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Abstract. The implementation and performance of a class of divide-and-conquer algorithms
for computing the spectral decomposition of nonsymmetric matrices on distributed memory parallel
computers are studied in this paper. After presenting a general framework, we focus on a spectral
divide-and-conquer (SDC) algorithm with Newton iteration. Although the algorithm requires several
times as many floating point operations as the best serial QR algorithm, it can be simply constructed
from a small set of highly parallelizable matrix building blocks within Level 3 basic linear algebra
subroutines (BLAS). Efficient implementations of these building blocks are available on a wide range
of machines. In some ill-conditioned cases, the algorithm may lose numerical stability, but this can
easily be detected and compensated for.

The algorithm reached 31% efficiency with respect to the underlying PUMMA matrix multipli-
cation and 82% efficiency with respect to the underlying ScaLAPACK matrix inversion on a 256
processor Intel Touchstone Delta system, and 41% efficiency with respect to the matrix multiplica-
tion in CMSSL on a 32 node Thinking Machines CM-5 with vector units. Our performance model
predicts the performance reasonably accurately.

To take advantage of the geometric nature of SDC algorithms, we have designed a graphical
user interface to let the user choose the spectral decomposition according to specified regions in the
complex plane.
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1. Introduction. A standard technique in parallel computing is to build algo-
rithms from existing high-performance building blocks. For example, LAPACK [1] is
built on basic linear algebra subroutines (BLAS), for which efficient implementations
are available on many workstations, vector processors, and shared memory parallel
machines. The recently released ScaLAPACK 1.0 linear algebra library [11] is written
in terms of the parallel block BLAS (PB-BLAS) [12], basic linear algebra communica-
tion subroutines (BLACS) [19], BLAS, and LAPACK. ScaLAPACK includes routines
for LU, QR, and Cholesky factorizations, and matrix inversion, and has been ported
to the Intel Gamma, Delta, and Paragon, Thinking Machines CM-5, and PVM clus-
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ters. The connection machine scientific software library (CMSSL) provides analogous
functionality and high performance for the CM-5.

In this paper, we use these high-performance kernels to implement a spectral
divide-and-conquer (SDC) algorithm for finding eigenvalues and invariant subspaces
of nonsymmetric matrices on distributed memory parallel computers. The algorithm
recursively divides the matrix into smaller submatrices, each of which has a subset of
the original eigenvalues as its own [5, 28, 3]. On a 256 processor Intel Touchstone Delta
system, the SDC algorithm reached 31% efficiency with respect to the underlying
matrix multiplication (PUMMA [13]) for matrices of order 4000 and 82% efficiency
with respect to the underlying ScaLAPACK 1.0 matrix inversion. On a 32 processor
Thinking Machines CM-5 with vector units, a variation of the SDC algorithm obtained
41% efficiency with respect to matrix multiplication from CMSSL 3.2 for matrices of
order 2048.

The nonsymmetric spectral decomposition problem has until recently resisted
attempts at parallelization [16]. The conventional serial method is to use the QR
algorithm [1]. The algorithm had appeared to require fine-grain parallelism and be
difficult to parallelize. But recently Henry and van de Geijn [21] have shown that the
Hessenberg QR iteration phase can be effectively parallelized for distributed mem-
ory parallel computers with up to 100 processors. Although it does not appear
to be as scalable as the algorithm presented in this paper, it may be faster on a
wide range of distributed memory parallel computers. The SDC algorithm performs
several times as many floating point operations as the QR algorithm, but they are
nearly all within Level 3 BLAS, whereas implementations of the QR algorithm per-
forming the fewest floating point operations use less efficient Levels 1 and 2 BLAS.
A thorough comparison of these algorithms will be the subject of a future paper.
We also note that the algorithm discussed in this paper may be less stable than
the QR algorithm in a number of circumstances. Fortunately, it is easy to detect
and compensate for this loss of stability. Compared with other approaches, we be-
lieve that the new algorithm offers an effective trade-off between parallelizability and
stability.

