) is a gen
eral Monte Carlo simulator of cellular microphysiology.
MCell uses Monte Carlo diffusion and chemical reaction
algorithms in 3D to simulate the complex biochemical in
teractions of molecules inside and outside of living cells.
MCell is a collaborative effort between the Terry
Sejnowski lab at the Salk Institute and the Miriam Salpe
ter lab at Cornell University. Like any Monte Carlo simu

lation, MCell must run large numbers of identical, inde
pendent simulations for different values of its random
number generator seed. It therefore qualifies as a task
farming application and was our first motivation to-de
velop a farming API along with a scheduling algorithm.

As mentioned earlier, we developed for MCell a
Shell-based interface on top of the C farming API. This
interface takes as input a user-writegmiptand automati
cally generates the call farm(). The scriptis veryin -
tuitive as it follows the MCell command-line syntax by
just adding the possibility famangesof values as opposed
to fixed values. For instance, instead of calling MCell

mcell fool 1
mcell fool 2

mcell fool 100

it is possible to call MCell
mcell fool [1-100]

whichis simpler, uses Grid computational resources from
NetSolve, and ensures good scheduling with the use of the
algorithm described in Section 6.

7.2 RESULTS

The results presented in this section were obtained by
using a NetSolve system spanning 5to 25 servers on a net-
work of Sun workstations (Sparc ULTRA 1) intercon-
nected via 100Mb Ethernet. The farming application uses
MCell to compute the shape of the parameter space,
which describes the possible modes of operation for the
process of synaptic transmission at the vertebrate reuro
muscular junction. Since MCell’s results include the true
stochastic noise in the system, the signal must be-aver
aged at each parameter space point. This is done by run
ning each point 10 times with 10 different values of the
random number generator seed. In this example, three
separate 3D parameter spaces are sampled, each parame
ter space is of dimensiorn33 x 3. The number of tasks to
farm is therefore % 3 x 3 x 3 x 10 = 810, and each task
generates 10 output files.

These preliminary experiments were run on a dedi
cated network. However, we simulated a dynamically
changing resource pool by linearly increasing and de
creasing the number of available NetSolve computational
servers. Results are shown in Table 1 for our adaptive
scheduling, afixed queue sizerof 25, and a fixed queue
size ofn=5.
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Table 1
Preliminary Experimental Results

Resource Relative
Scheduling Time  Availability (%) Performance (%)

Adaptive 3982 s 64 100
n=25 4518 s 62 85
n=5 10,214 s 63 38

“In this article, we have motivated the need
for schedulers tailored to broad classes of

applications running on the Computational
Grid.”

The resource availability measures the fraction of
servers available during one run of the experiment. As
this number changes throughout time, the availability is
defined as the sum of the number of servers available over
all time steps (10 seconds). We compare scheduling
strategies by measuringlative performancewhich we
define as a ratio o&djusted elapsed times, taking the
adaptive scheduling as a reference. Adjusted elapsed
times are computed by assuming a 100% availability and
scaling the real elapsed times accordingly. One can see
that the adaptive strategy performs 15% better than the
strategy withn = 25. Of course, the strategy with= 5
performs very poorly since it does not take advantage of
all the available resources.

These first results are encouraging but not as satisfac
tory as expected. This is due to the implementation of
NetSolve and the way the experiment was set up. Indeed,
NetSolve computational tasks are not interrupted when a
NetSolve server is terminated. Terminating a server only
means that no further requests will be answered but that
pending requests are allowed to terminate. Thus, this ex
periment does not reflect the worst-case scenario 6f ma
chines being shut down causing all processes to termi-
nate. We expect our adaptive strategy to perform even
better in an environment where tasks are terminated pre-
maturely and need to be restarted from scratch on remain-
ing available resources. Due to time constraints, this
article does not contain results to corroborate this as-
sumption, but experiments are under way.

8 Conclusion and Future Work

In this paper, we have motivated the need for schedul
ers tailored to broad classes of applications running on
the Computational Grid. The extreme diversity of Grid
resource types, availabilities, and access policies makes
the design of schedulers a difficult task. Our approach is
to build on existing and available metacomputing envi
ronments to access the Grid as easily as possible and to
implement an interface and scheduling algorithm for task
farming applications. An adaptive scheduling algorithm
was described in Section 6. That algorithm is independ
ent from the internal details of the Grid and of the meta
computing environment of choice. We chose NetSolve as
a testbed for early experiments with the MCell applica
tion. The effectiveness of our scheduler is validated by
preliminary experimental results in Section 7. Thanks to
our framework for farming, a domain scientist can easily
submit large computations to the Grid in a convenient
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manner and have an efficient adaptive scheduler manage
execution on his or her behalf.

There are many ways in which this work can be further
extended. We already mentioned in Section 6.3 that it is
possible to use the farming API to detect data dependen

usable high-level interfaces. Steps in that direction have
already been taken with the Shell-interface for MCell (see
Section 7.1). It would be rather straightforward to design
or use an existing specification language to describe spe
cific farming applications and automatically generate

cies or shared input data between requests. The adaptive custom Shell-based graphical interfaces like the ones in

scheduling algorithm could be augmented to take into ac
count such patterns. A possibility is for the farming inter
face to take additional arguments that describe domain-
specific features and that may activate more sophisticated
scheduling strategies if any. A first approach would be to
consider only input or output coming from files (which is
applicable to MCell and other applications) and partition
the request space such as to minimize the number of file
transfers and copies. This will require that the underlying
metacomputing environment provide a feature te de
scribe such dependencies. Work is being done in synergy
with the NetSolve project to take into account data lecal
ity, and the farming interface will undoubtedly take-ad
vantage of these developments (Beck et al., forthcoming).
This will be fertile ground for scheduling and data logistic
research. The scheduling algorithm can also be modified
to incorporate more sophisticated techniques. For in-
stance, if the metacomputing environment provides an
API to access more details about the status of available re-
sources, it might be the case tmthe size of the ready
gueue, can be tuned effectively. The danger, however, isto
lose portability as the requirements for the metacomput-
ing environment (see Section 5.1) would be more strin-
gent. Experiments will be conducted in order to investi-
gate whether such requirements can be used to
significantly improve scheduling.

The farming API can be enhanced so that certain tasks
may be performed upon submitting each request and re
ceiving each result. For instance, the user may want to
visualize the data as they are coming back, as opposed to
waiting for completion of all the requests. This is notpos
sible at the moment as the callferm() is atomic and
does not provide control over each individual request. A
possibility would be to pass pointers to user-defined func
tions forfarm() and execute them for events of interest
(e.g., visualization for each reception of a result). Such
functions could take arbitrary arguments for the sake of
versatility. Some of the available metacomputing envi
ronments provide attractive interactive interface to which
a farming call could be contributed. Examples include
Matlab (NetSolve) and Mathematica (NetSolve, Ninf).
To make our task-farming framework easily accessible to
a growing number of domain scientists, we need to de
velop ways to use the C farming API as a basis for more

Abramson et al. (1997).
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