Other parallel algorithms for the eigenproblem include Hessenberg divide-and-
conquer using either Newton’s method [18] or homotopies [26], and Jacobi’s method
[33, 32]. All these methods suffer from the use of fine-grain parallelism, instability,
slow or misconvergence in the presence of clustered eigenvalues of the original problem
or some constructed subproblems [16]. The other algorithms most closely related to
the approach used here may be found in [2, 6, 24], where symmetric matrices or, more
generally, matrices with real spectra are treated.

One of the notable features of the SDC algorithm is that it can calculate just those
eigenvalues (and the corresponding invariant subspace) in a user-specified region of
the complex plane. To help the user specify this region, we developed a graphical user
interface for the algorithm.

The rest of this paper is organized as follows. In section 2, we first present a gen-
eral framework of SDC algorithms and then focus on an SDC algorithm with Newton
iteration. We show how to divide the spectrum along arbitrary circles and lines in
the complex plane. The implementation and performance on Intel Delta and CM-5
are presented in section 3. Section 4 presents a model for performance analysis and
demonstrates that it can predict the execution time reasonably accurately. Section 5
describes the design of an X-window user interface. Concluding remarks are given in
section 6.
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2. Spectral divide and conquer algorithms.

2.1. General framework. A general framework of SDC algorithms can be de-
scribed as the following. Let

A = X

(
J+ 0
0 J−

)
X−1(1)

be the Jordan canonical form of an n × n matrix A, where the eigenvalues of J+
are the eigenvalues of A inside a selected region D in the complex plane, and the
eigenvalues of J− are the eigenvalues of A outside D. We assume that there are no
eigenvalues of A on the boundary of D otherwise we reselect or move the region D
slightly. The invariant subspace of the matrix A corresponding to the eigenvalues
inside D are spanned by the first l columns of X, where l is the number of eigenvalues
inside D. The matrix

P+ = X

(
I 0
0 0

)
X−1(2)

is the corresponding spectral projector. Let P+ = QRΠ be the rank revealing QR
decomposition of the matrix P+, where Q is unitary, R is upper triangular, and Π is
a permutation matrix chosen so that the leading l columns of Q span the range space
of P+. Then Q yields the desired spectral decomposition

QHAQ =
(

A11 A12
0 A22

)
,(3)

where the eigenvalues of A11 are the eigenvalues of A inside D, and the eigenvalues of
A22 are the eigenvalues of A outside D. By substituting the complementary projector
I − P+ for P+ in (2), A11 will have the eigenvalues outside D and A22 will have the
eigenvalues inside D.

The crux of an SDC algorithm is to efficiently compute the desired spectral pro-
jector P+ without computing the Jordan canonical form.

2.2. An SDC algorithm with Newton iteration. One of the ways to com-
pute the spectral projector P+ is to use the matrix sign function. The matrix sign
function was introduced by Roberts [31] for solving the algebraic Riccati equation.
However, it was soon extended to solving the spectral decomposition problem [5].
More recent studies may be found in [28, 3, 23].

The matrix sign function, sign(A), of a matrix A with no eigenvalues on the
imaginary axis can be defined via the Jordan canonical form of A (1), where the
eigenvalues of J+ are in the open right halfplane D, and the eigenvalues of J− are in
the open left halfplane D. Then sign(A) is

sign(A) ≡ X

(
I 0
0 −I

)
X−1.

It is easy to see that the matrix

P+ =
1
2
(I + sign(A))(4)

is the spectral projector onto the invariant subspace corresponding to the eigenvalues
of A in D. l = trace(P+) = rank(P+) is the number of the eigenvalues of A in
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D. I − P+ = P− = 1
2 (I − sign(A)) is the spectral projector corresponding to the

eigenvalues of A in D. Let P+ = QRΠ be the rank revealing QR decomposition of
P+. Then Q yields the desired spectral decomposition (3), where the eigenvalues of
A11 are the eigenvalues of A in D, and the eigenvalues of A22 are the eigenvalues of
A in D.

Since sign(A) satisfies the matrix equation (sign(A))2 = I, we can use Newton’s
method to solve this matrix equation and derive the following Newton iteration:

Aj+1 =
1
2
(Aj + A−1

j ) for j = 0, 1, 2, . . . with A0 = A.(5)

It can be shown that the iteration is globally and ultimately quadratically convergent
with limj→∞ Aj = sign(A), provided A has no pure imaginary eigenvalues [31, 23].
The iteration fails otherwise. In finite precision arithmetic, the iteration could con-
verge slowly or not at all if A is “close” to having pure imaginary eigenvalues.

There are many ways to improve the accuracy and convergence rate of this basic
iteration [7, 22, 25]. For example, if ‖A2 − I‖ < 1, we may use the Newton–Schulz
iteration

Aj+1 =
1
2
Aj(3I − A2

j ) for j = 0, 1, 2, . . . with A0 = A(6)

to avoid the use of the matrix inverse. Although it requires twice as many floating
point operations, it is more efficient whenever matrix multiply is at least twice as
efficient as matrix inversion. The Newton–Schulz iteration is also quadratically con-
vergent provided that ‖A2 − I‖ < 1. A hybrid iteration might begin with Newton
iteration until ‖A2

i − I‖ < 1 and then switch to Newton–Schulz iteration.
The following is an SDC algorithm with Newton iteration to compute the spectral

decomposition along the pure imaginary axis.
Let A0 = A
For j = 0, 1, . . . until convergence or j > jmax do

Aj+1 = 1
2 (Aj + A−1

j )
if ‖Aj+1 − Aj‖1 ≤ τ‖Aj‖1, exit

End for;
Compute 1

2 (Aj+1 + I) = QRΠ (rank revealing QR decomposition)

Calculate QHAQ =
( l n − 1

l A11 A12
n − 1 E21 A22

)
Compute ‖E21‖1/‖A‖1 for stability test

Here τ is the stopping criterion for the Newton iteration (say τ = nε, where ε is the
machine precision), and jmax limits the maximum number of iterations (say jmax =
40). l is the rank of R. On return, the generally nonzero quantity ‖E21‖1/‖A‖1
measures the backward stability of the computed decomposition, since by setting
E21 to zero and so decoupling the problem into A11 and A22, a backward error of
‖E21‖1/‖A‖1 is introduced. For simplicity, we use the QR decomposition with column
pivoting for rank revealing, although more sophisticated rank-revealing schemes exist
[10, 20].

All variations of the Newton iteration with global convergence need to compute
the inverse of a matrix explicitly in one form or another. Dealing with ill-conditioned
matrices and instability in the Newton iteration for computing the matrix sign func-
tion and the subsequent spectral decomposition have been studied in [3, 8]. Recently,
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an inverse-free method for achieving better numerical stability has been proposed in
[30, 4]. The advantage of the inverse-free approach is obtained at the cost of more
storage and arithmetic.

Since 1) any SDC algorithm could suffer numerical instability when some eigen-
values are very close to the boundary of the selected region, 2) Newton iteration is
faster but somewhat less stable than the inverse-free approach, and 3) testing stabil-
ity is easy, we propose to use the following three-step hybrid algorithm for a general
purpose program:

1. Use the SDC algorithm with Newton iteration. If it succeeds, stop.
2. Otherwise, divide the spectrum with the inverse-free method. If it succeeds,

stop.
3. Otherwise, use the QR algorithm.

This three-step approach works by trying the fastest but least stable method first,
falling back to slower but more stable methods only if necessary. The same paradigm
is also used in other parallel algorithms [15]. If a fast parallel version of the QR
algorithm [21] becomes available, it would probably be faster than the inverse-free
algorithm and hence would obviate the need for the second step listed above. But the
inverse-free method would still be of interest if only a subset of the spectrum is desired
(the QR algorithm necessarily computes the entire spectrum) or for the generalized
eigenproblem of a matrix pencil A − λB [4].

2.3. Spectral transformation. Although the SDC algorithm with Newton it-
eration only divides the spectrum along the pure imaginary axis, we can use Möbius
and other simple transformations of the input matrix A to divide along other more
general curves. As a result, we can compute the eigenvalues (and corresponding invari-
ant subspace) inside any region defined as the intersection of regions defined by these
curves. This is one of the major attractions of this kind of algorithm. Specifically,
with Möbius transformation

αz + β

γz + δ
,

where α, β, γ, δ are constants, and z is a complex variable, the eigenproblem Ax = λx
is transformed to

(αA + βI)x =
αλ + β

γλ + δ
(γA + δI)x.

Then if we apply the SDC algorithm to the matrix (γA + δI)−1(αA + βI), we can
divide the spectrum with respect to a region

<
(

αλ + β

γλ + δ

)
> 0.

For example, by computing the matrix sign function of (A+(r−µ)I)−1(−A+(r+µ)I),
then the SDC algorithm will divide the spectrum of A along a circle centered at µ
with radius r. If A is real, and we choose µ to be real, then all arithmetic will be real.
Other more general regions can be obtained by taking A0 as a polynomial function of
A. For example, by computing the matrix sign function of (A − αI)2, we can divide
the spectrum within a bow-tie-shaped region centered at α. Figure 1 illustrates the
regions which the algorithms can deal with assuming that A is real and the algorithms
use only real arithmetic.
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FIG. 1. Different geometric regions for the spectral decomposition.

3. Implementation and performance. In this section, we report the imple-
mentation and performance of the SDC algorithm with Newton iteration on dis-
tributed memory parallel machines, namely, the Intel Delta and the CM-5. Imple-
mentations on workstations and shared memory machines can be found in [3].

3.1. Implementation and performance on Intel Touchstone Delta. The
Intel Touchstone Delta system, located at the California Institute of Technology on
behalf of the Concurrent Supercomputing Consortium, is a 16 × 32 mesh of i860
processors with a wormhole routing interconnection network [27]. The communication
characteristics are described in [29].

Our implementation on Intel is built upon ScaLAPACK 1.0 (beta version) [11].
A square-block cyclic data decomposition scheme is used, which allows the rou-
tines to achieve well-balanced computations and to minimize communication costs.
ScaLAPACK relies on the PB-BLAS [12], which hides much of the interprocessor com-
munication and makes it possible to avoid explicit calls to communication routines.
The PB-BLAS itself is implemented on top of calls to the BLAS and to the BLACS
[19].

The PUMMA routines [13] provide the required matrix multiplication. The ma-
trix inversion is done in two steps. After the LU factorization has been computed, the
upper-triangular U matrix is inverted, and A−1 is obtained by substitution with L.
Using blocked operations leads to performance comparable to that obtained for LU
factorization. The implementation of the QR factorization with or without column
pivoting is based on the parallel algorithm presented by Coleman and Plassmann [14].
The QR factorization with column pivoting has a much larger sequential component,
processing one column at a time, and needs to update the norms of the column vec-
tors at each step. This makes using blocked operations impossible and induces high
synchronization overheads. However, as we will see, the cost of this step remains
negligible in comparison with the time spent in the Newton iteration. The QR factor-
ization without pivoting and the post- and premultiplication by an orthogonal matrix
do use blocked operations. Two plots in Figure 2 are the timing and megaflops for
the PUMMA package using the BLACS for matrix multiplication, and ScaLAPACK
subroutines for the matrix inversion, QR decomposition with and without column
pivoting.
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FIG. 2. Performance of ScaLAPACK 1.0 subroutines on 256 (16 × 16) PEs Intel Touchstone
Delta system.

TABLE 1
The SDC algorithm with Newton iteration on 256 node Intel Touchstone Delta system.

n Timing Mflops Mflops GEMM-Mflops INV-Mflops
(seconds) (total) (per node) (per node) (per node)

1000 134.22 293.05 1.14 9.04 1.41
2000 448.69 808.28 3.16 15.51 3.88
3000 792.18 1340.60 5.23 19.95 6.43
4000 1436.14 1841.98 7.19 23.12 8.70

TABLE 2
Performance profile on 256 node Intel Touchstone Delta system.

n Newton (%) QRP(%) QT AQ(%) Total CPU

1000 123.06(91%) 6.87(5%) 4.27(5%) 134.22
2000 413.95(92%) 18.60(4%) 16.13(4%) 448.69
3000 717.04(90%) 36.76(5%) 38.37(5%) 792.18
4000 1300.16(90%) 63.13(5%) 72.80(5%) 1436.14

To measure the efficiency of the algorithm for computing the spectral decompo-
sition with respect to the pure imaginary axis, we generated random matrices with
normal distribution (0,1). All computations were performed in real double precision
arithmetic. Table 1 lists the CPU time and different megaflops rates. All the back-
ward errors measured in ‖E21‖1/‖A‖1 are on the order of 10−12 to 10−13. It took
between 18 and 21 steps of Newton iteration to converge. From Table 1, we see that
for matrices of order 4000, the algorithm reached 7.19/23.12 ≈ 31% efficiency with re-
spect to PUMMA matrix multiplication and 7.19/8.70 ≈ 82% efficiency with respect
to the underlying ScaLAPACK matrix inversion subroutine. Table 2 is the profile of
the CPU time. It is clear that the Newton iteration (i.e., computing the matrix sign
function) is most expensive and takes about 90% of the total running time. Figure
3 shows the performance of the algorithm as a function of matrix size for different
numbers of processors.

We also ran LAPACK driver routine DGEES (the standard serial QR algorithm)
for computing the Schur decomposition on one i860 processor. It took 592 seconds
for a matrix of order 600, or 9.1 megaflops. Assuming that the time scales like
n3, one can predict that for a matrix of order 4000, if the matrix was able to fit
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FIG. 3. Performance of the SDC algorithm with Newton iteration on the Intel Delta system as
a function of matrix size for different numbers of processors.

on a single node, then DGEES would take about 48 hours to compute the desired
spectral decomposition. In contrast, the SDC algorithm would only take about 24
minutes. This is about 120 times faster. Of course, we should note that DGEES
actually computes a complete Schur decomposition with the necessary reordering of
the spectrum. Our algorithm only decomposes the spectrum along the pure imaginary
axis. In some applications, this may be what users want. If the decomposition along
a finer region or a complete Schur decomposition is desired, then the cost of the SDC
algorithm will be increased, though it is likely that the first dividing step will take
most of the time [9].

3.2. Implementation and performance on the CM-5. Our implementation
on 32 node CM-5 was carried out at the University of California at Berkeley. Each
CM-5 node contains a 33 MHz Sparc with an FPU and 64 KB cache, four vector
floating points units, and 32 MB of memory. The front end is a 33 HMz Sparc with
32 MB of memory. With the vector units, the peak 64-bit floating point performance
is 128 megaflops per node (32 megaflops per vector unit). See [34] for more details.

The SDC algorithm is implemented in CM Fortran (CMF) version 2.1—an im-
plementation of Fortran 77 supplemented with array-processing extensions from the
ANSI and ISO standard Fortran 90. CMF arrays come in two flavors. They can be
distributed across CM processor memory (in some user-defined layout) or allocated
in normal column major fashion on the front end alone. When the front end com-
puter executes a CMF program, it performs serial operations on scalar data stored
in its own memory but sends any instructions for array operations to the nodes. On
receiving an instruction, each node executes it on its own data. When necessary, CM
nodes can access each other’s memory by available communication mechanisms.

CMSSL (version 3.2) was used in our implementation. CMSSL provides data
parallel implementations of many standard linear algebra routines. Figure 4 summa-
rizes the performance of CMSSL routines underlying the implementation of the SDC
algorithm. Matrix inversion is performed by solving the system AX = I. The LU
factors can be obtained separately—to support Balzer’s and Byers’ scaling schemes
to accelerate the convergence of Newton iteration—and there is a routine for estimat-
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FIG. 4. Performance of CMSSL 3.2 subroutines on 32 node CM-5 with vector units.

ing ‖A−1‖∞ from the LU factors to detect ill-conditioned intermediate matrices in
the Newton iteration. The QR factorization with or without pivoting uses standard
Householder transformations. Column blocking can be performed at the user’s discre-
tion to improve load balance and increase parallelism. The QR with pivoting routine
is about half as fast as QR without pivoting. This is due in part to the elimination
of blocking techniques when pivoting, as columns must be processed sequentially.

We tested the SDC algorithm with hybrid Newton–Schulz iteration for computing
the spectral decomposition along the pure imaginary axis. The entries of random
test matrices were uniformly distributed on [−1, 1]. We use the inequality ‖Ai+1 −
Ai‖1 ≤ √

n as switching criterion from the Newton iteration (5) to the Newton–
Schulz iteration (6); i.e., we relaxed the convergence condition ‖A2

i − I‖ < 1 for the
Newton–Schulz iteration to

‖A2
i − I‖1 = ‖Ai(Ai − A−1

i )‖1 = 2‖Ai(Ai+1 − Ai)‖1 ≤ 2
√

n‖Ai‖1

because this optimized performance over the test cases we ran.
Table 3 shows the CPU time in seconds and different megaflops rates. All back-

ward errors are on the order of 10−13. The Newton iteration took between 14 to 16
steps to converge and then took 2 steps of Newton–Schulz iteration. From the table
we see that by comparing with CMSSL matrix multiplication we obtain 32% to 45%
efficiency with the matrices sizes from 512 to 2048, even faster than the CMSSL ma-
trix inverse subroutine. After profiling the total CPU time, we found that about 83%
of total time is spent on the Newton iteration, 9% on the QR decomposition with
pivoting, and 7.5% on the matrix multiplication for the Newton–Schulz iteration and
orthogonal transformations.

4. Execution time modeling. In this section, we derive an execution time
model for the SDC algorithm. We will show that the model confirms that the SDC
algorithm scales well. The ratio of computation to communication, the chief determi-
nant of scalability, is comparable to that required by current implementations of LU
decomposition [11]. Since LU decomposition scales well to a wide variety of machines
[17], the SDC algorithm can also be expected to scale well.

4.1. Details of the execution time model. Our model is based on the ac-
tual operation counts of the ScaLAPACK implementation and the following problem
parameters and (measured) machine parameters:
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TABLE 3
Performance of the SDC algorithm with Newton–Schulz iteration on a 32 node CM-5 with

vector units.

Actual Predicted GEMM- Inverse-
n time time Mflops Mflops Mflops Mflops

(seconds) (seconds) (total) (per node) (per node) (per node)
256 25 16 30.72 0.96 12.57 0.69
512 58 45 106.88 3.34 22.14 2.62
768 99 88 203.84 6.37 30.32 5.05
1024 143 146 318.40 9.95 37.71 7.81
1280 231 222 405.44 12.67 42.06 10.64
1536 296 316 520.64 16.27 46.61 13.49
1792 423 430 579.84 18.12 51.47 16.16
2048 506 567 732.16 22.88 55.72 18.87

TABLE 4
Models for each of the building blocks.

Computation Communication cost
Task cost latency bandwidth−1

LU 2
3

n3

p
γ (6+lg p)nα (3+

lg p
4 ) n2√

p
β

TRI 4
3

n3

p
γ 2nα (2+3

2 lg p) n2√
p
β

Matrix multi-
ply 2 n3

p
γ (1+

lg p
2 )

√
pα (1+

lg p
2 ) n2√

p
β

QR 4
3

n3

p
γ 3n lg pα 3 lg p

4
n2√

p
β

Householder
application 2 n3

p
γ 2 n2√

p
lg pβ

n matrix size,
p number of processors,
α time required to send a zero length message from one processor to another,
β time required to send one double word from one processor to another,
γ time required per BLAS3 floating point operation.
The models for each of the building blocks, shown in Table 4, were created by

counting the actual operations in the critical path. Each of these building block
models were validated against the performance data shown in Figures 2 and 4.

In Table 5, the predicted running time of each of the steps of the algorithm is
displayed. Summing the times in Table 5 yields

total time = 45
n3

p
γ + (160 + 23 lg p)nα + (90 + 40 lg p)

n2

√
p
β.(7)

Using the measured machine parameters given in Table 6 with (7) yields the predicted
times on CM-5 (Table 3) and the Intel Delta system (Table 7). As Table 7 shows,
our model underestimates the actual time on the Delta by no more than 30% for
the problem and machine sizes listed. Table 3 shows that our model matches the
performance on the CM-5 to within 25% for all problem sizes except the smallest, i.e.,
n = 256.

Table 8 compares the execution time cost to divide the spectrum once by the
SDC algorithm with the cost for LU decomposition. The ratio of SDC to LU costs in
each of the three categories—the cost of a flop, message initiation cost, and inverse
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TABLE 5
Model of the SDC algorithm with Newton iteration.

20 matrix QR 2 Householder Total
inversions applications

Computation cost × n3

p
γ 40 4

3 4 45

Latency cost ×nα 160+20 lg p 3 lg p 160+23 lg p

Bandwidth cost × n2√
p
β 90+35 lg p

3
4 lg p 4 90+40 lg p

TABLE 6
Machine parameters.

Model Performance Measured values µs
parameter Description limited by CM-5 Delta
γ time per BLAS 3 flop peak flop rate 1/90 1/34
α message latency comm. software 150 157
β bandwidth−1 comm. hardware 1.62 1.67

TABLE 7
Actual and predicted performance of the SDC algorithm with Newton iteration for the spectral

decomposition along the pure imaginary axis.

Delta 8 × 16 PEs 16 × 16 PEs 16 × 32 PEs
n actual predicted actual predicted actual predicted

time (sec) time (sec) time (sec) time (sec) time (sec) time ( sec)
1000 – – 134 102 110 93
2000 502 402 448 320 336 269
3000 1037 921 792 687 576 542
4000 – – 1436 1231 1014 927
8000 – – – – 4268 3910

TABLE 8
The scalability of the SDC algorithm versus LU decomposition.

SDC LU SDC/ LU

Computation cost 45 n3

p
γ 2

3
n3

p
γ 67

Latency cost (160+23 lg p)nα (6+lg p)nα
160+23lg(p)

6+lg(p)

Bandwidth cost (90+40 lg p) n2√
p
β (3+

lg p
4 ) n2√

p
β

90+40lg(p)
3+ 1

4 lg(p)

bandwidth cost—is shown in the third column and also displayed here:〈
67,

160 + 23 lg p

6 + lg p
,
90 + 40 lg p

3 + 1
4 lg p

〉
.

These cost ratios vary slowly with the number of processors. For example, the cost of
splitting the spectrum once with the SDC algorithm on 1000 processors is 67 times
the flop cost in LU, 24 times the message initiation cost in LU, and 90 times the
inverse bandwidth cost in LU. At the extremes, p = 1 and p = ∞, the cost ratios
are 〈67, 27, 30〉 and 〈67, 23, 160〉, respectively. These cost ratios show that the SDC
algorithm will scale almost as well as the LU decomposition across most computers.

The performance figures in Table 6 are all measured by an independent program,
except for the CM-5 Level 3 BLAS performance. The communication performance
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figures for the Delta in Table 6 are from a report by Littlefield1 [29]. The commu-
nication performance figures for the CM-5 are as measured by Whaley2 [35]. The
computation performance for the Delta is from the LINPACK benchmark [17] for a
one processor Delta. There is no entry for a one processor CM-5 in the LINPACK
benchmark, so γ for the CM-5 in Table 6 is chosen from our own experience.

4.2. Discrepancies between the model and actual times. There are nu-
merous sources of error in our model. The model does not count all floating point
operations. The number of processor rows and columns and the block size affect
performance, and ignoring them therefore contributes to the total error. Communi-
cations do not exactly fit the linear model (α + nβ) nor are matrix multiply costs
constant per flop.

The model assumes that exactly 20 Newton iterations are required, whereas the
actual number varied from 18 to 22. It is based on QR decomposition without pivoting,
but the code has to use the QR decomposition with pivoting. On the CM-5, timings
are from the Newton–Schulz iteration because the latter is slightly more efficient, but
the model is uniformly based on the Newton iteration.

We have a more detailed model which matches the performance better than the
one shown here. The detailed model shows that algorithmic discrepancies and load
imbalance contribute the largest errors for large problems (n > 512) while uncounted
operations contribute the largest error for small problems (n < 512).

5. XI : A graphical user interface to SDC. To take advantage of the graph-
ical nature of the spectral decomposition process of the SDC algorithm, a graphical
user interface has been implemented. Written in C and based on X11R5’s standard
Xlib library, the Xt toolkit, and MIT’s Athena widget set, it has been nicknamed XI
for “X11 Interface”. The programmer’s interface to XI consists of seven subroutines
designed independently of any specific SDC implementation. Thus, XI can be at-
tached to any SDC code. At present, it is in use with the CM-5 CMF implementation
and Fortran 77 version of the SDC algorithm. Figure 5 shows the coupling of the
SDC code and the XI library of subroutines.

Basically, the SDC code calls an XI routine which handles all interaction with the
user and returns only when it has the next request for a parallel computation. The
SDC code processes this request on the parallel engine, and if necessary calls another
XI routine to inform the user of the computational results. If the user had selected to
split the spectrum, then at this point the size of the highlighted region and the error
bound on the computation (along with some performance information) is reported,
and the user is given the choice of confirming or refusing the split. Appropriate action
is taken depending on the choice. This process is repeated until the user decides to
terminate the program.

All data structures pertaining to the matrix decomposition process are managed
by XI. A binary tree records the size and status (solved/not solved) of each diagonal
block corresponding to a spectral region, the error bounds of each split, and other
information. Having the X11 interface manage the decomposition data frees the
programmer of these responsibilities and encapsulates the decomposition process. The
programmer obtains any useful information via the interface subroutines.

Figure 6 pictures a sample session of the user interface on the CM-5 with a
matrix of order 500. The central window (called the “spectrum window”) represents

1The BLACS use protocol 2, and the communication pattern most closely resembles the “shift”
timings.

2α is from Table 8 in [35] and β is from Table 5 in [35].
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 SDC

CODE

 XI

CODE

X

USER

PARALLEL EXECUTION

             ENGINE

Interface of 7 routines

FIG. 5. The X11 Interface (XI) and SDC.

FIG. 6. A sample xsdc session.

the region of the complex plane indicated by the axes. Its title “xsdc :: Eigenvalues
and Schur Vectors” indicates that the task is to compute eigenvalues and Schur vectors
for the underline matrix. The lines on the spectrum window (other than the axes) are
the result of SDC, while the shading indicates that the bow tie region of the complex
plane is currently selected for further analysis. The other windows show the details
of the process.
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The buttons at the top control Input/Output (I/O), the appearance of the spec-
trum window, and algorithmic choices:

• File lets one save the matrix, start on a new matrix, or quit.
• Zoom lets one navigate around the complex plane by zooming in or out on

part of the spectrum window.
• Toggle turns on or off the features of the spectrum window (for example the

axes, Gershgorin disks, eigenvalues).
• Function lets one modify the algorithm or display details about the progress

being made.
The buttons at the bottom are used in splitting the spectrum. For example,

clicking on Right halfplane and then clicking at any point on the spectrum window
will split the spectrum into two halfplanes at that point, with the right halfplane
selected for further division. The Split Information window keeps track of the
matrix splitting process. The Matrix Information window displays the status of
the matrix decomposition process, where each of the three entries corresponds to a
spectral region and a square diagonal block of the 3×3 block upper-triangular matrix,
and informs us of the block’s size, whether its eigenvalues (eigenvectors, Schur vectors)
have been computed or not, and the maximum error bound encountered. The listed
eigenvalues can be plotted on the spectrum at the user’s request.

The user may select any region of the complex plane (and hence any submatrix on
the diagonal) for further decomposition by clicking the pointer in the desired region.
Once a block is small enough, the user may choose to solve it via the Function button
at the top of the spectrum window.

6. Concluding remarks. Our implementation of the SDC algorithm with New-
ton iteration uses only highly efficient matrix computation kernels, which are available
in the public domain and from distributed memory parallel computer vendors. The
performance attained is encouraging. This approach merits consideration for other
numerical algorithms. The object-oriented user interface XI provides a paradigm for
use in the future to design a more user-friendly interface in the massively parallel
computing environment. We note that all the approaches discussed here can be ex-
tended to compute both the right and left deflating subspaces of a regular matrix
pencil A − λB.

As the spectrum is repeatedly partitioned in a divide-and-conquer fashion, there is
obviously task parallelism available because of the independent submatrices that arise,
as well as the data parallel-like matrix operations considered in this paper. Analysis
in [9] indicates that this task parallelism can contribute at most a small constant
factor speedup, since most of the work is at the root of the divide-and-conquer tree.
This can simplify the implementation.
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